
EECS 310: Discrete Math Lecture 11
Counting

Reading: MIT OpenCourseWare 6.042
Chapter 11

Counting

Bijection Rule

Def: bijection f : A→ B is perfect matching
of a ∈ A and b ∈ B
Claim: if exists bijection f : A → B, then
|A| = |B|
Example: doughnuts

• A = ways to select dozen doughnuts
from 5 varieties

• B = number 16-bit strings with exactly
4 ones

representation:

• element of A:

2 choc., 0 lemon, 5 sugar, 2 glazed, 2
plain

00− . . .− 00000− 00− 00

choc.—lemon—sugar—glazed—plain

• element of B:

replace “−” with 1

bijection:

• dozen doughnuts

c choc., l lemon, s sugar, g glazed, p plain

• bit string

c 0’s, 1, l 0’s, 1, s 0’s, 1, g 0’s, 1, p 0’s[[
How to count bit-strings? or other se-
quences?

]]

Sum/Product Rule

A = set of cakes

B = set of pies

Question: How many ways are there to pick
one cake and one pie?

|A| × |B|
Question: How many ways to pick one
dessert?

|A|+ |B|
Question: How many ways are there to pick
one cake and one pie if some cakes are pies?
[[Boston creme pie ]]

Draw Venn diagram – |A ∪ B| = |A|+ |B| −
|A ∩B|
In general, given finite sets A1, . . . , An,

• Product Rule: There are
∏n

i=1 |Ai| ways
to select n elements, one element from
each set.

• Inclusion/Exclusion: There are | ∪n
i=1

Ai| =
∑n

i=1 |Ai| −
∑n

i=1 |Ai ∩Aj|+ . . .+
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(−1)n+1|A1∩ . . .∩An| ways to select one
element.

Example: Sum/Product Rule:

• How many two-digit numbers are there?

9 choices for 1st digit ×10 for 2nd = 90

• If |A| = n and |B| = m, how many func-
tions are there from A to B?

n choices for 1st elt × . . .× n for m’th
elt = mn

• How many subsets of an n-element set?

bijection to binary strings: subset S
maps to string s with i’th bit 1 iff i ∈ S
2 choices for each of n bits = 2n

• How many passwords consisting of let-
ters and digits that

– start with a letter

– have length 6-8

Let F be set of first symbol, S5, S6, S7 be
strings of 5, 6, 7 symbols

Password is one elt of F appended with
one elt of S5 or S6 or S7

(F × S5) ∪ (F × S6) ∪ (F × S7)

= |F × S5|+ |F × S6|+ |F × S7|

= |F | · |S5|+ |F | · |S6|+ |F | · |S7|

= 52 · 625 + 52 · 626 + 52 · 627

1.8× 1014

Example: Inclusion/Exclusion, Sieve of Er-
atosthenes (200 B.C.)

How many primes < 100?

• Count composites: have a prime divisor
≤ 10.

• Primes ≤ 10 are 2, 3, 5, 7.

• Let

– A2 = {n ≤ 100 : 2|n}
– A3 = {n ≤ 100 : 3|n}
– A5 = {n ≤ 100 : 5|n}
– A7 = {n ≤ 100 : 7|n}

• # composites = |A2 ∪A3 ∪A5 ∪A7| − 4

(for primes 2, 3, 5, 7)

• |Ap| = b100
p
c, |Ap,q| = b100

pq
c, etc.

|A2 ∪ A3 ∪ A5 ∪ A7| = . . . = 78

• # primes = 99−(78−4) = 99−74 = 25.

Sieve crosses out numbers divisible by 2 and
thereafter numbers divsible by first on list.

Permutations

Generalized product rule: sequences of r elts
of n-elt set is

n(n− 1)(n− 2) . . . (n− r + 1)

Example: Race with n horses, how many
options for win, place, show?

By product rule, n(n− 1)(n− 2).

Example: Chess problem

# ways place white rook, black rook, neither
attacks other

• (cw, rw) = col/row of white rook

• (cb, rb) = col/row of black rook

2



• board position is 4-digit sequence
(cw, rw, cb, rb)

e.g., (1, 1, 8, 8) or (8, 8, 1, 1)

• cw, rw have 8 choices each

• given (cw, rw), cb, rb have 7 choices each

is 562.

Def: permutation σ(n) of n distinct objects
is an ordered selection.

Claim: # permutations of n elements is

n! = n(n− 1) . . . 1.

