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Abstract—Channel uncertainty and co-channel interference
are two major challenges in the design of wireless systems
such as future generation cellular networks. This paper studies
receiver design for a wireless channel model with both time-
varying Rayleigh fading and strong co-channel interference of
similar form as the desired signal. It is assumed that the channel
coefficients of the desired signal can be estimated through the use
of pilots, whereas no pilot for the interference signal is available,
as is the case in many practical wireless systems. Because the
interference process is non-Gaussian, treating it as Gaussian noise
generally often leads to unacceptable performance. In order to
exploit the statistics of the interference and correlated fading in
time, an iterative message-passing architecture is proposed for
joint channel estimation, interference mitigation and decoding.
Each message takes the form of a mixture of Gaussian densities
where the number of components is limited so that the overall
complexity of the receiver is constant per symbol regardless
of the frame and code lengths. Simulation of both coded and
uncoded systems shows that the receiver performs significantly
better than conventional receivers with linear channel estimation,
and is robust with respect to mismatch in the assumed fading
model.

Index Terms—Belief propagation, channel estimation, co-
channel interference, correlated Rayleigh fading, graphical mod-
els, interference mitigation, message passing.

I. INTRODUCTION

With sufficient signal-to-noise ratio, the performance of
a wireless terminal is fundamentally limited by two major
factors, namely, interference from other terminals in the sys-
tem and uncertainty about channel variations [1]. Although
each of these two impairments has been studied in depth
assuming the absence of the other, much less is understood
when both are significant. This work considers the detection
of one digital signal in the presence of correlated fading and
an interfering signal of the same modulation type, possibly
of similar strength, and also subject to independent time-
correlated fading. Moreover, it is assumed that the channel
condition of the desired user can be measured using known
pilots interleaved with data symbols, whereas no pilot from the
interferer is available at the receiver. The practical motivation
for this problem is the orthogonal frequency-division multiple
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access (OFDMA) downlink with a single dominant co-channel
interferer in an adjacent cell, which is typical in fourth
generation cellular networks. Such a situation also arises, for
example, in peer-to-peer wireless networks.

This work focuses on a narrowband system with binary
phase shift keying (BPSK) modulation, where the fading
channels of the desired user and the interferer are modeled
as independent Gauss-Markov processes.1 A single transmit
antenna and multiple receive antennas are assumed first to de-
velop the receiver, while extensions to more elaborate models
are also discussed.

The unique challenge posed by the model considered is the
simultaneous uncertainty associated with the interference and
fading channels. A conventional approach is to first measure
the channel state (with or without interference), and then
mitigate the interference assuming the channel estimate is
exact. Such separation of channel estimation and detection
is viable in the current problem if known pilots are also
embedded in the interference. As was shown in [2], knowledge
of pilots in the interfering signal can be indispensable to
the success of linear channel estimation, even with iterative
Turbo processing. Without such knowledge, linear channel
estimators, which treat the interference as white Gaussian
noise, provide inaccurate channel estimates and unacceptable
error probability in case of moderate to strong interference.

Evidently, an alternative approach for joint channel estima-
tion and interference mitigation is needed. In the absence of
interfering pilots, the key is to exploit knowledge of the non-
Gaussian statistics of the interference. The problem is basi-
cally a compound hypothesis testing problem (averaged over
channel uncertainty). Unfortunately, the Maximum Likelihood
(ML) detector becomes computationally impractical since it
must search over (possibly a continuum of) combined channel
and interference states for all interferers.

In this paper, we develop an iterative message-passing algo-
rithm for joint channel estimation and interference mitigation,
which can also easily incorporate iterative decoding of error-
control codes. The algorithm is based on belief propagation
(BP), which performs statistical inference on graphical models
by propagating locally computed “beliefs” [3]. BP has been
successfully applied to the decoding of low-density parity-
check (LDPC) codes [4], [5]. Other related applications of
BP include combined channel estimation and detection for
a single-user fading channel or frequency selective channel
[6]–[9], multiuser detection for CDMA with ideal (nonfading)

1The desired user and the interferer are modeled as independent. In
principle, the fading statistics can be estimated and are not needed a priori.
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channels based on a factor graph approach [10] (see also
[11], [12]), and the mitigation of multiplicative phase noise
in addition to thermal noise [13]–[15]. Unique to this paper is
the consideration of fading as well as the presence of a strong
interferer. This poses additional challenges, since the desired
signal has both phase and amplitude ambiguities, which are
combined with the uncertainty associated with the interference.

The following are the main contributions of this paper:

1) A factor graph is constructed to describe the model,
based on which a BP algorithm is developed. For a finite
block of channel uses, the algorithm performs optimal
detection and estimation in two passes, one forward and
one backward.

2) For practical implementation, the belief messages (con-
tinuous densities) are parametrized using a small number
of variables. The resulting suboptimal message-passing
algorithm has constant complexity per bit (unlike the
complexity of ML which grows exponentially with the
block length).

3) Decoding of channel codes of LDPC-type is also incor-
porated in the message-passing framework.

4) As a benchmark for performance, a lower bound for
the optimal uncoded error probability is approximated
by assuming a genie-aided receiver in which adjacent
channel coefficients are revealed.

Numerical results are presented, which show that the message-
passing algorithm performs remarkably better than the con-
ventional technique of linear channel estimation followed by
detection of individual symbols with or without error-control
coding. Furthermore, the relative gain is not substantially
diminished in the presence of model mismatch (i.e., if the
Markov channel model assumed by the receiver is inaccurate),
as long as the channels do not vary too quickly.

