EECS 310: Discrete Math Counting

Reading: MIT OpenCourseWare 6.042
Chapter 11

Counting

Bijection Rule

Def: bijection $f: A \rightarrow B$ is perfect matching of $a \in A$ and $b \in B$

Claim: if exists bijection $f: A \rightarrow B$, then $|A|=|B|$
Example: doughnuts

- $A=$ ways to select dozen doughnuts from 5 varieties
- $B=$ number 16 -bit strings with exactly 4 ones
representation:
- element of A :

2 choc., 0 lemon, 5 sugar, 2 glazed, 2 plain

$$
00-\ldots-00000-00-00
$$

choc.-lemon-sugar-glazed-plain

- element of B :
replace "-" with 1
bijection:
- dozen doughnuts
c choc., l lemon, s sugar, g glazed, p plain
- bit string
$c 0$'s, 1, $l 0$'s, 1, s 0's, 1, $g 0$'s, 1, $p 0$'s
$\left[\left[\begin{array}{l}\text { How to count bit-strings? or other se- } \\ \text { quences? }\end{array}\right]\right]$

Sum/Product Rule

$A=$ set of cakes
$B=$ set of pies
Question: How many ways are there to pick one cake and one pie?
$|A| \times|B|$
Question: How many ways to pick one dessert?

$|A|+|B|$

Question: How many ways are there to pick one cake and one pie if some cakes are pies? [[Boston creme pie]]
Draw Venn diagram - $|A \cup B|=|A|+|B|-$ $|A \cap B|$
In general, given finite sets A_{1}, \ldots, A_{n},

- Product Rule: There are $\prod_{i=1}^{n}\left|A_{i}\right|$ ways to select n elements, one element from each set.
- Inclusion/Exclusion: There are $\mid \cup_{i=1}^{n}$ $A_{i}\left|=\sum_{i=1}^{n}\right| A_{i}\left|-\sum_{i=1}^{n}\right| A_{i} \cap A_{j} \mid+\ldots+$
$(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|$ ways to select one element.

Example: Sum/Product Rule:

- How many two-digit numbers are there? 9 choices for 1 st digit $\times 10$ for 2 nd $=90$
- If $|A|=n$ and $|B|=m$, how many functions are there from A to B ?
n choices for 1 st elt $\times \ldots \times n$ for m^{\prime} 'th elt $=m^{n}$
- How many subsets of an n-element set?
bijection to binary strings: subset S maps to string s with i 'th bit 1 iff $i \in S$ 2 choices for each of n bits $=2^{n}$
- How many passwords consisting of letters and digits that
- start with a letter
- have length 6-8

Let F be set of first symbol, S_{5}, S_{6}, S_{7} be strings of $5,6,7$ symbols
Password is one elt of F appended with one elt of S_{5} or S_{6} or S_{7}

$$
\begin{aligned}
& \left(F \times S_{5}\right) \cup\left(F \times S_{6}\right) \cup\left(F \times S_{7}\right) \\
= & \left|F \times S_{5}\right|+\left|F \times S_{6}\right|+\left|F \times S_{7}\right| \\
= & |F| \cdot\left|S_{5}\right|+|F| \cdot\left|S_{6}\right|+|F| \cdot\left|S_{7}\right| \\
& =52 \cdot 62^{5}+52 \cdot 62^{6}+52 \cdot 62^{7}
\end{aligned}
$$

$1.8 \times 10^{1} 4$
Example: Inclusion/Exclusion, Sieve of Eratosthenes (200 B.C.)

How many primes <100 ?

- Count composites: have a prime divisor ≤ 10.
- Primes ≤ 10 are $2,3,5,7$.
- Let

$$
\begin{aligned}
-A_{2} & =\{n \leq 100: 2 \mid n\} \\
-A_{3} & =\{n \leq 100: 3 \mid n\} \\
-A_{5} & =\{n \leq 100: 5 \mid n\} \\
-A_{7} & =\{n \leq 100: 7 \mid n\}
\end{aligned}
$$

- \# composites $=\left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right|-4$ (for primes 2, 3, 5, 7)
- $\left|A_{p}\right|=\left\lfloor\frac{100}{p}\right\rfloor,\left|A_{p, q}\right|=\left\lfloor\frac{100}{p q}\right\rfloor$, etc.

$$
\left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right|=\ldots=78
$$

- $\#$ primes $=99-(78-4)=99-74=25$.

Sieve crosses out numbers divisible by 2 and thereafter numbers divsible by first on list.

