Lecture 11

Reading: MIT OpenCourseWare 6.042 Chapter 11

Counting

Bijection Rule

Def: bijection $f : A \to B$ is perfect matching of $a \in A$ and $b \in B$

Claim: if exists bijection $f : A \to B$, then |A| = |B|

Example: doughnuts

- A = ways to select dozen doughnuts from 5 varieties
- B = number 16-bit strings with exactly 4 ones

representation:

• element of A:

2 choc., 0 lemon, 5 sugar, 2 glazed, 2 plain

 $00 - \ldots - 00000 - 00 - 00$

choc.—lemon—sugar—glazed—plain

• element of B:

replace "-" with 1

bijection:

- dozen doughnuts $c\, {\rm choc.}, \, l\, {\rm lemon}, \, s\, {\rm sugar}, \, g\, {\rm glazed}, \, p\, {\rm plain}$
- bit string
 c 0's, 1, l 0's, 1, s 0's, 1, g 0's, 1, p 0's

[*How to count bit-strings? or other se-*]] *quences?*

Sum/Product Rule

A = set of cakes

B = set of pies

Question: How many ways are there to pick one cake and one pie?

 $|A| \times |B|$

Question: How many ways to pick one dessert?

|A| + |B|

Question: How many ways are there to pick one cake and one pie if some cakes are pies? [[Boston creme pie]]

Draw Venn diagram – $|A \cup B| = |A| + |B| - |A \cap B|$

In general, given finite sets A_1, \ldots, A_n ,

- Product Rule: There are $\prod_{i=1}^{n} |A_i|$ ways to select *n* elements, one element from each set.
- Inclusion/Exclusion: There are $| \cup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| \sum_{i=1}^{n} |A_i \cap A_j| + \ldots +$

 $(-1)^{n+1}|A_1 \cap \ldots \cap A_n|$ ways to select one element.

Example: Sum/Product Rule:

- How many two-digit numbers are there?
 9 choices for 1st digit ×10 for 2nd = 90
- If |A| = n and |B| = m, how many functions are there from A to B?

n choices for 1st elt $\times \ldots \times n$ for m'th elt $= m^n$

- How many subsets of an n-element set?
 bijection to binary strings: subset S maps to string s with i'th bit 1 iff i ∈ S
 2 choices for each of n bits = 2ⁿ
- How many passwords consisting of letters and digits that
 - start with a letter
 - have length 6-8

Let F be set of first symbol, S_5, S_6, S_7 be strings of 5, 6, 7 symbols

Password is one elt of F appended with one elt of S_5 or S_6 or S_7

$$(F \times S_5) \cup (F \times S_6) \cup (F \times S_7)$$

= $|F \times S_5| + |F \times S_6| + |F \times S_7|$
= $|F| \cdot |S_5| + |F| \cdot |S_6| + |F| \cdot |S_7|$
= $52 \cdot 62^5 + 52 \cdot 62^6 + 52 \cdot 62^7$

 1.8×10^{14}

Example: Inclusion/Exclusion, Sieve of Eratosthenes (200 B.C.)

How many primes < 100?

- Count composites: have a prime divisor ≤ 10 .
- Primes ≤ 10 are 2, 3, 5, 7.
- Let

$$-A_{2} = \{n \le 100 : 2|n\}$$
$$-A_{3} = \{n \le 100 : 3|n\}$$
$$-A_{5} = \{n \le 100 : 5|n\}$$
$$-A_{7} = \{n \le 100 : 7|n\}$$

- # composites = $|A_2 \cup A_3 \cup A_5 \cup A_7| 4$ (for primes 2, 3, 5, 7)
- $|A_p| = \lfloor \frac{100}{p} \rfloor, |A_{p,q}| = \lfloor \frac{100}{pq} \rfloor, \text{ etc.}$ $|A_2 \cup A_3 \cup A_5 \cup A_7| = \ldots = 78$
- # primes = 99 (78 4) = 99 74 = 25.

Sieve crosses out numbers divisible by 2 and thereafter numbers divisible by first on list.

Permutations

Generalized product rule: sequences of r elts of n-elt set is

$$n(n-1)(n-2)\dots(n-r+1)$$

Example: Race with n horses, how many options for win, place, show?

By product rule, n(n-1)(n-2).

Example: Chess problem

ways place white rook, black rook, neither attacks other

- $(c_w, r_w) = \operatorname{col/row} of white rook$
- $(c_b, r_b) = \text{col/row of black rook}$

- board position is 4-digit sequence (c_w, r_w, c_b, r_b) e.g., (1, 1, 8, 8) or (8, 8, 1, 1)
- c_w, r_w have 8 choices each
- given (c_w, r_w) , c_b, r_b have 7 choices each

is 56^2 .