The remainder of this paper is organized as follows. The
system model is formulated in Section II, and Section III de-
velops the message-passing algorithm. A lower bound for the
error probability is studied in Section IV. Section V discusses
the extensions to general scenarios and the computational
complexity of the proposed algorithm. Simulation results are
presented in Section VI and Section VII concludes the paper.

II. SYSTEM MODEL

Consider a narrow-band system with a single transmit
antenna and NR receive antennas, where the received signal
at time i in a frame (or block) of length l is expressed as

yi = hixi + h′ix
′
i + ni i = 1 . . . l (1)

where xi and x′i denote the transmitted symbols of the
desired user and interferer, respectively, hi and h′i denote the
corresponding NR-dimensional vectors of channel coefficients
whose covariance matrices are σ2

hI and σ2
h′I , and {ni}

represents the circularly-symmetric complex Gaussian (CSCG)
noise at the receiver with covariance matrix σ2

nI . For simplic-
ity, we assume BPSK modulation, i.e., xi, x′i are i.i.d. with
values ±1.

Assuming Rayleigh fading, {hi} and {h′i} are modeled as
two independent Gauss-Markov processes, that is, they are
generated by first-order auto-regressive relations (e.g., [16]):

hi = αhi−1 +
√

1− α2 wi (2a)

h′i = αh′i−1 +
√

1− α2 w′i (2b)

where {wi} and {w′i} are independent white CSCG processes
with covariance σ2

hI and σ2
h′I , respectively, and α determines

the correlation between successive fading coefficients. This
model includes two special cases: α = 0 corresponds to
independent fading and α = 1 corresponds to block fading.
Although this model is simple, general fading model can be
approximated by such first-order Markovian model [17], [18]
via choosing appropriate value for α. Furthermore, numerical
simulations in Section VI also show that the receiver designed
under such channel assumption is robust in other fading
environments as long as the channel variation over time is not
too fast. Note that (1) also models an OFDM system where i
denotes the index of sub-carriers instead of the time index.

Typically, pilots are inserted periodically among data
symbols. For example, 25% pilots refers to pattern
“PDDDPDDDPDDD...”, where P and D mark pilot and
data symbols, respectively. Let yji denote the sequence
yi,yi+1, . . . ,yj . The detection problem can be formulated
as follows: Given the observations yl1 and known value of
a certain subset of symbols in xl1 which are pilots, we wish to
recover the information symbols from the desired user, i.e., the
remaining unknown symbols in xl1, where the realization of the
channel coefficients and interfering symbols is not available.

III. GRAPHICAL MODEL AND MESSAGE PASSING

A. Graphical Model for Uncoded System

An important observation from (1) and (2) is that the
fading coefficients {(hi,h′i)}li=1 form a Markov chain with
state space in C2Nr . Also, given {(hi,h′i)}li=1, the 3-tuple
(xi, x′i,yi) of input and output variables is independent over
time i = 1, 2, . . . , l. The joint distribution of the random
variables can be factored as

p(yl1, x
l
1, x
′l
1 ,h

l
1,h
′l
1 ) = p(h1,h

′
1)

l∏
i=2

p(hi,h′i|hi−1,h
′
i−1)

×
l∏
i=1

(
p(yi|hi,h′i, xi, x′i)p(xi)p(x′i)

)
.

This factorization can be described using the factor graph
shown in Fig. 1.

Generally, a factor graph is a bipartite graph, which consists
of two types of nodes: the variable nodes, each denoted
by a circle in the graph, which represents one or a few
random variables jointly; and the factor nodes, each denoted
by a square which represents a constraint on the variable
nodes connected to it [3], [19]. The factor node between
the node (hi,h′i) and the node (hi−1,h

′
i−1) represents the

conditional distribution p(hi,h′i|hi−1,h
′
i−1), which is the

probability constraint specified by (2). Similarly, the factor
node connecting nodes yi, (hi,h′i) and (xi, x′i) represents
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Fig. 1. A factor graph describing the communication system model
without channel coding. The arrows refer to messages which are discussed in
Section III-B

the conditional distribution p(yi|hi,h′i, xi, x′i), which is the
relation given by (1). The prior probability distribution of the
data symbols is assigned as follows. All BPSK symbols xi and
x′i are uniformly distributed on {−1, 1} except for the subset
of pilot symbols in xl1, which are set to 1. The Markovian
property of the graph is that conditioned on any cut node(s),
the separated subsets of variables are mutually independent.
As we shall see, the Markovian property plays an important
role in the development of the message-passing algorithm.

Since the graphical model in Fig. 1 fully describes the
probability laws of the random variables given in (1) and
(2), the detection problem is equivalent to statistical inference
on the graph2. Simply put, we seek to answer the following
question: Once the realization of a subset of the variables
(received signal and pilots) on the graph is revealed, what
can be inferred about the symbols from the desired user?

Note that the same factor graph would arise if we were
to jointly detect both xi and x′i, which solves a problem
of multiuser detection. In this work, however, the receiver
is only interested in detecting xi, so that x′i is being aver-
aged out when passing messages between nodes (hi,h′i) and
(hi+1,h

′
i+1).

