Reading: MIT OpenCourseWare 6.042 Chapter 9.1, 9.3-9.5

Review

Note: Graph theory exam covers lectures 5-9, chapter 5 of book.

Concepts:

- general: (undirected simple) graphs, degree, connectivity, connected components, subgraphs, isomorphism
- types of graphs: paths, cycles, trees, complete graphs (cliques), bipartite graphs, planar graphs
- matching: perfect matchings in bipartite graphs, stable matchings
- paths/cycles: counting with adjacency matrix, Eulerian, Hamiltonian
- coloring: chromatic number
- planarity: planar embeddings

Theorems:

- Sum of degrees is twice number of edges.
- Hall's theorem: there's a matching that covers L iff $\forall S \subset L, |S| \leq |N(S)|$.
- Stable marriage, men-proposing is manoptimal.

- Graph is Eulerian iff all vertices have even degree.
- Chromatic number is at most max degree plus one, at least max degree.
- Planar graphs: n m + f = 2 and $m \le 3n 6$
- Equivalent definitions of trees.

 $\begin{bmatrix} Knowing how the proofs work will help \\ you. \end{bmatrix}$

Computing Sums

Question: # of nodes in a binary tree?

Question: \$1M today or \$50,000 for 20 yrs? for the rest of your life? forever?

Some known sums:

- linear: $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- geometric: $\sum_{i=0}^{n-1} x^i = \frac{1-x^n}{1-x}$

Value of money: at interest rate of 8% per year,

Future worth of \$10 today

- $(1+0.08) \cdot 10 = 10.80$ in 1 year
- $(1+0.08)^2 \cdot 10 = 11.66$ in 2 years

Today's worth of \$10 in

- 1 year: 10/(1+0.08) = 9.26 today
- 2 years: $10/(1+0.08)^2 = 8.57$ today

Fact: n-year m-payment annuity with interest rate p is worth

$$V = \sum_{i=1}^{n} m \cdot \left(\frac{1}{1+p}\right)^{i-1}$$
$$= m \sum_{j=0}^{n-1} \left(\frac{1}{1+p}\right)^{j}$$
$$= m \sum_{j=0}^{n-1} x^{j}$$

Question: How to solve sum?

Perturbation method

linear

$$S = 1 + 2 + \dots + n$$

 $S = n + (n - 1) + \dots + 1$

summing, get

$$2S = (n+1) + (n+1) + \ldots + (n+1) = n(n+1)$$

geometric

$$S = 1 + x + \ldots + x^{n-1}$$
$$xS = x + x^{2} + \ldots + x^{n}$$

subtracting, get

$$(1-x)S = 1 - x^n$$

Note: more examples, see generating functions (Chapter 12) [very useful but we probably won't get to it, highly recommended reading Fact: \$50,000 for 20 years is worth \$530,180. [[Million dollar lottery only worth half a]]]

Fact: \$50,000 for rest of your life is worth at most \$675,000 even if you live forever!

infinite geometric

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} x^i = \lim_{n \to \infty} \frac{1-x^n}{1-x} = \frac{1}{1-x}$$

for |x| < 1.

examples:

•
$$1 + 2 + 4 + \dots + 2^{n-1}$$

= $\sum i = 0^{n-1}2^i = \frac{1-2^n}{1-2} = 2^n$

$$1 + 1/2 + 1/4 + \dots$$
$$= \sum_{i=0}^{\infty} (1/2)^{i} = \frac{1}{1 - 1/2} = 2$$

•
$$1 - 1/2 + 1/4 - \dots$$

= $\sum_{i=0}^{\infty} (-1/2)^i = \frac{1}{1 + 1/2} = 2/3$

• 0.99999...

$$= 0.9 \sum_{i=0}^{\infty} (1/10)^i = 0.9 \cdot \frac{1}{1 - 1/10} = 1$$

Note: Geometric sum approximately equal to largest term!

