EECS 310: Discrete Math Counting

Reading: MIT OpenCourseWare 6.042 Chapter 9.1, 9.3-9.5

Review

Note: Graph theory exam covers lectures 59, chapter 5 of book.

Concepts:

- general: (undirected simple) graphs, degree, connectivity, connected components, subgraphs, isomorphism
- types of graphs: paths, cycles, trees, complete graphs (cliques), bipartite graphs, planar graphs
- matching: perfect matchings in bipartite graphs, stable matchings
- paths/cycles: counting with adjacency matrix, Eulerian, Hamiltonian
- coloring: chromatic number
- planarity: planar embeddings

Theorems:

- Sum of degrees is twice number of edges.
- Hall's theorem: there's a matching that covers L iff $\forall S \subset L,|S| \leq|N(S)|$.
- Stable marriage, men-proposing is manoptimal.
- Graph is Eulerian iff all vertices have even degree.
- Chromatic number is at most max degree plus one, at least max degree.
- Planar graphs: $n-m+f=2$ and $m \leq$ $3 n-6$
- Equivalent definitions of trees.
$\left[\left[\begin{array}{l}\text { Knowing how the proofs work will help } \\ \text { you. }\end{array}\right]\right]$

Computing Sums

Question: \# of nodes in a binary tree?
Question: $\$ 1 \mathrm{M}$ today or $\$ 50,000$ for 20 yrs ? for the rest of your life? forever?
Some known sums:

- linear: $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
- geometric: $\sum_{i=0}^{n-1} x^{i}=\frac{1-x^{n}}{1-x}$

Value of money: at interest rate of 8% per year,
Future worth of $\$ 10$ today

- $(1+0.08) \cdot 10=10.80$ in 1 year
- $(1+0.08)^{2} \cdot 10=11.66$ in 2 years

Today's worth of $\$ 10$ in

- 1 year: $10 /(1+0.08)=9.26$ today
- 2 years: $10 /(1+0.08)^{2}=8.57$ today

Fact: n-year m-payment annuity with interest rate p is worth

$$
\begin{aligned}
V & =\sum_{i=1}^{n} m \cdot\left(\frac{1}{1+p}\right)^{i-1} \\
& =m \sum_{j=0}^{n-1}\left(\frac{1}{1+p}\right)^{j} \\
& =m \sum_{j=0}^{n-1} x^{j}
\end{aligned}
$$

Question: How to solve sum?

Perturbation method

linear

$$
\begin{gathered}
S=1+2+\ldots+n \\
S=n+(n-1)+\ldots+1
\end{gathered}
$$

summing, get
$2 S=(n+1)+(n+1)+\ldots+(n+1)=n(n+1)$
geometric

$$
\begin{aligned}
& S=1+x+\ldots+x^{n-1} \\
& x S=x+x^{2}+\ldots+x^{n}
\end{aligned}
$$

subtracting, get

$$
(1-x) S=1-x^{n}
$$

Note: more examples, see generating functions (Chapter 12) $\left[\left[\begin{array}{l}\text { very useful but we probably won't get to } \\ \text { it, highly recommended reading }\end{array}\right]\right]$

Fact: $\$ 50,000$ for 20 years is worth $\$ 530,180$. $\left[\left[\begin{array}{l}\text { Million dollar lottery only worth half a } \\ \text { million! }\end{array}\right]\right]$
Fact: $\$ 50,000$ for rest of your life is worth at most $\$ 675,000$ even if you live forever!

infinite geometric

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} x^{i}=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1-x}=\frac{1}{1-x}
$$

for $|x|<1$.
examples:

- $1+2+4+\ldots+2^{n-1}$

$$
=\sum i=0^{n-1} 2^{i}=\frac{1-2^{n}}{1-2}=2^{n}
$$

- $1+1 / 2+1 / 4+\ldots$

$$
=\sum_{i=0}^{\infty}(1 / 2)^{i}=\frac{1}{1-1 / 2}=2
$$

- $1-1 / 2+1 / 4-\ldots$

$$
=\sum_{i=0}^{\infty}(-1 / 2)^{i}=\frac{1}{1+1 / 2}=2 / 3
$$

- 0.99999...

$$
=0.9 \sum_{i=0}^{\infty}(1 / 10)^{i}=0.9 \cdot \frac{1}{1-1 / 10}=1
$$

Note: Geometric sum approximately equal to largest term!