B. Exact Inference via Message Passing

In the problem described in Section II, the goal of inference
is to obtain or approximate the marginal posterior probability
p(xi|yl1), which is in fact a sufficient statistic of yl1 for xi.
Problems of such nature have been widely studied (see e.g.,
[22, Chapter 4] and [3]). In particular, BP is an efficient
algorithm for computing the posteriors by passing messages
among neighboring nodes on the graph. In principle, the result
of message passing with sufficient number of steps gives
the exact a posteriori probability of each unknown random
variable if the factor graph is a tree (i.e., free of cycles). For
general graphs with few short cycles, iterative message-passing

2The style of the factor graph in Fig. 1 is similar to that used in some other
work, such as [7], [13] and [20], which address channel and phase uncertainty
in the absence of interference. Note that there are several different styles of
factor graphs, e.g., the Forney style [21] which uses edges rather than circular
nodes to represent variables.

algorithms often compute good approximations of the desired
probabilities. Unlike in most other work (including [13]–[15]),
where each random variable is made a variable node, multiple
variables are clustered into a single node so that the factor
graph in Fig. 1 is free of cycles (see also [3] for the usage
of the clustering techniques). Numerical experiments (omitted
here) show that making each variable a separate node leads to
poor performance due to a large number of short cycles (e.g.,
there will be a cycle through hi,hi,hi+1,h

′
i+1).

Let Gi = [hi,h′i] and U i = [wi,w
′
i]. The model (1) and

(2) can be rewritten as:

yi = Gi

[
xi
x′i

]
+ ni (3)

Gi = αGi−1 +
√

1− α2 U i. (4)

The probability distributions immediately available are
p(yi|Gi, xi, x

′
i), p(Gi|Gi−1) and the marginals p(xi),

p(x′i), as well as p(Gi) which are Gaussian. Note that
p(yi|Gi, xi, x

′
i) is the conditional Gaussian density corre-

sponding to the channel model (1) and p(xi, x′i) = p(xi)p(x′i)
since the desired symbol and the interference symbol are
independent. Also, P (xi = 1) = 1 and P (xi = −1) = 0 if xi
is a pilot for the desired user, otherwise P (xi = ±1) = 1/2.
Moreover, P (x′i = ±1) ≡ 1/2 for all i, since we do not know
the pilot pattern of the interfering user.

The goal is to compute for each i = 1, . . . , l:

p(xi|yl1) =
∑
x′i=±1

∫
p(xi, x′i,Gi|yl1) dGi

∝
∑
x′i=±1

∫
p(xi, x′i,y

i−1
1 ,yi,y

l
i+1,Gi) dGi

where the “proportion” notation ∝ indicates that the two
sides differ by a factor which depends only on the obser-
vation yl1 (which has no influence on the likelihood ratio
P (xi = 1|yl1)/P (xi = −1|yl1) and hence on the decision).
For notational simplicity we have also omitted the limits of
the integrals, which are over the entire axes of 2NR complex
dimensions. By the Markovian property, (xi, x′i,yi), yi−1

1 and
yli+1 are mutually independent given Gi. Therefore,

p(xi|yl1) ∝
∑
x′i=±1

∫
p(yi, xi, x

′
i|Gi)p(yi−1

1 |Gi)

× p(yli+1|Gi)p(Gi) dGi

∝
∑
x′i=±1

p(xi)p(x′i)
∫
p(yi|Gi, xi, x

′
i)p(Gi|yi−1

1 )

× p(Gi|yli+1)
/
p(Gi)dGi (5)

where the independence of (xi, x′i) and Gi is used to ob-
tain (5). In order to compute (5), it suffices to compute
p(Gi|yi−1

1 ) and p(Gi|yli+1).
We briefly derive the posterior probability p(Gi|yi−1

1 ) as
a recursion in below, whereas computation of p(Gi|yli+1) is
similar by symmetry. Consider the posterior of the coefficients
Gi given the received signal up to time i − 1. The influence
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of yi−1
1 on Gi is through Gi−1 because Gi and yi−1

1 are
independent given Gi−1. Thus,

p(Gi|yi−1
1 ) =

∫
p(Gi|Gi−1)p(Gi−1|yi−1

1 )dGi−1 .

By the Markovian property, yi−2
1 and yi−1 are independent

given Gi−1, so that

p(Gi|yi−1
1 )∝

∫
p(Gi|Gi−1)p(yi−1|Gi−1)p(Gi−1|yi−2

1 )dGi−1.

(6)
Since Gi−1 and xi−1, x

′
i−1 are independent,

p(yi−1|Gi−1)

=
∑

xi−1,x′i−1=±1

p(yi−1|xi−1, x
′
i−1,Gi−1)p(xi−1)p(x′i−1) . (7)

Therefore, by (6) and (7), we have a recursion for computing
p(Gi|yi−1

1 ) for each i = 1, . . . , l,

p(Gi|yi−1
1 ) ∝

∑
xi−1,x′i−1=±1

∫
p(Gi|Gi−1)p(Gi−1|yi−2

1 )

× p(yi−1|Gi−1, xi−1, x
′
i−1)p(xi−1)p(x′i−1) dGi−1 (8)

which is the key to the message-passing algorithm. Similarly,
we can also derive the inference on Gi, which serves as an
estimate of channel coefficients at time i:

p(Gi|yl1) ∝
∑

xi,x′i=±1

p(xi)p(x′i)p(yi|Gi, xi, x
′
i)

× p(Gi|yi−1
1 )p(Gi|yli+1)/p(Gi). (9)