Differentiation Method

Question: \$1000 now or \$5i on i'th birthday forever?

$$V = \sum_{i=0}^{\infty} \frac{im}{(1+p)^i} = m \sum_{i=0}^{\infty} ix^i$$

Claim: $\sum_{i=0}^{n-1} ix^i = \frac{x - nx^n + (n-1)x^{n+1}}{(1-x)^2}$

Proof: Differentiate geometric sum.

$$\frac{d}{dx} \sum_{i=0}^{n-1} x^{i} = \sum_{i=0}^{n-1} \frac{d}{dx} x^{i}$$
$$= \sum_{i=0}^{n-1} i x^{i-1}$$

 \mathbf{SO}

$$\sum_{i=0}^{n-1} ix^i = x \cdot \left(\sum_{i=0}^{n-1} ix^{i-1}\right)$$
$$= x \cdot \left(\frac{d}{dx} \sum_{i=0}^{n-1} x^i\right)$$
$$= x \cdot \left(\frac{d}{dx} \left(\frac{1-x^n}{1-x}\right)\right)$$

Claim: For |x| < 1, $\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}$.

Note: So \$5 forever is worth only \$844!

 $\[Surprising that it's finite, but note that \]$ geometric growth is much stronger than linear growth, so geometric decrease Lwipes out linear increase.

Approximating Sums

Integration Method

Replace sum by integral and add in first or so by integration method, last term of sum.

Claim: Let f(.) be non-decreasing continuous function and let

$$S = \sum_{i=1}^{n} f(i)$$

and

$$I = \int_{1}^{n} f(x) dx$$

Then

$$I + f(1) \le S \le I + f(n).$$

Similarly if f(.) is non-increasing, then

$$I + f(n) \le S \le I + f(1).$$

Proof:

- Draw step function, height at i is f(i).
- Note area of curve under step function is $\sum_{i=1}^{n} f(i).$
- Draw continuous curve f(x) from 1 to n.
- Note under step function, hits at leftcorners.
- Note area under curve is integral.
- For lower bound, can add back in leftmost step.
- For upper bound, shift left one, add back in right-most step.

Example: Harmonic numbers $H_n = \sum_{i=1}^n \frac{1}{i}$ Draw picture:

$$\frac{1}{n} + \int_0^n \frac{1}{x} dx \le \sum_{i=1}^n \frac{1}{i} \le 1 + \int_1^n \frac{1}{x} dx,$$

$$\frac{1}{n} + \ln(n) \le \sum_{i=1}^{n} \frac{1}{i} \le 1 + \ln(n).$$

Note: H_n is very close to $\ln(n)$ (off by a small constant).

Def: asymptotic equality: $f(x) \sim g(x)$ iff $\lim_{x \to \infty} f(x) / g(x) = 1$

So $H_n \sim \ln(n) + c$ for constant c.

Double Sums

For
$$0 \le x, y < 1$$

$$\sum_{n=0}^{\infty} \sum_{i=0}^{n-1} y^n x^i = \sum_{n=0}^{\infty} y^n \sum_{i=0}^{n-1} x^i = 0^{n-1} x^i$$

$$= \sum_{n=0}^{n} y^n \frac{1-x^n}{1-x}$$

$$= \frac{1}{1-x} \sum_{n=0}^{\infty} y^n - \frac{1}{1-x} \sum_{n=0}^{\infty} (xy)^n$$

$$= \frac{1}{(1-x)(1-y)} - \frac{1}{(1-x)(1-xy)}$$

$$\sum_{n=0}^{n-1} \frac{1}{j} = \sum_{i=1}^{n} \frac{1}{j}$$

$$= \sum_{j=1}^{n} \frac{1}{j} \sum_{i=j}^{n} 1$$

$$= \sum_{j=1}^{n} \frac{1}{j} (n-j+1)$$

$$= (n+1) \sum_{j=1}^{n} \frac{1}{j} - \sum_{j=1}^{n} 1$$

etc.

What if inner sum has no closed form?

Changing order of summation

Example: Sum of Harmonic numbers

$$\sum_{i=1}^n \sum_{j=1}^i \frac{1}{j}$$

First attempt:

- inner sum $H_i \sim \ln(i)$
- use integration method

$$\int_{1}^{n} \ln(x) dx = (x \ln(x) - x)|_{1}^{n}$$
$$= n \ln n - n + 1$$

Exact answer?

- write pairs (i, j) in summation in table
- given sum: adds entries in each row, then adds row sums
- instead: sum entries in each column, then add column sums