EECS 310: Discrete Math

Lecture 12 Counting

Reading: MIT OpenCourseWare 6.042 Proof: For each $a \in A$, write $a=2^{k} m$, Chapter 14-15

Pigeon-hole

Pigeon-hole principle: If n objects are placed into r boxes, then at least $\lceil n / r\rceil$ must be in the same box.
$\left[\left[\begin{array}{l}\text { puzzle about white/black socks in } \\ \text { drawer, how many must you select before } \\ \text { you have a matching pair? holes - colors, } \\ \text { pigeons - socks. }\end{array}\right]\right]$
Claim: Five cities on an alien planet, at least Probability
4 are in same hemisphere.
Proof: Draw great circle through two of five points, by pigeonhole two of remaining three cities are in same hemisphere.
Claim: Consider numbers $\{1,2, \ldots, 2 n\}$. Then in any set A of size $n+1$, at least two elts are relatively prime.

Proof:

- Pigeons - elts of A
- Holes - hole i is for pigeons between i and $i+1$

That is, at least two numbers are 1 apart and hence relatively prime.
Claim: Consider numbers $\{1,2, \ldots, 2 n\}$. Then in any set A of size $n+1$, there are always two numbers such that one divides the other.
where m is odd and $1 \leq m \leq 2 n-1$.

- Pigeons - elts of A
- Holes - odd numbers m

By pigeon-hole, must be two numbers a and a^{\prime} with same hole m. That is, $a=2^{k} m$ and $a^{\prime}=2^{k^{\prime}} m$, so one is a multiple of the other.

Monty Hall Problem:

- three doors, one car, two goats
- you pick a door
- host opens another door
- should you stay or switch?

Assumptions:

- prize is behind a random door
- you pick a random door
- host opens a door with a goat
- if host can pick door, picks a random door

Four Step Method

Step 1: Defining the sample space.
Def: outcome is any possible result of random choices.
Def: sample space is set of all outcomes. $\left[\left[\begin{array}{l}\text { sometimes useful to construct outcomes } \\ \text { using tree diagram. }\end{array}\right]\right]$
Example: Tree diagram for Monty Hall, doors A, B, C

- root decides door for prize
- level one decides door you pick
- level two decides door host picks
- label leaves with path from root

Leaves are sample space
$\{(A, A, B),(A, A, C),(A, B, C),(A, C, B), \ldots\}$
$\left[\left[\begin{array}{l}\text { sometimes host has only one choice, so } \\ \text { only one leaf of some level one nodes }\end{array}\right]\right]$

Step 2: Defining events of interest.

Def: event is set of outcomes of interest

Example:

- prize is behind door A :

$$
\begin{aligned}
& \{(A, A, B),(A, A, C) \\
& (A, B, C),(A, C, B)\}
\end{aligned}
$$

- you picked right door first time: $\{(A, A, B),(A, A, C),(B, B, A)$,

$$
(B, B, C),(C, C, A),(C, C, B)\}
$$

- you win by switching

$$
\begin{aligned}
& \{(A, B, C),(A, C, B),(B, A, C) \\
& (B, C, A),(C, A, B),(C, B, A)\}
\end{aligned}
$$

$\left[\left[\begin{array}{l}\text { half outcomes in event that we win by } \\ \text { switching, so might think prob is } 1 / 2, \text { but } \\ \text { not all outcomes have same probability }\end{array}\right]\right]$

Step 3: Determine outcome probabilities

Modeling problem.

- assign edge probabilities
- compute outcome probabilities by product
$\left[\left[\begin{array}{l}\text { product because process progresses ran- } \\ \text { domly along path }\end{array}\right]\right]$
Example: Compute outcome probabilities for Monty Hall

Step 4: Compute event probabilities

By summing outcomes in event.
Example: Compute $\operatorname{Pr}\{$ switching wins $\}$ in Monty Hall

Probability Spaces

Def: countable sample space S is non-empty countable set, $w \in S$ is outcome
$\left[\left[\begin{array}{l}\text { countable means you can list the ele- } \\ \text { ments, also defined for uncountable sets } \\ \text { but not in } 310\end{array}\right]\right]$
Def: probability function $\operatorname{Pr}\}: S \rightarrow[0,1]$ is s.t.