In other words, the BP algorithm requires backward and
forward message-passing only once in each direction, which
is similar to the BCJR algorithm [23]. The key difference
between our algorithm and the BCJR is that the Markov chain
here has a continuous state space.3

The joint channel estimation and interference mitigation
algorithm is summarized in Algorithm 1. Basically, the mes-
sage from a factor node to a variable node is a summary of
the extrinsic information4 (EI) about the random variable(s)
represented by the variable node based on all observations
connected directly or indirectly to the factor node [3]. For
example, the message received by node (hi,h′i) from the factor
node on its left summarizes all information about (hi,h′i)
based on the observations y1, . . . ,yi−1, which is proportional
to p(hi,h′i|yi−1

1 ). The message from a variable node to a
factor node is a summary of the EI about the variable node
based on the observations connected to it. For example, the
message passed by node (hi,h′i) to the factor node on its left
is the EI about (hi,h′i) based on the observations y1, . . . ,yi,
i.e., p(hi,h′i|yi1).

Given the factor graph, it becomes straightforward to write
out the message passing algorithm, which is equivalent to the
sum-product algorithm [3]. Because of the simple Markovian

3Another way to derive the message passing algorithm is based on the factor
graph, in which the joint probability is factored first and then marginalized to
get the associated posterior probability [3].

4It is obtain by removing the posterior probability of the variable node itself
in the a posterior probability (APP).

Algorithm 1 Pseudo code for the message-passing algorithm
Initialization: P (x′i = 1) = P (x′i = −1) = 1/2 for all i.
The same probabilities are also assigned to p(xi) for all i
except for the pilots, for which P (xi = 1) = 1. For all i,
p(Gi) is zero mean Gaussian with variance Q.
for i = 1 to l do

Compute p(Gi|yi−1
1 ) from (8)

Compute p(Gi|yli+1) similarly to (8)
end for
for i = 1 to l do

Compute p(xi|yl1) from (5)
end for

structure of the factor graph, we derive the algorithm using
basic probability arguments in this section. The preceding
treatment is self-contained, and the technique also applies to
other similar problems.

C. Practical Issues

Algorithm 1 cannot be implemented directly using a digital
computer because the messages are continuous probability
density functions (PDFs). Here we choose to parametrize the
PDFs, as opposed to quantizing the multi-dimensional PDFs
directly, which requires a large number of quantization bins
and thus high computational complexity. Also, parametrization
can characterize the PDFs exactly without introducing extra
quantization error. Thus it can achieve better performance with
less complexity. (Of course, for hardware implementation the
PDF parameters must be quantized.)

For notational convenience, we use g to denote the column
vector formed by stacking the columns of the matrix G, i.e.,
if Gi = [hi,h′i] is NR × 2 as defined previously then gi =[
hT
i ,h

′T
i

]T
is 2NR × 1. We define

Zi = [xi, x′i]⊗ I2 =
[
xi 0 x′i 0
0 xi 0 x′i

]
where ⊗ denotes the Kronecker product and Ir denotes the
r × r identity matrix. Then (3) and (4) are equivalent to

yi = Zigi + ni (10)

gi = αgi−1 +
√

1− α2 ui (11)

where ui is a column vector consisting of 2NR indepen-
dent CSCG variables with variance σ2

h or σ2
h′ . Let the

r−dimensional complex Gaussian density be denoted by

CN (x,m,K) ≡ 1
πr det(K)

exp
[
−(x−m)HK−1(x−m)

]
where xr×1 is a column vector of complex dimension r, and
mr×1 and Kr×r denote the mean and covariance matrix,
respectively. Let Q = diag(σ2

h, σ
2
h, σ

2
h′ , σ

2
h′). We can then

write p(gi|gi−1) = CN (gi, αgi−1,
√

1− α2 Q), p(gi) =
CN (gi, 0,Q) and p(yi|gi, xi, x′i) = CN (yi,Zigi, σ

2
nI).

The density functions, p(gi|yli+1) and p(gi|yi−1
1 ) are Gaus-

sian mixtures. Note that the random variables in Fig. 1 are
either Gaussian or discrete. The forward recursion (8) for
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p(gi|yi−1
1 ) starts with a Gaussian density function. As the

message is passed from node to node, it becomes a mixture
of more and more Gaussian densities. Each Gaussian mixture
is completely characterized by the amplitudes, means and
variances of its components. Therefore, we can compute and
pass these parameters instead of PDFs.

Without loss of generality, we assume that p(gi−1|yi−2
1 ) =∑

j ρj CN (gi−1,m
j
i−1,K

j
i−1), where non-negative numbers

{ρj} satisfy
∑
j ρj = 1. Substituting into (8), after some

manipulations, we have

p(gi|yi−1
1 ) ∝

∑
j,xi−1,x′i−1

ρj p(xi−1)p(x′i−1)L(j, i)C(j, i) (12)

where

L(j, i) = CN (Zi−1m
j
i−1,yi−1, σ

2
nI+Zi−1K

j
i−1Zi−1) (13)

and
C(j, i) = CN

(
gi,m

j,i
i ,K

j,i
i

)
(14)

where

mj,i
i = αmj

i−1 + αKj
i−1Z

H
i−1(σ

2
nI + Zi−1K

j
i−1Zi−1)−1

× (yi −Zi−1m
j
i−1) (15a)

Kj,i
i = α2Kj

i−1 +
√

1− α2 Q− (αKj
i−1Z

H
i−1)

× (σ2
nI + Zi−1K

j
i−1Z

H
i−1)

−1(αZi−1K
j
i−1). (15b)

Basically, (12), (13) and (14) give an explicit recursive compu-
tation for the amplitude, mean and variance of each Gaussian
component in message p(gi|yi−1

1 ). Similar computations can
be applied to p(gi|yli+1).