Differentiation Method

Question: $\$ 1000$ now or $\$ 5 i$ on i 'th birthday forever?

$$
V=\sum_{i=0}^{\infty} \frac{i m}{(1+p)^{i}}=m \sum_{i=0}^{\infty} i x^{i}
$$

Claim: $\sum_{i=0}^{n-1} i x^{i}=\frac{x-n x^{n}+(n-1) x^{n+1}}{(1-x)^{2}}$
Proof: Differentiate geometric sum.

$$
\begin{aligned}
\frac{d}{d x} \sum_{i=0}^{n-1} x^{i} & =\sum_{i=0}^{n-1} \frac{d}{d x} x^{i} \\
& =\sum_{i=0}^{n-1} i x^{i-1}
\end{aligned}
$$

so

$$
\begin{aligned}
\sum_{i=0}^{n-1} i x^{i} & =x \cdot\left(\sum_{i=0}^{n-1} i x^{i-1}\right) \\
& =x \cdot\left(\frac{d}{d x} \sum_{i=0}^{n-1} x^{i}\right) \\
& =x \cdot\left(\frac{d}{d x}\left(\frac{1-x^{n}}{1-x}\right)\right)
\end{aligned}
$$

Claim: For $|x|<1, \sum_{i=0}^{\infty} i x^{i}=\frac{x}{(1-x)^{2}}$.
Note: So $\$ 5$ forever is worth only $\$ 844$! $\left.\left[\begin{array}{l}\text { Surprising that it's finite, but note that } \\ \text { geometric growth is much stronger than } \\ \text { linear growth, so geometric decrease } \\ \text { wipes out linear increase. }\end{array}\right]\right]$

Approximating Sums

Integration Method

Replace sum by integral and add in first or last term of sum.
Claim: Let $f($.$) be non-decreasing continu-$ ous function and let

$$
S=\sum_{i=1}^{n} f(i)
$$

and

$$
I=\int_{1}^{n} f(x) d x
$$

Then

$$
I+f(1) \leq S \leq I+f(n)
$$

Similarly if $f($.$) is non-increasing, then$

$$
I+f(n) \leq S \leq I+f(1)
$$

Proof:

- Draw step function, height at i is $f(i)$.
- Note area of curve under step function is $\sum_{i=1}^{n} f(i)$.
- Draw continuous curve $f(x)$ from 1 to n.
- Note under step function, hits at leftcorners.
- Note area under curve is integral.
- For lower bound, can add back in leftmost step.
- For upper bound, shift left one, add back in right-most step.

Example: Harmonic numbers $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$
Draw picture:

$$
\frac{1}{n}+\int_{0}^{n} \frac{1}{x} d x \leq \sum_{i=1}^{n} \frac{1}{i} \leq 1+\int_{1}^{n} \frac{1}{x} d x
$$

so by integration method,

$$
\frac{1}{n}+\ln (n) \leq \sum_{i=1}^{n} \frac{1}{i} \leq 1+\ln (n)
$$

Note: H_{n} is very close to $\ln (n)$ (off by a small constant).
Def: asymptotic equality: $f(x) \sim g(x)$ iff $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
So $H_{n} \sim \ln (n)+c$ for constant c.

Double Sums

$$
\begin{aligned}
\text { For } 0 \leq x, y<1 & & \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{j} & =\sum_{j=1}^{n} \sum_{i=j}^{n} \frac{1}{j} \\
\sum_{n=0}^{\infty} \sum_{i=0}^{n-1} y^{n} x^{i} & =\sum_{n=0}^{\infty} y^{n} \sum_{i=0^{n-1} x^{i}} i & & =\sum_{j=1}^{n} \frac{1}{j} \sum_{i=j}^{n} 1 \\
& =\sum_{n=0}^{\infty} y^{n} \frac{1-x^{n}}{1-x} & & =\sum_{j=1}^{n} \frac{1}{j}(n-j+1) \\
& =\frac{1}{1-x} \sum_{n=0}^{\infty} y^{n}-\frac{1}{1-x} \sum_{n=0}^{\infty}(x y)^{n} & & =(n+1) \sum_{j=1}^{n} \frac{1}{j}-\sum_{j=1}^{n} 1 \\
& =\frac{1}{(1-x)(1-y)}-\frac{1}{(1-x)(1-x y)} & & =(n+1) H_{n}-n
\end{aligned}
$$

etc.
What if inner sum has no closed form?

Changing order of summation

Example: Sum of Harmonic numbers

$$
\sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{j}
$$

First attempt:

- inner sum $H_{i} \sim \ln (i)$
- use integration method

$$
\begin{gathered}
\int_{1}^{n} \ln (x) d x=\left.(x \ln (x)-x)\right|_{1} ^{n} \\
=n \ln n-n+1
\end{gathered}
$$

Exact answer?

- write pairs (i, j) in summation in table
- given sum: adds entries in each row, then adds row sums
- instead: sum entries in each column, then add column sums

