EECS 310: Discrete Math Probability

Reading: MIT OpenCourseWare 6.042 Example: $M=I_{E}$ indicator random variChapter 17-18

Random Variables

Def: random variable maps outcomes to values.
Note: It is a function!
Example: 3 indep. uniform coin tosses

- $S=\{(H H H),(H H T), \ldots,(T T T)\}$
- random variable: $M: S \rightarrow\{0,1\}$,

$$
M(w)= \begin{cases}1 & \text { if } w_{1}=w_{2}=w_{3} \\ 0 & \text { otherwise }\end{cases}
$$

M indicates if coins all match.

- random variable: $C: S \rightarrow\{0,1,2,3\}$,

$$
C(w)=\# H \in w .
$$

C counts heads.

R.V.'s define events

Def: indicator random variable maps outcomes to 0 or 1 .
Note: for any event A, can associate indicator random variable I_{A} :

$$
I_{A}(w)= \begin{cases}1 & \text { if } w \in A \\ 0 & \text { otherwise }\end{cases}
$$

able for event E that all coins match.
Note: more generally, $\{w: M(w)=k\}$ is an event.

Example: $C=0$ is event "no heads"

Probability with R.V.'s

prob. of event defined by r.v.:

- $P[M=1]=P[(T T T)]+P[(H H H)]=$ 1/4
- $P[C=2]=3 / 8$

Note: conditional probability, independence apply to random variables too.
Def: Random variables X and Y are independent iff for all x and $y, P[X=x \cap Y=$ $y]=P[X=x] P[Y=y]$ iff for all x and y, $P[X=x \mid Y=y]=P[X=x]$.
Example: Are M and C independent?
Note: Must find m and c such that the inequality fails:
$P[C=2 \cap M=1]=0, P[C=2] P[M=1]>0$

Functions of R.V.'s

Note: Functions of r.v.'s are r.v.'s.
Example: 2 indep. unbiased 6-sided dice Some r.v.'s:

- $D_{i}=$ number on i^{\prime} th die
- $T=D_{1}+D_{2}$ total of 2 dice
- e^{T}, other crazy (but useful) r.v.

Balls and Bins Example

Hashing again:

- n keys (bins), n records (balls)
- random hash function (ball goes to random bin)
- resolve collisions with linked list (want to bound max bin size)

Question: how long are the linked lists?

- let X be rand. var. equal to max size.
- find smallest k s.t. $P[X \geq k] \leq 1 / 2$
- Let $X_{i}=$ size of bin i.
- Then

$$
\begin{gathered}
(X \geq k)= \\
\left(X_{i} \geq k\right) \cup \ldots \cup\left(X_{n} \geq k\right)
\end{gathered}
$$

- By union bound

$$
P[X \geq k] \leq \sum_{i=1}^{n} P\left[X_{i} \geq k\right]
$$

so find k s.t. $P\left[X_{i} \geq k\right] \leq \frac{1}{2 n}$.

$$
\begin{aligned}
P\left[X_{i} \geq k\right] & =P\left[\left(X_{i}=k\right) \cup\left(X_{i}=k+1\right) \cup\right. \\
& =\sum_{j=k}^{n} P\left[X_{i}=j\right] \\
& =\sum_{j=k}^{n}\binom{n}{j}\left(\frac{1}{n}\right)^{j}\left(1-\frac{1}{n}\right)^{n-j}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j=k}^{n}\left(\frac{1}{j}\right)^{j} \\
& \leq \sum_{j=k}^{n}\left(\frac{1}{k}\right)^{j} \\
& =\left(\frac{1}{k}\right)^{k} \sum_{j=0}^{\infty}\left(\frac{1}{k}\right)^{j} \\
& \leq 2\left(\frac{1}{k}\right)^{k}
\end{aligned}
$$

Conclusion:

$$
2\left(\frac{1}{k}\right)^{k} \leq \frac{1}{2 n}
$$

if

$$
k \sim \ln n / \ln \ln n
$$

E.g., $n=10^{6}$, w.p.r. $1 / 2$, just 10 collisions max.

Expectation

Def: expected value of r.v. R is

$$
\begin{aligned}
E[R] & =\sum_{w \in S} R(w) P[w] \\
& =\sum_{k=1}^{\infty} P[R \geq k]
\end{aligned}
$$

(last holds for non-neg only).
Example: 6-sided die, R value of roll

$$
E[R]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+\ldots+6 \frac{1}{6}=\frac{7}{2}
$$

[[R may never take value $E[R]$.]]
Example: indicator r.v. I_{A} for event A

$$
\begin{aligned}
E\left[I_{A}\right]= & 1 \cdot \operatorname{Pr}\left[I_{A}=1\right]+0 \cdot \operatorname{Pr}\left[I_{A}=0\right] \\
& =\operatorname{Pr}\left[I_{A}=1\right]=\operatorname{Pr}[A]
\end{aligned}
$$

Claim: If $R: S \rightarrow \operatorname{range}(R)$, then

$$
E[R]=\sum_{x \in \operatorname{range}(R)} x \cdot \operatorname{Pr}[R=x]
$$

Proof:

$$
\begin{aligned}
E[R] & =\sum_{w \in S} R(w) \operatorname{Pr}[w] \\
& =\sum_{x \in \operatorname{range}(R)} \sum_{w \in[R=x]} R(w) \operatorname{Pr}[w] \\
& =\sum_{x \in \operatorname{range}(R)} \sum_{w \in[R=x]} x \operatorname{Pr}[w] \\
& =\sum_{x \in \operatorname{range}(R)} x\left(\sum_{w \in[R=x]} \operatorname{Pr}[w]\right) \\
& =\sum_{x \in \operatorname{range}(R)} x \operatorname{Pr}[R=x]
\end{aligned}
$$

Example: R is \# heads in n flips of coin with bias p (binomial dist.)

$$
\begin{aligned}
& E[R]=\sum_{k=0}^{n} k \operatorname{Pr}[R=k] \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

[[ugly, see another way later

Claim: If range $(R)=\mathbb{N}$, then

$$
E[R]=\sum_{i=1}^{\infty} i \operatorname{Pr}[R=i]=\sum_{i=0}^{\infty} \operatorname{Pr}[R>i]
$$

Proof: sum equations:
$\operatorname{Pr}[R>0]=\operatorname{Pr}[R=1]+\operatorname{Pr}[R=2]+\ldots$
$\operatorname{Pr}[R>1]=\operatorname{Pr}[R=2]+\operatorname{Pr}[R=3]+\ldots$ $\operatorname{Pr}[R>2]=\operatorname{Pr}[R=3]+\operatorname{Pr}[R=4]+\ldots$

Example: Mean time to failure (geometric dist)

Question: Planes crash with prob. p, what's the number of flights F until you die?

$$
E[F]=\sum_{i=0}^{\infty} \operatorname{Pr}[F>i]=\sum_{i=0}^{\infty}(1-p)^{i}=\frac{1}{p}
$$

$\left[\left[\begin{array}{l}\text { plane crashes after } i \text { 'th iff didn't crash } \\ \text { during first } i \text { flights }\end{array}\right]\right]$
Claim: Linearity of expectation: For any two r.v. R_{1} and $R_{2}, E\left[R_{1}+R_{2}\right]=E\left[R_{1}\right]+$ $E\left[R_{2}\right]$.
Proof: Let $T=R_{1}+R_{2}$.

$$
\begin{aligned}
E[T] & =\sum_{w \in S} T[w] P[w] \\
& =\sum_{w \in S}\left(R_{1}[w]+R_{2}[w]\right) P[w] \\
& =\sum_{w \in S} R_{1}[w] P[w]+\sum_{w \in S} R_{2}[w] P[w] \\
& =E\left[R_{1}\right]+E\left[R_{2}\right]
\end{aligned}
$$

Claim: $E[a X]=a E[X]$
Fact: Expectation is a linear function.
[[No independence required!
Example: R is \# heads in n flips of coin with bias p (binomial dist.)

- R_{i} is flip of i 'th coin
- $R=\sum_{i=1}^{n} R_{i}$
- $E[R]=E\left[\sum_{i} R_{i}\right]=\sum_{i} E\left[R_{i}\right]=n p$
$\left[\left[\begin{array}{l}\text { nicer form, and proof that ugly sum from } \\ \text { before equals np }\end{array}\right]\right]$
Example: Dim sum: n people at a round table, each has a teacup. Table is spun. X is number of people who get their own teacup back.
- $X_{i}=$ indicator r.v. that i 'th person gets own teacup
- X_{i} binomial with prob. $1 / n$
- $X=\sum_{i} X_{i}$, and $E[X]=n(1 / n)=1$

Note: X_{i} not independent, still $E[X]=$ $\sum_{i} E\left[X_{i}\right]$
Example: Coupon collector:
n types of coupons, $X=$ number must collect to get one of each.

- $X_{i}=$ number of steps between getting i 'th coupon and $(i+1)$ 'st coupon

$$
\begin{gathered}
R, R, G, B, G, Y \rightarrow \\
X_{0}=1, X_{1}=2, X_{2}=1, X_{3}=2
\end{gathered}
$$

- $X=\sum_{i=0}^{n-1} X_{i}$
- When looking for $(i+1)$ 'st new coupon, already have i types, so get new type each draw with probability $1-\frac{i}{n}$.
- $E\left[X_{i}\right]=\frac{n}{n-i}$
(geometric dist. with $p=\frac{n-i}{n}$)
- $E[X]=\sum_{i=0}^{n-1} E\left[X_{i}\right]$
$=\sum_{i=0}^{n-1} \frac{n}{n-i}=n \sum_{j=1}^{n} \frac{1}{j}=O(n \ln n)$