Examining (15a) and (15b) more closely, ignoring the
superscripts, they are the one-step prediction equation and
Riccati equations, respectively, for the linear system defined
by (3) and (4) with known Zi−1 [24, Ch.3], [3, Sec. IV.C].
Therefore, passing messages from one end to the other can be
viewed as a series of Kalman filters with different weights: In
each step, each filter performs the traditional Kalman filter for
each hypothesis of Zi−1 and the filtered result is weighted by
the product of the previous weight, the posterior probability
of the hypothesis, and L(j, i).5

The number of Gaussian components increases exponen-
tially in the recursive formula (12), which becomes compu-
tationally infeasible. In this work, we fix the total number of
components and simply pick the components with the largest
amplitudes (which correspond to the most likely hypotheses).
In general, this problem is equivalent to the problem of
survivor-reduction. Two techniques that have been proposed
are decision feedback [26] and thresholding [27]. The former
limits the maximum number of survivors by assuming the past
decisions are correct, while the latter keeps the survivors only
when their a posteriori probabilities exceed a certain threshold
value. According to the preceding analysis, the method we
propose falls into the decision feedback category. Obviously,
the more components we keep, the better performance we

5The value of L(j, i) is given by (13) and is related to the difference
between the filtered result and the new observation. Prior work in which
a single Kalman filter is used for channel estimation in the absence of
interference is presented in [20], [25].

have; however, the higher the complexity at the receiver. We
investigate this issue numerically in Section VI. A different
approach to limiting the number of Gaussian components
is presented in [14], [28]–[31]. There the basic idea is to
merge components “close” to each other instead of discarding
the weakest ones as we do here. However, that requires
computing distances between pairs of components, which can
lead to significantly higher complexity [29], [31]. The relative
performance of these different methods is left for future study.

D. Integration with Channel Coding

Channel codes based on factor graphs can be easily in-
corporated in the message-passing framework developed thus
far. In Fig. 2, a sparse graphical code is in conjunction with
the factor graph for the model (1) and (2). The larger factor
graph is no longer acyclic. Therefore, the message-passing
algorithm is sub-optimal for this graph even if one could keep
all detection hypotheses (i.e., the number of mixture com-
ponents is unrestrained). However, design of channel coding
can guarantee the degrees of such cycles are typically quite
large. Hence message-passing performs very well [5]. Based
on the factor graph, one can develop many message-passing
schedules. To exploit the slow variation of the fading channel,
the non-Gaussian property of the interfering signal and the
structure of graphical codes, a simple idea is to allow the
detector and decoder to exchange their extrinsic information.
For example, suppose that at a certain message-passing stage,
the node xi+1 computes its APP from the detector. Then
the node xi+1 can distribute the EI to the sub-graph of the
graphical code, which is described by the solid arrows in
Fig. 2. After xi+1 collects the “beliefs” from all its edges,
it passes the EI (which is obtained by multiplying together
all “beliefs” but the one coming from the detector) back to
the detector. This process is described by the dashed arrows
in Fig. 2. In other words, both the detector and the decoder
compute their posterior probabilities from received EI.

In this paper, we use LDPC codes with the following simple
strategy: We run the detection part as before and then feed
the EI to the LDPC decoder through variable nodes xi. After
running the LDPC decoder several rounds, we feed back the
EI to the detection sub-graph. We investigate the impact of
the message-passing schedule on performance numerically in
Section VI.

IV. ERROR FLOOR DUE TO CHANNEL UNCERTAINTY

Channel variations impose a fundamental limit on the error
performance regardless of the signal-to-noise ratio (SNR).
Consider a genie-aided receiver: when detecting symbol xi,
a genie reveals all channel coefficients but (hi,h′i) to the
receiver, which can only reduce the minimum error probability.
Even in the absence of noise, the receiver cannot estimate
(hi,h′i) precisely (not even the sign) due to the Markovian
property in (2). Therefore, the error probability does not vanish
as the noise power goes to zero.

Evidently, the genie-aided receiver also gives a lower bound
on the error probability for the exact message passing algo-
rithm. In the following, we derive an approximation to this
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Fig. 2. A factor graph for joint detection, estimation and decoding. The solid arrows show EI passed from the detector to the decoder, and the dashed arrows
show EI passed from the decoder to the detector.

lower bound. Numerical results in Section V indicate that
the difference between the approximate lower bound and the
actual genie-aided performance is small.

Consider the error probability of jointly detecting [xi, x′i]
with the help of the genie. Conditioned on all other channel
coefficients, hi and h′i are Gaussian. Let hi = ĥi + h̃i and
h′i = ĥ

′
i+ h̃

′
i where ĥi and ĥ

′
i are the estimates of hi and h′i,

respectively, and h̃i and h̃i are the respective estimation errors.
By treating h̃ixi and h̃

′
ix
′
i as additional noise, the channel

model can be rewritten as

yi = ĥixi + ĥ
′
ix
′
i + ñi

where the residual noise ñi = h̃ixi + h̃
′
ix
′
i + ni. It

can be shown that ñi is a CSCG random vector inde-
pendent of (xi, x′i) and with covariance matrix σ2

ñI =(
1−α2

1+α2 (σ2
h + σ2

h′) + σ2
n

)
I .