[[proof - product rule ]]

Division Rule

Claim: If f : A → B maps exactly k elts of
A to each elt of B, then |A| = k|B|.
Example: Chess problem

# ways place two white rooks in diff row/col

• (c1, r2) = col/row of first rook

• (c2, r2) = col/row of second rook

• board position is 4-digit sequence
(c1, r1, c2, r2)

but (1, 1, 8, 8) = (8, 8, 1, 1)

• so divide by 2

is 562/2.

Combinations

Example: pizza toppings

# pizzas with 2 toppings

• pepper

• onion

• mushroom

Product+division rule:

• (t1, t2) sequence of toppings

• (t1, t2) = (t2, t1) so divide by 2

• 3× 2 = 6 sequences

• so 3 ways

Def: combination is unordered selection of r
objects from n objects

Claim: # combinations of r from n is(
n

r

)
=

n!

r!(n− r)!
.

Proof: bijection

• take permutation of n

• let first r be selection

• fix permutation:

– any other permutation with same
first r gives same unordered selec-
tion

– order of first r and last n−r doesn’t
matter

– r! perms of first r, (n− r)! perms of
rest

• r!(n− r)! ways to unorder them

2

Example: # n-bit seq with exactly k ones
[[recall came up in doughnut problem ]]
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select positions of 1’s:
(

n
k

)
Example: # ternary strings with k1 1’s and
k2 2’s?

Example: Rearrangements of BOOK-
KEEPER

• pretend distinct: 10! ways

• fix over-counting: divide by

– 2! (switch O’s)

– 2! (switch K’s)

– 3! (reorder E’s)

Example: # walks 5 blocks in each direction[[
so north 2 blocks, west one block, south
two blocks, north two blocks, etc.

]]
directions

• sequences of 5 N’s, 5 W’s, 5 E’s, 5 S’s

• so: 20!/(5!)4

Bars and Stars

Important that all elements in set and
in selection are distinct. Finding permu-
tations/combinations with repitition is
slightly harder.




Question: How many ways to give n candy-
corn to k kids so each kid gets at least one
piece of candy?

• Stars = candy, draw on line

• Bars = bucket boundaries, draw between
stars

• n− 1 places for bucket boundaries; k− 1
boundaries

• Answer:
(

n−1
k−1

)

Question: How many ways if some kids can
get no candy?

Claim: Answer:
(

n+k−1
k−1

)
Proof:

1. Placing n objects in k bins allowing
empty bins is like placing n + k objects
in k bins disallowing empty bins

2. Have n + k − 1 symbols of which k − 1
must be bars

2

Note above two are consistent; to give
each kid at least one candycorn, could
have taken k candycorn out of the n and
then done the second approach. Get same
answer.




Example:

• How many positive solutions to a + b =
10?

• How many non-negative solutions to a+
b = 10?

Identities

What is
∑n

r=0

(
n
r

)(
2n

n−r

)
?

Often have a nice combinatorial proof.

Some easy ones:

•
(

n
r

)
=
(

n
n−r

)
: choose elements to keep or

to throw away.

•
∑n

k=0

(
n
k

)
= 2n: all subsets of an n-

element set.

• (x+y)n =
∑n

j=0

(
n
j

)
xn−jyj (the binomial

theorem): coeff of xn−jyj, must choose j
terms in product from which to take y.
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•
(

n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
(Pascal’s triangle):

remove arbitrary element, either this is
in the subset of size k (first term) or not
(second term).

Claim:
∑n

r=0

(
n
r

)(
2n

n−r

)
=
(
3n
n

)
Proof: Let S be deck of cards with n red
cards and 2n black cards.

• RHS:
(
3n
n

)
is the number of n-card hands.

• LHS:

–
(

n
r

)
is the number of way to pick r

red cards

–
(

2n
n−r

)
is the number of ways to pick

n− r black cards

so
(

n
r

)(
2n

n−r

)
is number of ways to pick a

hand with exactly r red cards.

Result follows by summing over r. 2

Poker Hands

52 cards in a deck:

• 4 suits: Spades, Hearts, Diamonds,
Clubs

• 13 values: 1, . . . , 10, Jack, Queen, King,
Ace

5-card draw: each player given 5 cards(
52

5

)
= 2, 598, 960

possible hands.