Def: permutation $\sigma(n)$ of n distinct objects is an ordered selection.

Claim: # permutations of *n* elements is

$$n! = n(n-1)\dots 1.$$

[[proof - product rule

Division Rule

Claim: If $f : A \to B$ maps exactly k elts of A to each elt of B, then |A| = k|B|.

Example: Chess problem

ways place two white rooks in diff row/col

- $(c_1, r_2) = \operatorname{col/row} \operatorname{of} \operatorname{first} \operatorname{rook}$
- $(c_2, r_2) = \operatorname{col/row} of second rook$
- board position is 4-digit sequence (c_1, r_1, c_2, r_2)
 - but (1, 1, 8, 8) = (8, 8, 1, 1)
- so divide by 2

is $56^2/2$.

Combinations

Example: pizza toppings # pizzas with 2 toppings

- pepper
- onion
- mushroom

Product+division rule:

- (t_1, t_2) sequence of toppings
- $(t_1, t_2) = (t_2, t_1)$ so divide by 2
- $3 \times 2 = 6$ sequences
- so 3 ways

]]

Def: combination is unordered selection of r objects from n objects

Claim: # combinations of r from n is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Proof: bijection

- take permutation of n
- let first r be selection
- fix permutation:
 - any other permutation with same first r gives same unordered selection
 - order of first r and last n-r doesn't matter
 - -r! perms of first r, (n-r)! perms of rest
- r!(n-r)! ways to unorder them

Example: # *n*-bit seq with exactly *k* ones [[*recall came up in doughnut problem*]]

select positions of 1's: $\binom{n}{k}$

Example: # ternary strings with k_1 1's and k_2 2's?

Example: Rearrangements of BOOK-KEEPER

- pretend distinct: 10! ways
- fix over-counting: divide by
 - -2! (switch O's)
 - -2! (switch K's)
 - -3! (reorder E's)

Example: # walks 5 blocks in each direction

[[so north 2 blocks, west one block, south] two blocks, north two blocks, etc.]]

directions

- sequences of 5 N's, 5 W's, 5 E's, 5 S's
- so: $20!/(5!)^4$

Bars and Stars

Important that all elements in set and in selection are distinct. Finding permutations/combinations with repitition is slightly harder.

Question: How many ways to give n candycorn to k kids so each kid gets at least one piece of candy?

- Stars = candy, draw on line \mathbf{i}
- Bars = bucket boundaries, draw between stars
- n-1 places for bucket boundaries; k-1 boundaries
- Answer: $\binom{n-1}{k-1}$

Question: How many ways if some kids can get no candy?

Claim: Answer: $\binom{n+k-1}{k-1}$

Proof:

- 1. Placing n objects in k bins allowing empty bins is like placing n + k objects in k bins disallowing empty bins
- 2. Have n + k 1 symbols of which k 1 must be bars

Note above two are consistent; to give each kid at least one candycorn, could have taken k candycorn out of the n and then done the second approach. Get same answer.

Example:

- How many *positive* solutions to a + b = 10?
- How many *non-negative* solutions to a + b = 10?

Identities

What is $\sum_{r=0}^{n} {n \choose r} {2n \choose n-r}$?

Often have a nice combinatorial proof.

Some easy ones:

- $\binom{n}{r} = \binom{n}{n-r}$: choose elements to keep or to throw away.
- $\sum_{k=0}^{n} {n \choose k} = 2^n$: all subsets of an *n*-element set.
- $(x+y)^n = \sum_{j=0}^n {n \choose j} x^{n-j} y^j$ (the binomial theorem): coeff of $x^{n-j} y^j$, must choose j terms in product from which to take y.

• $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (Pascal's triangle): remove arbitrary element, either this is in the subset of size k (first term) or not (second term).

Claim: $\sum_{r=0}^{n} {n \choose r} {2n \choose n-r} = {3n \choose n}$ **Proof:** Let *S* be deck of cards with *n* red cards and 2*n* black cards.

- RHS: $\binom{3n}{n}$ is the number of *n*-card hands.
- LHS:
 - $-\binom{n}{r}$ is the number of way to pick r red cards
 - $-\binom{2n}{n-r}$ is the number of ways to pick n-r black cards

so $\binom{n}{r}\binom{2n}{n-r}$ is number of ways to pick a hand with exactly r red cards.

Result follows by summing over r. \Box

Poker Hands

52 cards in a deck:

- 4 suits: Spades, Hearts, Diamonds, Clubs
- 13 values: 1,...,10, Jack, Queen, King, Ace

5-card draw: each player given 5 cards

$$\binom{52}{5} = 2,598,960$$

possible hands.