Let x̂i and x̂′i be the estimates of xi and x′i, respectively.
For simplicity, we assume dual receive antennas (NR = 2).
Following a standard analysis [1, App. A], we have

P (error) = P (x̂i 6= xi, x̂
′
i = x′i) + P (x̂i 6= xi, x̂

′
i 6= x′i)

=
(

1− µ1

2

)2

(2 + µ1) +
(

1− µ2

2

)2

(2 + µ2) (16)

where

µ1 =

√
α2σ2

h

α2σ2
h + (1 + α2)σ2

ñ

µ2 =

√
α2(σ2

h + σ2
h′)

α2(σ2
h + σ2

h′) + (1 + α2)σ2
ñ

.

Note that as long as α 6= 1, the residual noise ñ does
not vanish, which results in an error floor. Therefore, such
error floor is inherent to the channel model, and despite its
simplicity, the channel cannot be tracked exactly based on
pilots.

V. EXTENSIONS AND COMPLEXITY

A. Extensions

The message-passing approach applies to general multiple-
input multiple-output systems. For example, if NT transmit
antennas are used by the desired user, N ′T transmit antennas
are used by the interferer, and NR antennas are used by the
receiver, then the system can be described as

yi = Hixi + H ′ix
′
i + ni (17a)

Hi = FHi−1 + W i (17b)
H ′i = F ′H ′i−1 + W ′

i (17c)

where yi(NR× 1), xi(NT × 1), x′i(N
′
T × 1) are the received

signal, desired user’s signal and interfering signal, respectively,
at time i, the noise ni(NR×1) consists of CSCG entries, and
Hi(NR × NT ) and Hi(NR × N ′T ) are independent channel
matrices. Equations (17b) and (17c) represent the evolution of
the channels, where F and F ′ are in general square matrices,
and W i and W ′

i are independent CSCG noises.
Let hj,i represent the j-th column of Hi, and define

gi =
[
hT

1,i,h
T
2,i, . . . ,h

T
NT ,i,h

′T
1,i,h

′T
2,i, . . . ,h

′T
N ′T ,i

]T
ui =

[
wT

1,i,w
T
2,i, . . . ,w

T
NT ,i,w

′T
1,i,w

′T
2,i, . . . ,w

′T
N ′T ,i

]T
Zi =

[
xT
i ,x

′T
i

]T ⊗ INR

A = E
[
gig

H
i−1

] (
E[gi−1g

H
i−1]

)−1

B = E[giu
H
i ] .

Note that (10) and (11) are still valid, where α and
√

1− α2 Q
are replaced by A and B, respectively. Therefore, with this
replacement, the BP algorithm for this general model remains
the same.

We can also replace the Gauss-Markov model with higher
order Markov models. By expanding the state space (denoted
by Gi), we can still construct the corresponding factor graph
by replacing variable nodes (Hi,H

′
i) with Gi, and a similar
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Fig. 3. The BER performance of the message-passing algorithm. The density of pilots is 25%. (a) The power of the interference is 10 dB weaker than that
of the desired user. (b) The power of the interference is 3 dB weaker than that of the desired user. (c) The power of the interference is identical to that of
the desired user.

algorithm can be derived as before. Also, extensions to systems
with more than one interference can be similarly derived.

Furthermore, the proposed scheme can in principle be
generalized to any signal constellation and any space-time
codes, including QPSK, 8-PSK, 16-QAM and Alamouti codes.
However, as the constellation size, the space-time codebook
size or the number of interferers increases, the complexity
of the algorithm increases rapidly, while the advantage over
linear channel estimation vanishes because the interference
becomes more Gaussian due to central limit theorem. Thus
the algorithm proposed in this paper is particularly suitable
for BPSK and QPSK modulations, space-time codewords with
short block length and a small number of interferers. A
detailed tally of the total complexity is given next.

B. Complexity

With or without coding, the complexity of the message-
passing receiver is linear in the frame length, and polynomial
in the number of antennas.

Suppose that there are m channel coefficients, so g is a
vector of length m (for the Gauss-Markov channel model
m = NR(NT + N ′T )). The number of receive antennas is
NR, the maximum number of Gaussian components we allow
is C, and the sizes of the alphabet of xi and x′i are |A| and
|A′|, respectively. The complexity of computing p(gi|yi−1

1 ) is
then O(C|A||A′|Na

Rl), where l is the frame length and Na
R

is due to the matrix inverse in (15b). The exponent a depends
on the particular inversion algorithm, and is typically between
two and three.6 Similar complexity is needed to compute
p(Gi|yli+1). To synthesize the results from the backward and
forward message passing via (5), we need O(C2|A||A′|mal)
computations. Thus, the total complexity for the uncoded sys-
tem is O((CNa

R+C2ma)|A||A′|l). To reduce the complexity,
one can reduce C, which causes performance loss. One can
also try to approximate the matrix inverse (or equivalently,
replace the Kalman filter with a suboptimal filter).

6The value a = 2.37 is established in [32] for general matrices. There
has been recent progress on developing efficient algorithms for matrix
computations [33] and the Hermite matrices in (15b) may allow a further
reduction in complexity.

For a coded system, the complexity of message-passing
LDPC decoder is generally linear in codeword length [4].
With multiple frames coded into one codeword, the decoder
complexity is also linear in the frame length. Suppose the
number of EI exchanges between detector and decoder is Idet.
Then the overall complexity for the receiver is O((CNa

R +
C2ma)Idet|A||A′|l).