Permutations

Generalized product rule: sequences of r elts of n-elt set is

$$
n(n-1)(n-2) \ldots(n-r+1)
$$

Example: Race with n horses, how many options for win, place, show?
By product rule, $n(n-1)(n-2)$.
Example: Chess problem
\# ways place white rook, black rook, neither attacks other

- $\left(c_{w}, r_{w}\right)=\mathrm{col} /$ row of white rook
- $\left(c_{b}, r_{b}\right)=\mathrm{col} /$ row of black rook
- board position is 4-digit sequence $\left(c_{w}, r_{w}, c_{b}, r_{b}\right)$
e.g., $(1,1,8,8)$ or $(8,8,1,1)$
- c_{w}, r_{w} have 8 choices each
- given $\left(c_{w}, r_{w}\right), c_{b}, r_{b}$ have 7 choices each is 56^{2}.
Def: permutation $\sigma(n)$ of n distinct objects is an ordered selection.
Claim: \# permutations of n elements is

$$
n!=n(n-1) \ldots 1
$$

[proof - product rule

Division Rule

Claim: If $f: A \rightarrow B$ maps exactly k elts of A to each elt of B, then $|A|=k|B|$.
Example: Chess problem
\# ways place two white rooks in diff row/col

- $\left(c_{1}, r_{2}\right)=\mathrm{col} /$ row of first rook
- $\left(c_{2}, r_{2}\right)=\mathrm{col} /$ row of second rook
- board position is 4-digit sequence $\left(c_{1}, r_{1}, c_{2}, r_{2}\right)$ but $(1,1,8,8)=(8,8,1,1)$
- so divide by 2
is $56^{2} / 2$.

Combinations

Example: pizza toppings
\# pizzas with 2 toppings

- pepper
- onion
- mushroom

Product+division rule:

- $\left(t_{1}, t_{2}\right)$ sequence of toppings
- $\left(t_{1}, t_{2}\right)=\left(t_{2}, t_{1}\right)$ so divide by 2
- $3 \times 2=6$ sequences
- so 3 ways

Def: combination is unordered selection of r objects from n objects
Claim: \# combinations of r from n is

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

Proof: bijection

- take permutation of n
- let first r be selection
- fix permutation:
- any other permutation with same first r gives same unordered selection
- order of first r and last $n-r$ doesn't matter
$-r$! perms of first $r,(n-r)$! perms of rest
- r ! $(n-r)$! ways to unorder them

Example: \# n-bit seq with exactly k ones [[recall came up in doughnut problem]]
select positions of 1's: $\binom{n}{k}$
Example: \# ternary strings with $k_{1} 1$'s and k_{2} 2's?
Example: Rearrangements of BOOK- Proof:
KEEPER

- pretend distinct: 10 ! ways
- fix over-counting: divide by
- 2! (switch O's)
- 2! (switch K's)
- 3! (reorder E's)

Example: \# walks 5 blocks in each direction $\left[\left[\begin{array}{l}\text { so north 2 blocks, west one block, south } \\ \text { two blocks, north two blocks, etc. }\end{array}\right]\right]$ directions

- sequences of 5 N's, 5 W's, 5 E's, 5 S's
- so: $20!/(5!)^{4}$

Bars and Stars

 $\left[\left[\begin{array}{l}\text { Important that all elements in set and } \\ \text { in selection are distinct. Finding permu- } \\ \text { tations/combinations with repitition is } \\ \text { slightly harder. }\end{array}\right]\right.$Question: How many ways to give n candycorn to k kids so each kid gets at least one piece of candy?

- Stars $=$ candy, draw on line
- Bars = bucket boundaries, draw between stars
- $n-1$ places for bucket boundaries; $k-1$ boundaries
- Answer: $\binom{n-1}{k-1}$

Question: How many ways if some kids can get no candy?
Claim: Answer: $\binom{n+k-1}{k-1}$

1. Placing n objects in k bins allowing empty bins is like placing $n+k$ objects in k bins disallowing empty bins
2. Have $n+k-1$ symbols of which $k-1$ must be bars
[Note above two are consistent; to give $]$ each kid at least one candycorn, could have taken k candycorn out of the n and then done the second approach. Get same

Example:

- How many positive solutions to $a+b=$ 10 ?
- How many non-negative solutions to $a+$ $b=10$?

Identities

What is $\sum_{r=0}^{n}\binom{n}{r}\binom{2 n}{n-r}$?
Often have a nice combinatorial proof.
Some easy ones:

- $\binom{n}{r}=\binom{n}{n-r}$: choose elements to keep or to throw away.
- $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$: all subsets of an n element set.
- $(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}$ (the binomial theorem): coeff of $x^{n-j} y^{j}$, must choose j terms in product from which to take y.
- $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (Pascal's triangle): remove arbitrary element, either this is in the subset of size k (first term) or not (second term).

Claim: $\sum_{r=0}^{n}\binom{n}{r}\binom{2 n}{n-r}=\binom{3 n}{n}$
Proof: Let S be deck of cards with n red cards and $2 n$ black cards.

- RHS: $\binom{3 n}{n}$ is the number of n-card hands.
- LHS:
$-\binom{n}{r}$ is the number of way to pick r red cards
$-\binom{2 n}{n-r}$ is the number of ways to pick $n-r$ black cards
so $\binom{n}{r}\binom{2 n}{n-r}$ is number of ways to pick a hand with exactly r red cards.

Result follows by summing over r.