How many ways to get:

• Four-of-a-kind – 4 cards with same value

 $\{2H, 2S, 2D, 2C, 5S\}$

Hand fully specified by sequence specifying

- value of 4 cards
- value of extra card
- suit of extra card

Count ways to pick sequence

- -13 choices for value of 4 cards
- 12 choices for value of extra card
- 4 choices for suit of extra card

so $13 \cdot 12 \cdot 4 = 624$ four-of-a-kinds, or about 1 in 4000 hands.

• Full house – 3 cards of one value, 2 cards of another value

 $\{7H, 7S, 7D, JH, JS\}$

Sequence

- value of triple 13
- suits of triple $\binom{4}{3}$
- value of pair 12
- suits of pair $\binom{4}{2}$

so $13 \cdot 4 \cdot 12 \cdot 6 = 3744$, or about 1 in 700 hands.

• Two pair – 2 cards of one value, 2 cards of another value

 $\{4S, 4H, 6D, 6H, KC\}$

Sequence

- value of first pair -13

- suits of first pair $\binom{4}{2}$
- value of second pair 12
- suits of second pair $-\binom{4}{2}$
- value of extra card 11
- suit of extra card -4

WRONG ANSWER!, each hand gives rise to two distinct sequences:

$$(4, \{S, H\}, 6, \{D, H\}, K, C)$$
$$= (6, \{D, H\}, 4, \{S, H\}, K, C)$$

Solution: mapping is 2-to-1, so divide by 2 (*division rule*)

Number of two-pair hands is: $13 \cdot 6 \cdot 12 \cdot 6 \cdot 11 \cdot 4/2 = 123,552$, or about 1 in 20.

Note: alternatively, could come up with different sequence to count, e.g.,

- values of two pairs $-\binom{13}{2}$
- suits of lower-valued pair $-\binom{4}{2}$
- suits of higher-valued pair $-\binom{4}{2}$
- value of extra card 11
- suit of extra card -4
- Hands with every suit
 - $\{AS, AH, JD, 4C, 10H\}$

Sequence

- value of spade -13
- value of heart -13
- value of diamond 13
- value of club 13
- suit of extra card -4
- value of extra card -12

Overcount?

$$(A, A, J, 4, H, 10) = (A, 10, J, 4, H, A)$$

Must divide by 2.

Pigeon-hole

Pigeon-hole principle: If n objects are placed into r boxes, then at least $\lceil n/r \rceil$ must be in the same box.

Claim: Consider numbers $\{1, 2, ..., 2n\}$. Then in any set A of size n + 1, at least two elts are relatively prime.

Proof:

- Pigeons elts of A
- Holes hole i is for pigeons between i and i + 1

That is, at least two numbers are 1 apart and hence relatively prime. $\hfill \Box$

Claim: Consider numbers $\{1, 2, ..., 2n\}$. Then in any set A of size n + 1, there are always two numbers such that one divides the other.

Proof: For each $a \in A$, write $a = 2^k m$, where m is odd and $1 \le m \le 2n - 1$.

- Pigeons elts of A
- Holes odd numbers m

By pigeon-hole, must be two numbers a and a' with same hole m. That is, $a = 2^k m$ and $a' = 2^{k'}m$, so one is a multiple of the other. \Box

Claim: Five cities on an alien planet, at least 4 are in same hemisphere.

Proof: Draw great circle through two of five points, by pigeonhole two of remaining three cities are in same hemisphere. \Box

Magic Trick

[[Ok to skip.

- Audience: choose 5 cards
- Assistant: show magician 4 cards, one at a time
- Magician: announce missing card

Counting:

- Audience: $\binom{52}{5}$
- Assistant: 4! = 24 ways to show 4 of five cards

but ... 48 possible cards, so not enough permutations to narrow it down.

Idea: Assistant gets to pick *order* and also *which card to leave out!*.

Create bipartite graph, find matching:

- LHS: all audience choices
- RHS: all sequences of 4 distinct cards
- edges: if sequence valid for audience choice

Recall: **Claim:** There is a matching from LHS to RHS if each subset of LHS has neighbor set of larger cardinality.

• LHS: $\binom{5}{1}4! = 120$ edges from a LHS vertex

• RHS: 48 edges from a RHS vertex

Consider subset S of LHS.

- 120|S| edges leave subset
- 48|N(S)| enter neighbor set

so |N(S)| > |S|, and there is a matching by Hall's Theorem.

Real trick:

]]

- At least 2 cards have same suit, one of which is at most 6 hops clockwise from the other in a cycle.
- Hide clockwise card; reveal other card first.
- Use remaining three cards to indicate number of hops, encoding 1,..., 6 using total order (e.g., low-medium-high or low-high-medium).