VI. SIMULATION RESULTS

In this section, the model presented in Section II with dual
receive antennas (NR = 2) and BPSK signaling, is used for
simulation. The performance of the message-passing algorithm
is plotted versus signal-to-noise ratio SNR = σ2

h/σ
2
n, where

the covariance matrix of the noise is σ2
nI . We set the channel

correlation parameter7 α = .99 and limit the maximum
number of Gaussian components to 8. Within each block, there
is one pilot in every 4 symbols. For the uncoded system, we
set the frame length to l = 200. For the coded system, we use
a (500, 250) irregular LDPC code and multiplex one LDPC
codeword into a single frame, i.e., we do not code across
multiple frames.

A. Performance of Uncoded System

1) BER Performance: Results for the message-passing al-
gorithm with the Gaussian mixture messages described in
Section III are shown in Figs. 3 to 8. We also show the
performance of three other receivers for comparison. The
first is denoted by “MMSE”, which estimates the desired
channel by taking a linear combination of adjacent received
value. This MMSE estimator treats the interference as white
Gaussian noise. The second is the genie-aided receiver de-
scribed in Section IV, denoted by “Genie-aided LB”, which
gives a lower bound on the performance of the message-
passing algorithm. The third one is denoted by “ML with full
CSI”, which performs maximum likelihood detection for each
symbol assuming that the realization of the fading processes

7In Clark model, correlation between adjacent symbols is .99 corresponds
to the scenario with the normalized maximum Doppler frequency approxi-
mately 0.03. In the other words, α = .99 corresponds to 300 Hz of Doppler
spread with symbol rate of 10 Kbps.
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Fig. 4. Channel estimation error with an interferer, which is 3 dB weaker
than the desired signal. The density of pilots is 25%.

is revealed to the detector by a genie, which lower bounds
the performance of all other receivers. We also plot the
approximation of the BER for the optimal genie-aided receiver
obtained from (16) using a dashed line.

Fig. 3 shows uncoded BER vs. SNR, where the power of the
interference is 10 dB weaker, 3 dB weaker and equal to that of
the desired user, respectively. The message-passing algorithm
generally gives a significant performance gain over the MMSE
channel estimator, especially in the high SNR region. Note
that thermal noise dominates when the interference is weak.
Therefore, relatively little performance gain over the MMSE
algorithm is observed in Fig. 3(a). In the very low SNR re-
gion, the MMSE algorithm slightly outperforms the message-
passing algorithm, which is probably due to the limitation on
number of Gaussian components.

The trend of the numerical results shows that the message-
passing algorithm effectively mitigates or partially cancels the
interference at all SNRs of interest, as opposed to suppressing
it by linear filtering. We see that there is still a gap between
the performance of the message-passing algorithm and that
of the genie-aided receiver. The reason is that revealing the
channel coefficients enables the receiver to detect the symbol
of the interferer with improved accuracy. Another observation
is that the analytical estimate is closer to the message-passing
algorithm performance with stronger interference.

2) Channel Estimation Performance: The channel estimate
from the message-passing algorithm is much more accurate
than that from the conventional linear channel estimation.
Fig. 4 shows the mean squared error for the channel estimation
versus SNR where the interference signal is 3 dB weaker
than the desired signal and one pilot is used after every
three data symbols. Note that the performance of the linear
estimator hardly improves as the SNR increases because the
signal-to-interference-and-noise ratio is no better than 3 dB
regardless of the SNR. This is the underlying reason for the
poor performance of the linear receiver shown in Fig. 3.
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Fig. 6. Performance under the Clarke channel with normalized maximum
Doppler frequency 0.02 and 3 dB weaker interference.

B. The Impact of Imperfect Knowledge of Channel Statistics

Although the statistical model for the channel is usually
determined a priori, the parameters of the model are often
based on on-line estimates, which may be inaccurate. The
following simulations evaluate the robustness of the receiver
when some parameters, or the model itself is not accurate.
The simulation conditions here are the same as for the previous
uncoded system with 3 dB weaker interference. Fig. 5 plots the
BER performance against the correlation coefficient α, while
the receiver uses α̂ instead. It is clear that the mismatch in
α causes little degradation. The result of a similar experiment
is plotted in Fig. 6, where the receiver assumes the Gauss-
Markov model, while the actual channels follow the Clarke
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Fig. 7. The BER performance for the system with a (500, 250) irregular
LDPC code. The interference is 3 dB weaker than the desired signal. The
density of pilots is 25%. “ML Detection with full CSI” refers to ML detection
with full CSI followed by BP-based LDPC decoding, which serves as a
performance benchmark.

model [1, Ch. 2].8 We see that the message-passing algorithm
still works well. In fact, as long as the channel varies relatively
slowly, modeling it as a Gauss-Markov process leads to good
performance.

C. Coded system and the Impact of Message-passing Schedule

Consider coded transmission using a (500, 250) irregular
LDPC code9 and with one LDPC codeword in each frame, i.e.,
no coding across multiple frames. Since we insert one pilot
after every 3 symbols, the total frame length is 667 symbols.
For the message-passing algorithm, let Idet denote the total
number of EI exchanges between decoder and detector, and
Idec denote the number of iterations of the LDPC decoder
during each EI exchange. Different values for pair (Idet, Idec)
correspond to different message-passing schedules.