How many ways to get:

• Four-of-a-kind – 4 cards with same value

{2H, 2S, 2D, 2C, 5S}

Hand fully specified by sequence specify-
ing

– value of 4 cards

– value of extra card

– suit of extra card

Count ways to pick sequence

– 13 choices for value of 4 cards

– 12 choices for value of extra card

– 4 choices for suit of extra card

so 13 · 12 · 4 = 624 four-of-a-kinds, or
about 1 in 4000 hands.

• Full house – 3 cards of one value, 2 cards
of another value

{7H, 7S, 7D, JH, JS}

Sequence

– value of triple – 13

– suits of triple –
(
4
3

)
– value of pair – 12

– suits of pair –
(
4
2

)
so 13 · 4 · 12 · 6 = 3744, or about 1 in 700
hands.

• Two pair – 2 cards of one value, 2 cards
of another value

{4S, 4H, 6D, 6H,KC}

Sequence

– value of first pair – 13
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– suits of first pair –
(
4
2

)
– value of second pair – 12

– suits of second pair –
(
4
2

)
– value of extra card – 11

– suit of extra card – 4

WRONG ANSWER!, each hand gives
rise to two distinct sequences:

(4, {S,H}, 6, {D,H}, K, C)

= (6, {D,H}, 4, {S,H}, K, C)

Solution: mapping is 2-to-1, so divide by
2 (division rule)

Number of two-pair hands is: 13 · 6 · 12 ·
6 · 11 · 4/2 = 123, 552, or about 1 in 20.

Note: alternatively, could come up with
different sequence to count, e.g.,

– values of two pairs –
(
13
2

)
– suits of lower-valued pair –

(
4
2

)
– suits of higher-valued pair –

(
4
2

)
– value of extra card – 11

– suit of extra card – 4

• Hands with every suit

{AS,AH, JD, 4C, 10H}

Sequence

– value of spade – 13

– value of heart – 13

– value of diamond – 13

– value of club – 13

– suit of extra card – 4

– value of extra card – 12

Overcount?

(A,A, J, 4, H, 10) = (A, 10, J, 4, H,A)

Must divide by 2.

Pigeon-hole

Pigeon-hole principle: If n objects are placed
into r boxes, then at least dn/re must be in
the same box.

Claim: Consider numbers {1, 2, . . . , 2n}.
Then in any set A of size n + 1, at least two
elts are relatively prime.

Proof:

• Pigeons – elts of A

• Holes – hole i is for pigeons between i
and i+ 1

That is, at least two numbers are 1 apart and
hence relatively prime. 2

Claim: Consider numbers {1, 2, . . . , 2n}.
Then in any set A of size n+ 1, there are al-
ways two numbers such that one divides the
other.

Proof: For each a ∈ A, write a = 2km,
where m is odd and 1 ≤ m ≤ 2n− 1.

• Pigeons – elts of A

• Holes – odd numbers m

By pigeon-hole, must be two numbers a and
a′ with same hole m. That is, a = 2km and
a′ = 2k′

m, so one is a multiple of the other.
2

Claim: Five cities on an alien planet, at least
4 are in same hemisphere.
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Proof: Draw great circle through two of five
points, by pigeonhole two of remaining three
cities are in same hemisphere. 2

Magic Trick

[[Ok to skip. ]]

• Audience: choose 5 cards

• Assistant: show magician 4 cards, one at
a time

• Magician: announce missing card

Counting:

• Audience:
(
52
5

)
• Assistant: 4! = 24 ways to show 4 of five

cards

but ... 48 possible cards, so not enough per-
mutations to narrow it down.

Idea: Assistant gets to pick order and also
which card to leave out!.

Create bipartite graph, find matching:

• LHS: all audience choices

• RHS: all sequences of 4 distinct cards

• edges: if sequence valid for audience
choice

Recall: Claim: There is a matching from
LHS to RHS if each subset of LHS has neigh-
bor set of larger cardinality.

• LHS:
(
5
1

)
4! = 120 edges from a LHS ver-

tex

• RHS: 48 edges from a RHS vertex

Consider subset S of LHS.

• 120|S| edges leave subset

• 48|N(S)| enter neighbor set

so |N(S)| > |S|, and there is a matching by
Hall’s Theorem.

Real trick:

• At least 2 cards have same suit, one of
which is at most 6 hops clockwise from
the other in a cycle.

• Hide clockwise card; reveal other card
first.

• Use remaining three cards to indicate
number of hops, encoding 1, . . . , 6 us-
ing total order (e.g., low-medium-high or
low-high-medium).
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