- $\forall w \in S, \operatorname{Pr}\{w\} \geq 0$
- $\sum_{w \in S} \operatorname{Pr}\{w\}=1$

Def: probability space is sample space plus probability function
Def: probability of event E

$$
\operatorname{Pr}\{E\}=\sum_{w \in E} \operatorname{Pr}\{w\}
$$

Implications

Claim: (Sum rule) if $E \cap F=\emptyset, \operatorname{Pr}\{E \cup F\}=$ $\operatorname{Pr}\{E\}+\operatorname{Pr}\{F\}$
Claim: (Complement rule) $\operatorname{Pr}\{A\}=1-$ $\operatorname{Pr}\left\{A^{c}\right\}$ where $A^{c}=\{w \mid w \notin A\}$
$\left[\left[\begin{array}{l}\text { can you come up with others? e.g., inclu- } \\ \text { sion/exclusion? }\end{array}\right]\right]$
Claim: (Union bound)

$$
\operatorname{Pr}\left\{E_{1} \cup \ldots \cup E_{n}\right\} \leq \sum_{i=1}^{n} \operatorname{Pr}\left\{E_{i}\right\}
$$

Uniform Probability Space

Def: probability space uniform if $\operatorname{Pr}\{w\}$ same for all $w \in S$
Claim: for uniform prob., $\operatorname{Pr}\{E\}=|E| /|S|$

Infinite Probability Space

Example: coin flipping

- two players alternate flipping coin until comes up heads
- person who flips heads wins

Draw tree diagram.

- infinite tree
- outcome space $T^{n} H$
- probability function?

$$
\operatorname{Pr}\left\{T^{n} H\right\}=(1 / 2)^{n+1}
$$

- valid? non-negative and

$$
\sum_{i=0}^{\infty}(1 / 2)^{n+1}=(1 / 2) \sum_{i=0}^{\infty}(1 / 2)^{n}=1
$$

Question: prob. player 1 wins?

$$
\begin{aligned}
\operatorname{Pr}\{1 \text { wins }\} & =\frac{1}{2}+\frac{1}{8}+\ldots \\
& =\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{4}\right)^{i} \\
& =\frac{2}{3}
\end{aligned}
$$

Question: alternate solution?

- let p be prob. 1 wins, q be prob. 2 wins
- one of them wins: $p+q=1$
- 1 flip, then 2 is first player: $p=(1 / 2)+$ $(1 / 2) q$
- solve eqns, $p=2 / 3$

Conditional Probability

Example: Prob. person p

- $A=$ lives in Evanston?
- $B=$ goes to Northwestern?
- B given A ?

Draw Venn diagram.
Def: prob. A given B,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Claim: (Product Rule)
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]$

Claim: (Product Rule)

$$
\begin{gathered}
\operatorname{Pr}\left[E_{1} \cap \ldots \cap E_{n}\right]= \\
\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \ldots \operatorname{Pr}\left[E_{n} \mid E_{1} \cap \ldots \cap E_{n-1}\right]
\end{gathered}
$$

Note: Justifies tree diagram

- prob. on edge is conditional probability of edge given reach parent node
- multiple to get outcome prob. by above defn.

Example: A family has two children and one is a boy. What is probability other is a boy?

- $\Omega=\{B B, B G, G B, G G\}$
- $A=\{B B, B G, G B\}$
- $B=\{B B\}$
- $P(A)=3 / 4$
- $P(A \cap B)=P(\{B B\})=1 / 4$
- $P(B \mid A)=1 / 3$

Claim: Law of alternatives: If A_{1}, \ldots, A_{n} are disjoint events whose union is S, then

$$
P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
$$

Claim: Bayes Thm: $P(A \mid B)=$ $P(B \mid A) P(A) / P(B)$
Proof: $\quad P(A \cap B)=P(A \mid B) P(B)=$ $P(B \mid A) P(A)$

Example: Cards: blue/blue, blue/red, red/red.
Question: Random side of random card is red, what is prob. other side is red?

- card 1: two blue, label sides front/back
- card 2: two red, front/back
- card 3: red side front, blue side back
- $S=\{(i, x)\}$ where i is card, x is front or back
- $A=$ red side shown $=\{2 F, 2 B, 3 F\}$, $P(A)=1 / 2$
- $B=$ card 2 chosen, $=\{2 F, 2 B\}$
- $P(B \mid A)=P(A \cap B) / P(A)=$ $(1 / 3) /(1 / 2)=2 / 3$