Poker Hands

52 cards in a deck:

- 4 suits: Spades, Hearts, Diamonds, Clubs
- 13 values: $1, \ldots, 10$, Jack, Queen, King, Ace

5-card draw: each player given 5 cards

$$
\binom{52}{5}=2,598,960
$$

possible hands.
How many ways to get:

- Four-of-a-kind - 4 cards with same value
$\{2 H, 2 S, 2 D, 2 C, 5 S\}$
Hand fully specified by sequence specifying
- value of 4 cards
- value of extra card
- suit of extra card

Count ways to pick sequence

- 13 choices for value of 4 cards
- 12 choices for value of extra card
- 4 choices for suit of extra card
so $13 \cdot 12 \cdot 4=624$ four-of-a-kinds, or about 1 in 4000 hands.
- Full house - 3 cards of one value, 2 cards of another value

$$
\{7 H, 7 S, 7 D, J H, J S\}
$$

Sequence

- value of triple - 13
- suits of triple - $\binom{4}{3}$
- value of pair - 12
- suits of pair - $\binom{4}{2}$
so $13 \cdot 4 \cdot 12 \cdot 6=3744$, or about 1 in 700 hands.
- Two pair - 2 cards of one value, 2 cards of another value

$$
\{4 S, 4 H, 6 D, 6 H, K C\}
$$

Sequence

- value of first pair - 13
- suits of first pair - $\binom{4}{2}$
- value of second pair - 12
- suits of second pair - $\binom{4}{2}$
- value of extra card - 11
- suit of extra card - 4

Overcount?

$$
(A, A, J, 4, H, 10)=(A, 10, J, 4, H, A)
$$

Must divide by 2 .

WRONG ANSWER!, each hand gives rise to two distinct sequences:

$$
\begin{aligned}
& (4,\{S, H\}, 6,\{D, H\}, K, C) \\
= & (6,\{D, H\}, 4,\{S, H\}, K, C)
\end{aligned}
$$

Solution: mapping is 2 -to- 1 , so divide by 2 (division rule)
Number of two-pair hands is: $13 \cdot 6 \cdot 12$ $6 \cdot 11 \cdot 4 / 2=123,552$, or about 1 in 20 .

Note: alternatively, could come up with different sequence to count, e.g.,

- values of two pairs - $\binom{13}{2}$
- suits of lower-valued pair - $\binom{4}{2}$
- suits of higher-valued pair - $\binom{4}{2}$
- value of extra card - 11
- suit of extra card - 4
- Hands with every suit
$\{A S, A H, J D, 4 C, 10 H\}$
Sequence
- value of spade - 13
- value of heart - 13
- value of diamond - 13
- value of club - 13
- suit of extra card - 4
- value of extra card - 12

Pigeon-hole

Pigeon-hole principle: If n objects are placed into r boxes, then at least $\lceil n / r\rceil$ must be in the same box.

Claim: Consider numbers $\{1,2, \ldots, 2 n\}$. Then in any set A of size $n+1$, at least two elts are relatively prime.

Proof:

- Pigeons - elts of A
- Holes - hole i is for pigeons between i and $i+1$

That is, at least two numbers are 1 apart and hence relatively prime.
Claim: Consider numbers $\{1,2, \ldots, 2 n\}$. Then in any set A of size $n+1$, there are always two numbers such that one divides the other.
Proof: For each $a \in A$, write $a=2^{k} m$, where m is odd and $1 \leq m \leq 2 n-1$.

- Pigeons - elts of A
- Holes - odd numbers m

By pigeon-hole, must be two numbers a and a^{\prime} with same hole m. That is, $a=2^{k} m$ and $a^{\prime}=2^{k^{\prime}} m$, so one is a multiple of the other.

Claim: Five cities on an alien planet, at least 4 are in same hemisphere.

Proof: Draw great circle through two of five points, by pigeonhole two of remaining three cities are in same hemisphere.

Magic Trick

[[Ok to skip.

- Audience: choose 5 cards
- Assistant: show magician 4 cards, one at a time
- Magician: announce missing card

Counting:

- Audience: $\binom{52}{5}$
- Assistant: 4 ! $=24$ ways to show 4 of five cards
but ... 48 possible cards, so not enough permutations to narrow it down.

Idea: Assistant gets to pick order and also which card to leave out!!

Create bipartite graph, find matching:

- LHS: all audience choices
- RHS: all sequences of 4 distinct cards
- edges: if sequence valid for audience choice

Recall: Claim: There is a matching from LHS to RHS if each subset of LHS has neighbor set of larger cardinality.

- LHS: $\binom{5}{1} 4!=120$ edges from a LHS vertex
- RHS: 48 edges from a RHS vertex

Consider subset S of LHS.

- $120|S|$ edges leave subset
- $48|N(S)|$ enter neighbor set
so $|N(S)|>|S|$, and there is a matching by Hall's Theorem.

Real trick:

- At least 2 cards have same suit, one of which is at most 6 hops clockwise from the other in a cycle.
- Hide clockwise card; reveal other card first.
- Use remaining three cards to indicate number of hops, encoding $1, \ldots, 6$ using total order (e.g., low-medium-high or low-high-medium).

