
ECE Dept. Northwestern Univ. Ming Yang

Still Image Colorization
Objective of the project
Colorization represents a computer-assisted process of adding color to grey-scale still
images or monochrome movies. Since the mapping from grey-scale pixel to color pixel is
not unique, this process generally requires some user interactions to help confine the
color selection. The goal of the project is to implement a colorization algorithm similar to
[1, 2, 3] and a user-friendly interface with Visual C++ and OpenCV library. After user
scribbles the color of some selected pixels, the program will automatically propagate the
color to the remaining regions to generate a comfortable color image with good
subjective quality.

Figure 1. Illustration of colorization process

Problem Formulation
I use the YCbCr color space to colorize the gray image. The term color and chrominance
represent Cb or Cr component in the following discussion. A colorization algorithm
blending the color close to a pixel with iterative dynamic programming is designed and
implemented. First the intrinsic distance is introduced to define the contiguity of two
pixels. The intrinsic distance between two adjacent pixels is defined as the absolute value
of the intensity difference. The intrinsic distance of two arbitrary pixels is defined as the
minimum accumulative sum of intrinsic distances of a curve linking these two pixels.
Each pixel with user specified color propagates its color to all the adjacent pixels, and
each pixel maintains a list of top 3 colors with the minimum intrinsic distances. The
resultant color is the weighted sum of these 3 colors. The color propagate process is an
iterative dynamic programming procedure on the 8-connect pixel array. The more strict
descriptions are presented as follows.

Denote the gray intensity of a pixel s as , the chrominance of s is denoted as

, which represents Cb or Cr. The intrinsic distance of two adjacent pixels s
and t is defined as:

()Y s
()Chroma s

 (,) (() ())d s t abs Y s Y t= −
For an 8-connect curve , the intrinsic distance of C is defined as 1 2{ , ,...,)mC p p p=

March 10, 2005 page 1

ECE Dept. Northwestern Univ. Ming Yang

1

1
1

() (,)
m

i i
i

d C d p p
−

+
=

= ∑
The intrinsic distance of two arbitrary pixels s and t is defined as the minimum intrinsic
distance of a curve, which link s and t :
 1 m(,) min (), where p =s and p =td s t d C
Suppose users have specified N different colors and the set of pixels with the same color
are denoted as , the intrinsic distance of pixel s to , 1,...,n nΩ = N nΩ is defined as
 (,) min (,),n nd s d s t tΩ = ∀ ∈Ω

N

, 1,...,ns n∀ ∉Ω = , the final chrominance is the weighted sum of the top K=3
chrominance with the minimum intrinsic distances to s.

3

1
3

1

((,)) ()
()

((,))

ki i
i

ki
i

w d s Chroma k
Chroma s

w d s

=

=

Ω
=

Ω

∑

∑

where the weight function () , 4rw d d r−= = . The factor r can control the smoothness of
the chrominance transition.
The following is the illustration of intrinsic distance:

Figure 2. Illustration of intrinsic distance

Implementation Methods
The minimum intrinsic distance of every pixel to , 1,...,n n NΩ = is found by an iterative
dynamic programming algorithm. Each pixel maintains the top 3 colors with the
minimum intrinsic distances and propagate these 3 color to its 8-connect neighbor pixels.

Active pixel set(APS) is defined as the set of pixels ready to propagate their color to
adjacent pixels. The initial set is , 1,...,n n NΩ = with zero intrinsic distance. When a pixel
t is propagating its neighbor pixels 1 8p p− , if the 3 minimum intrinsic distances of ip is
changed, this pixel ip is added into the APS. After the pixel t already propagates to all its
8 neighbors, it is removed from APS. This process is performed iteratively until the APS

March 10, 2005 page 2

ECE Dept. Northwestern Univ. Ming Yang

is empty. Note that a pixel may be added to the APS more than once. Since the intrinsic
distance exists for each pixel, the convergence of this procedure is guaranteed. The
pseudo codes for the procedure is list below:
Initialization:

, 1,...,nAPS n N= Ω =
while (APS is not empty)
 {
 for each pixel t in APS

{
 propagates its 3 intrinsic distances to its 8 neighbor pixels 1 8{ ,..., }p p
 if (ip ’s list of 3minimum intrinsic distances is modified)
 {
 add ip to APS
 }
}
remove t from APS

}

System
The project is built with Microsoft Visual C++ 6.0 and the OpenCV 4.0 library. Users
can scribble color on the gray-scale images with different line width and erase the color.
One highlight of the program is to support Undo and Redo functions. If the users are not
satisfied with the operations they can exactly reverse the functions. This is implemented
with command design pattern. The color used can be picked up from a color image or
selected from system color palette, and user-defined color can be saved for future use.
Other features include saving and loading the color mask image and save the resultant
image. The interface of the program is as follows:

Figure 3. System interface

March 10, 2005 page 3

ECE Dept. Northwestern Univ. Ming Yang

Experimental Result
The colorization system is built and tested on a Pentium IV 3GHz desktop. Various
images are tested. Here 4 representative images are shown in Figure 4. The percentage of
pixels user specify the color and the processing time are list in the Table 1.
Image Image

resolution
of colored

pixels
Percentage(%) Processing time

(s)
Shirley 333*440 4396 3.0 2.03
Lily 400*300 3355 2.8 2.74
Sunset 400*300 3568 3.0 2.25
Arch 480*321 5668 3.7 2.35

Figure 4. Test results

March 10, 2005 page 4

ECE Dept. Northwestern Univ. Ming Yang

Conclusions
An efficient still image colorization algorithm by blending color with the intrinsic
distances is implemented by iterative dynamic programming. The idea of color blending
is borrowed from the references while the iterative dynamic programming method is
designed with appropriate data structures in this project. Experiments demonstrate that
the algorithm can achieve very good subjective quality for a diversity of images with only
3-4% pixels color specified by users.