In Fig. 7, we present the performance of two message-
passing schedules: (a) Idet = 1 and Idec = 50 denoted by
“Separate Message-passing Alg.”, i.e., the receiver detects the
symbol first, then passes the likelihood ratio to the LDPC
decoder without any further EI exchanges (separate detection
and decoding), and (b) Idet = 5 and Idec = 10, denoted by
“Joint Message-passing Alg.”, i.e., there are five EI exchanges
and the LDPC decoder iterates 10 rounds in between each
EI exchange. For the other two receiver algorithms, the total
number of iterations of LDPC decoder are both 50. As shown
in Fig. 7, the message-passing algorithm preserves a significant
advantage over the traditional linear MMSE algorithm and the
joint message-passing algorithm gains even more.

The performance with different message-passing schedules
is shown in Fig. 8. where we fix total number of LDPC

8We set α̂ according to the auto-correlation function for the Clark model.
9The left degree parameters are λ3 = .9867, λ4 = .0133; the right degree

parameters are ρ4 = .0027, ρ5 = .0565, ρ6 = .8332, ρ7 = .1023, ρ8 =
.0053. For the meaning of the parameters, please refer to [5].
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Fig. 8. The impact of different message-passing schedules.

iterations Idet×Idec. Generally speaking, if Idec or Idet×Idec
is fixed, more EI exchanges lead to better performance. We
also observe that when Idec is relatively large, say 30, the
performance gain from EI exchanges is small. The reason
is that when Idec is large, the output of the LDPC decoder
“hardens”, i.e., the decoder essentially decides what each
information bit is. When the EI is passed to the detector, all
symbols look like pilots from the point of view of the detector.
Therefore, there is not much gain in this case.

D. The Impact of Mixture Gaussian Approximation

As previously mentioned, the number of Gaussian com-
ponents in the messages related to the fading coefficients
grows exponentially. For implementation, we often have to
truncate or approximate the mixture Gaussian message. In this
paper, we keep only a fixed number of components with the
maximum amplitudes. The maximum number of components
clearly has some impact on the performance. Here we present
some numerical experiments to illustrate this effect.

When the pilot density is high, say 50%, there is no need
to keep many Gaussian components in each message. In
fact, keeping two components is essentially enough. However,
when the pilot density is lower, say 25%, the situation is
different. Fig. 9 shows the BER performance when we keep
different numbers of Gaussian components in the message-
passing algorithm where the pilot density is 25%. For this case,
we need 8 components for each message passing step. Indeed,
the lower the pilot density, the more Gaussian components we
need to achieve the same performance. When the pilot density
is low, we must keep a sufficient number of components, cor-
responding to a sufficient resolution for the message. Roughly
speaking, the number of Gaussian components needed is
closely related to the number of hypotheses arising from
symbols between the symbol of interest and the nearest pilot.

For a single-user system, previous studies indicate that a
single Gaussian approximation of the messages is sufficient,
e.g., [20]. Fig. 9 shows that this is not the case for the
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Fig. 9. The BER performance with different number of components in the
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signal. The density of pilots is 25%.

system considered with one dominant interferer. For the sim-
ulation with the single Gaussian approximation all Gaussian
components are combined into one at each message-passing
stage according to the minimum divergence criterion [31].
As expected, the performance with the single Gaussian ap-
proximation is relatively poor. Namely, consider the posterior
probability, or conditional PDF, of (hi,h′i), which is the
message passed along the graph. Due to the lack of pilots for
estimating h′i, there is inherent ambiguity of its polarity so
that the posterior of h′i is always symmetric around the origin
even with an exact message-passing algorithm. Consequently,
any approximation with a single Gaussian function can do no
better than treating h′i as a zero-mean Gaussian random vector.
This is equivalent to treating h′ix

′
i as Gaussian noise, which

leads to poor performance.

VII. CONCLUSION

A novel architecture based on graphical models and belief
propagation has been proposed for joint channel estimation,
interference mitigation and decoding. Such joint processing is
facilitated by efficient iterative message-passing algorithms,
where the total complexity is essentially the sum of the
complexity of the components, rather than their product as is
typical in joint maximum likelihood receivers. In the presence
of time-varying Rayleigh fading and a strong co-channel
interference, the message-passing algorithm provides a much
lower uncoded error floor than linear channel estimation. The
results with LDPC codes show at least 5 dB gain for achieving
acceptable bit-error rates. Also, this gain is robust with respect
to mismatch in channel statistics.

We have considered only two users with multiple receive
antennas. Although this is an important case, and the approach
can be generalized, there may be implementation (complexity)
issues with extending the algorithm. For example, if we have
more than one interferer or use larger constellations, the

number of hypotheses at each message-passing step increases
significantly. To maintain a target performance, we need to
increase the number of Gaussian components in each step
accordingly. Therefore, the complexity may significantly in-
crease with these extensions. Finally, the algorithm is difficult
to analyze. While our results give some basic insights into
performance, relative gains are difficult to predict.

Directions for future work include extensions to MIMO
channels (where channel modeling within the message-passing
framework becomes a challenge) as well as implementation
issues including methods for reducing complexity. Extending
the message-passing approach to equalization of frequency
selective channels with interference is also an interesting
direction. For example, the narrowband model (1) considered
here could be viewed as an OFDM system with a number of
sub-channels. (The receiver algorithm should then be modified
to account for correlations across sub-channels.) Alternatively,
message-passing approach could be combined with adaptive
equalization in the time domain.
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