EECS 310: Discrete Math Probability

Reading: MIT OpenCourseWare 6.042 Chapter 16

Independence

[Intuitively, flip two coins in different]] cities, outcome of one does not change other. Independence formalizes this.
Def: Events A, B independent if

- $\operatorname{Pr}[B]=0$ or
- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$
[Does not mean A, B disjoint, in fact dis- $]$ joint events are NOT independent; knowing B happens means A did not happen if A, B disjoint.
Claim: A, B independent iff $\operatorname{Pr}[A \cap B]=$ $\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$.

Proof:

1. $\operatorname{Pr}[B]=0$:

- indep. by defn
- both sides zero

2. $\operatorname{Pr}>0$:

- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]$
- and $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$ iff A, B independent

Example: Coin toss:

- n coin tosses, each prob. $1 / 2$ heads [[indep by assumption
- $M_{i j}=$ event i^{\prime} th toss $=j^{\prime}$ 'th toss

1. sample space: 3 -bit sequences
2. event $M_{i j}$: sequences where i 'th bit $=j$ 'th bit
3. outcome probability: $(1 / 2)^{n}$, uniform
4. event probability: $2^{n-1} / 2^{n}=1 / 2$

Question: $M_{i j}, M_{i^{\prime} j^{\prime}}$ indep. if

- $i=i^{\prime}, j=j^{\prime}, i \neq j ?$

$$
\operatorname{Pr}\left[M_{i j} \cap M_{i j}\right]=\operatorname{Pr}\left[M_{i j}\right]=1 / 2
$$

but

$$
\operatorname{Pr}\left[M_{i j}\right] \cdot \operatorname{Pr}\left[M_{i j}\right]=(1 / 2)^{2}=1 / 4
$$

- none equal?

$$
\operatorname{Pr}\left[M_{i j} \cap M_{i^{\prime} j^{\prime}}\right]=2^{n-2} / 2^{n}=1 / 4
$$

and

$$
\operatorname{Pr}\left[M_{i j}\right] \cdot \operatorname{Pr}\left[M_{i^{\prime} j^{\prime}}\right]=(1 / 2)^{2}=1 / 4
$$

- $i=i^{\prime}, j \neq j^{\prime}, i \neq j, i \neq j^{\prime} ?$

$$
\operatorname{Pr}\left[M_{i j} \cap M_{i j^{\prime}}\right]=2^{n-2} / 2^{n}=1 / 4
$$

and

$$
\operatorname{Pr}\left[M_{i j}\right] \cdot \operatorname{Pr}\left[M_{i^{\prime} j^{\prime}}\right]=(1 / 2)^{2}=1 / 4
$$

Def: events E_{1}, \ldots, E_{n} mutually independent if $\forall i, \forall S \subseteq\{1, \ldots, n\}-\{i\}$,

$$
\operatorname{Pr}\left[\cap_{j \in S} E_{j}\right]=0
$$

or

$$
\operatorname{Pr}\left[E_{i} \mid \cap_{j \in S} E_{j}\right]=\operatorname{Pr}\left[E_{i}\right] .
$$

Claim: mutually independent iff $\forall S \subseteq$ $\{1, \ldots, n\}$,

$$
\operatorname{Pr}\left[\cap_{i \in S} E_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[E_{i}\right] .
$$

Example: Coin toss:
Question: Are $\left\{M_{i j}\right\}$ mutually indep.?

$$
\operatorname{Pr}\left[M_{12} \cap M_{23} \cap M_{31}\right]=2^{n-2} / 2^{n}=1 / 4
$$

but

$$
\operatorname{Pr}\left[M_{12}\right] \cdot \operatorname{Pr}\left[M_{23}\right] \cdot \operatorname{Pr}\left[M_{31}\right]=1 / 8
$$

Def: $\left\{M_{i j}\right\} k$-wise indep. iff every subset of k is mutually indep.
Example: Coin toss: $\left\{M_{i j}\right\}$ are 2-wise (or pairwise) indep.
Example: Birthday paradox:
Question: Probability two of us have same birthday?