Reference:
[1] Anat Levin, Dani Lischinski and Yair Weiss. "Colorization using Optimization".
ACM Transactions on Graphics, Aug 2004, Siggraph’04, pp.689-693.
[2] Liron Yatziv and Guillermo Sapiro. "Fast Image and Video Colorization using
Chrominance Blending".
[3] Daniel Sykora, Jan Burianek and Jiri Zara. “Unsupervised Colorization of Black-and-
White Cartoons”, Proceedings of NPAR 2004. Annecy, ACM SIGGRAPH, p.121-127.

Appendix:

Core source codes:

#define MAX_BLEND_COLOR 3 //Max number of color to be blended
#define MAX_DISTANCE 65535 //Max intrinsic distance of pixels
///
// Pixels representation for blending colorization algorithm
///
class CBlendPixel
{
 int m_x; // x-coordinate of the pixel
 int m_y; // y-coordinate of the pixel
 COLORREF m_c[MAX_BLEND_COLOR]; // maintained chrominance
 float m_d[MAX_BLEND_COLOR]; // maintained intrinsic distance
};
typedef set<CBlendPixel*> BlendPixelSet;

///
// Colorization Algorithm
// Blending the color with the intrinsic distance as the weights
///
class CBlendColorize : public CColorize
{
public:
 BOOL Colorize(IplImage* pColorImage,const IplImage* pGreyImage, const IplImage* pLayerImage);

 CBlendColorize();
 virtual ~CBlendColorize();

protected:
 void BlendColor();
 void PropagateColor();
 void GenerateColoredSet();

March 10, 2005 page 5

ECE Dept. Northwestern Univ. Ming Yang

 BOOL ModifyPixel(CBlendPixel& testPixel,const CBlendPixel & curPixel);
 BOOL Internal8(int x,int y);
 inline double WeightDistance(double d);

 void AllocateArray();
 void ReleaseArray();
 int m_iColored;

 BlendPixelSet m_ActiveSet;
 CBlendPixel*** m_PixelArray;
};

// Iteratively propagate the active colored pixels to their adjacent pixels until the equilibrium
void CBlendColorize::PropagateColor()
{
 CString str;

 BlendPixelSet::iterator it =m_ActiveSet.begin();
 BlendPixelSet::iterator it_temp;
 while (!m_ActiveSet.empty())
 {
 it =m_ActiveSet.begin();
 while (it!=m_ActiveSet.end())
 {
 CBlendPixel * pPixel = *it;
 for(int y=pPixel->m_y-1;y<=pPixel->m_y+1;y++)
 for(int x=pPixel->m_x-1;x<=pPixel->m_x+1;x++)
 {
 if (x==pPixel->m_x||y==pPixel->m_y)
 if (x>=0&&x<=m_width-1&&y>=0&&y<=m_height-1)
 {
 CBlendPixel * testPixel = m_PixelArray[y][x];
 if (ModifyPixel(*testPixel,*pPixel))
 m_ActiveSet.insert(testPixel);
 }
 }
 it_temp = it; it++;
 m_ActiveSet.erase(it_temp);
 }
 }
 }

//Modify the color list of curPixel according to testPixel
BOOL CBlendColorize::ModifyPixel(CBlendPixel& testPixel,const CBlendPixel & curPixel)
{

 if (cvGetReal2D(m_pY,testPixel.m_y,testPixel.m_x)==1)
 return FALSE;
 double y1 = cvGetReal2D(m_pGreyImage,curPixel.m_y,curPixel.m_x);
 double y2 = cvGetReal2D(m_pGreyImage,testPixel.m_y,testPixel.m_x);
 double d = abs(y1-y2);

 BOOL result = FALSE;
 for(int i=0;i<MAX_BLEND_COLOR;i++)
 {
 if (curPixel.m_d[i]<MAX_DISTANCE)

March 10, 2005 page 6

ECE Dept. Northwestern Univ. Ming Yang

 {
 int j=0;
 while (((curPixel.m_d[i]+d)>=testPixel.m_d[j])&&(j<=MAX_BLEND_COLOR))
 {
 if (curPixel.m_c[i]==testPixel.m_c[j])
 {
 j=MAX_BLEND_COLOR;
 break;
 }
 j++;
 }
 if (j<MAX_BLEND_COLOR)
 {
 if (curPixel.m_c[i]!=testPixel.m_c[j])
 for(int k=MAX_BLEND_COLOR-1;k>j;k--)
 {
 if (testPixel.m_c[k-1]!=curPixel.m_c[i])
 {
 testPixel.m_c[k]=testPixel.m_c[k-1];
 testPixel.m_d[k]=testPixel.m_d[k-1];
 }
 }
 testPixel.m_c[j]=curPixel.m_c[i];
 testPixel.m_d[j]=curPixel.m_d[i]+d;
 result = TRUE;
 }
 else
 break;
 }
 }
 return result;
}

///
// Command Pattern to support Undo and Redo functions
///
class CCommand
{
public:

 virtual BOOL Execute(IplImage *pImage,WPARAM wParam, LPARAM lParam);
 virtual BOOL UnExecute(IplImage *pImage);
 virtual BOOL ReExecute(IplImage* pImage);

 CCommand();
 virtual ~CCommand();
protected:
 BOOL m_bExecuted;
};

March 10, 2005 page 7

	Still Image Colorization
	Objective of the project
	Problem Formulation
	Implementation Methods
	Active pixel set(APS) is defined as the set of pixels ready

	System
	Experimental Result
	Conclusions
	Reference:
	Appendix:
	Core source codes:

