Reading: MIT OpenCourseWare 6.042 Chapter 2

Logic Recap

Let P and Q be propositions.

Logical operators:

- Not: $\neg P$
- And: $P \wedge Q$
- Or: $P \lor Q$
- Implication/Conditional: $P \to Q$ (if P then Q)
- Equivalence/Biconditional: $P \leftrightarrow Q$ (P if and only if Q)

Other terminology: Given implication $P \rightarrow Pro Q$,

- Converse is $Q \to P$
- Contrapositive is $\neg P \rightarrow \neg Q$

 $\begin{bmatrix} Which is logically equivalent to implica-\\ tion? \end{bmatrix}$

Let D be domain of discourse, P(x), Q(y), R(x, y) be predicates.

Quantifiers:

• Existential: \exists

• Universal: \forall

Mixing quantifiers:

- $\forall x \in D, \exists y \in D, R(x, y)$
- $\exists y \in D, \forall x \in D, R(x, y)$

Negation:

- $\neg(\exists x \in D, P(x)) = \forall x \in D, \neg P(x)$
- $\neg(\forall y \in D, Q(y)) = \exists y \in D, \neg Q(y))$
- $\neg(\forall x \in D, \exists y \in D : R(x,y)) = \exists x \in D, \forall y \in D : \neg R(x,y)$

Proofs

 \rightarrow Proof recipes:

- 1. Direct proof: To prove $P \to Q$, assume P and derive Q.
- 2. Proof by contrapositive: To prove $P \rightarrow Q$, prove $\neg Q \rightarrow \neg P$ by direct proof.
- 3. Proof by contradiction: To prove P, assume $\neg P$ and derive a contradiction.
- 4. Proof by cases: Break into substatements and prove each individually using one of above recipes.

1. Direct proof: To prove $P \to Q$, assume P and derive Q.

Example: Claim: If n is odd, then n + 1 is even.

Proof:

- By direct proof.
- Assume n is odd.
- Then n = 2k + 1 for some integer $k \Rightarrow n + 1 = 2k + 2 = 2(k + 1) \Rightarrow n + 1$ is even.
- 2. Proof by contrapositive: To prove $\neg Q \rightarrow \neg P$:, assume $\neg Q$ and derive $\neg P$.

Example: Claim: Let d divide n. If n is odd, then d is odd.

Proof:

- Proof by contrapositive: if d is even, then n is even.
- Assume d is even and d divides n.
- Then d = 2k for some integer k (d is even) and dl = n for some integer l (d divides n) ⇒ n = l(2k) = 2(kl) ⇒ n is even.
- 3. Proof by contradiction: To prove P, assume $\neg P$ and reach a logical contradiction.

Example: Claim: Alice wins in Chomp.

Proof:

- Proof by contradiction.
- Assume Alice loses, i.e. for any first move of Alice, Bob can force a win.

- Then consider Bob's response (i, j)when Alice chooses (m, n) as her first move.
- By assumption, Bob forces a win from (i, j), i.e., he has a sequence of responses for any response of Alice that guarantees he wins.
- But then Alice could have chosen (i, j) as her first move and copied Bob's strategy.
- Contradiction: By copying Bob, Alice wins.

Example: Claim: There is no greatest even integer.

Proof:

- Proof by contradiction.
- Assume there is a greatest even integer N.
- Then N = 2k for some integer $k \Rightarrow N + 2 = 2k + 2 = 2(k + 1)$ is even and greater than N.
- Contradiction: N + 2 is an even integer greater than N.

4. Proof by cases: Break into logical substatements and prove each individually.

Example: Claim: For any two numbers x and y, $(x + y)/2 \le \max(x, y)$.

Proof:

- By cases.
- First rewrite as $(x + y) \leq 2\max(x, y)$.
- Case 1: $x \leq y$. Then $(x + y) \leq (y + y) = 2 \max(x, y)$.

• Case 2: x > y. Then $(x + y) < (x + x) = 2 \max(x, y)$.

[[Also proof by contradiction.

More Proofs

Example:

Claim: If the sum of the digits of a number n is divisible by 9, then n is divisible by 9.

Proof:

- By direct proof.
- Assume the sum of the digits of *n* are divisible by 9.
- Then $x_0 + \ldots + x_l = 9k$ for some integer k where x_0, \ldots, x_l are the digits of $n \Rightarrow$ $n = x_0 + 10x_1 + \ldots + 10^l x_l = (x_0 + \ldots + x_l) + 9x_1 + \ldots + 99...9x_l = 9k + 9(x_1 + \ldots + 11...1x_l) = 9(k + x_1 + \ldots + 11...1x_l).$

A proof from the book – Erdos said there was The Book in which God maintains the perfect proofs of mathematical theorems. He has a famous quote that "you need not believe in God but, as a mathematician, you should believe in The Book".

Example:

Claim: There are infinitely many primes.

Proof:

- By contradiction.
- Assume there are finitely many primes p_1, \ldots, p_n .

• Consider $q = p_1 p_2 \dots p_n + 1$. Then q is larger than all p_i , so not a prime. Hence q has a prime divisor $p = p_i$ for some i. Since p|q and $p|p_1 p_2 \dots p_n, p|1$ which is a contradiction.

Example:

Claim: If p^2 is even, then p is even.

[[Exercise: prove above claim.

Claim: $\sqrt{2}$ is irrational.

Proof:

- Proof by contradiction.
- Assume $\sqrt{2}$ is rational.
- Then √2 = p/q for two integers p and q. Choose p and q so that they are not both even. Then p² = 2q² so p² is even.
- p^2 is even $\Rightarrow p$ is even $\Rightarrow p = 2k$ for some integer $k \Rightarrow p^2 = 4k^2 \Rightarrow 2q^2 = 4k^2$ $\Rightarrow q^2 = 2k^2 \Rightarrow q$ is even.
- Contradicts the assumption that not both p and q are even.

Example:

Claim: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Proof by cases.
- Let $x = \sqrt{2}$ and $y = \sqrt{2}$.
 - 1. $\sqrt{2}^{\sqrt{2}}$ is rational. Then x and y are irrational and yet x^y is rational.

]]

11

2. $\sqrt{2}^{\sqrt{2}}$ is irrational. Then let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$. Then they are both irrational and yet $x^y = \sqrt{2}^2 = 2$ is rational.

□ [[Notice we showed existence without concluding which pair is irrational!