Variables: m people, N days
Assumptions:

- for each person, all bdays equally likely
$\left[\begin{array}{l}\text { actually more likely to be born on a weelGlaim: Stirling approx: } n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \\ \text { day; most common birthday Oct. } 5 t h \text { a }\end{array}\right]$ dgt of math... $\operatorname{Pr}[2$ of 23 share bday $]>1 / 2$. Lleast common May 22nd.
- bdays mutually indep [[not if there are twins, for example
- 0.4 for $n=20$
]] • 0.7 for $n=30$
$\left[\left[\begin{array}{l}\text { Assumptions valid for CS applications, } \\ \text { will see later. }\end{array}\right]\right]$
Four-step method:

1. sample space: map people i to bdays b_{i}

$$
S=\left\{\left(b_{1}, \ldots, b_{m}\right) \mid b_{i} \in\{1, \ldots, N\}\right\}
$$

2. events:
$A=$ event ≥ 2 people have same bday [[hard to evaluate, use complement instead]] $A^{c}=$ event no two people have same bday

$$
A^{c}=\left\{\left(b_{1}, \ldots, b_{m}\right) \mid \forall i \neq j, b_{i} \neq b_{j}\right\}
$$

Recall: $\operatorname{Pr}[A]=1-\operatorname{Pr}\left[A^{c}\right]$
3. outcome prob.:

- $\operatorname{Pr}\left[b_{i} \quad=\quad k\right] \quad=\quad 1 / N$ [[by 1'st assumption
- $\operatorname{Pr}\left[\left(b_{1}, \ldots, b_{m}\right)=\left(k_{1}, \ldots, k_{m}\right)\right]=$ $\prod_{i} \operatorname{Pr}\left[b_{i}=k_{i}\right]=(1 / N)^{m}$ [[by 2'nd assumption
so uniform

4. event prob.:

- $\left|A^{c}\right|=N(N-1) \ldots(N-m+1)=$ $N!/(N-m)$!
- $|S|=N^{m}$
so $\frac{N!}{N^{m}(N-m)!}$
- 0.999998876 for $n=100$
$\left[\left[\begin{array}{l}\text { Poll class to see how many people have } \\ \text { same bday. }\end{array}\right]\right]$
Alternatively:

1. sample space: $S=\left\{\left(b_{1}, \ldots, b_{m}\right)\right\}$
2. events:
$B_{i}=$ event $b_{i} \notin\left\{b_{1}, \ldots, b_{i-1}\right\}$

$$
\begin{aligned}
\operatorname{Pr}\left[A^{c}\right] & =\operatorname{Pr}\left[B_{1} \cap \ldots \cap B_{m}\right] \\
& =\operatorname{Pr}\left[B_{1}\right] \ldots \operatorname{Pr}\left[B_{n} \mid B_{1}, \ldots, B_{n-1}\right]
\end{aligned}
$$

3. outcome prob.: uniform
4. event prob.:
$\operatorname{Pr}\left[B_{i} \mid \cap_{j<i} B_{j}\right]=1-\operatorname{Pr}\left[B_{i}^{c} \mid \cap_{j<i} B_{j}\right]=$ $1-(i-1) / N$

Claim: $(1-x) \leq e^{-x}$ for all x (good approx. if x close to 0)

$$
\begin{aligned}
\operatorname{Pr}\left[A^{c}\right] & =\operatorname{Pr}\left[B_{1}\right] \ldots \operatorname{Pr}\left[B_{m} \mid B_{1}, \ldots, B_{m-1}\right] \\
& =(1-0 / d) \ldots(1-(n-1) / d) \\
& \leq e^{-0 / d} e^{-1 / d} \ldots e^{-(m-1) / N} \\
& =e^{-m^{2} / 2 N}
\end{aligned}
$$

Note: Constant prob. of collision for $m \geq$ $\sqrt{2 N}$.
Note: Hashing:

- want to store m records
- using N keys
- function h maps record to key
- if h maps randomly, need $N=m^{2}$-sized array to avoid collisions

