EECS 310: Discrete Math
 Lecture 2
 Logic, Proofs

Reading: MIT OpenCourseWare 6.042 - Universal: \forall
Chapter 2
Mixing quantifiers:

Logic Recap

Let P and Q be propositions.
Logical operators:

- Not: $\neg P$
- And: $P \wedge Q$
- Or: $P \vee Q$
- Implication/Conditional: $P \rightarrow Q$ (if P then Q)
- Equivalence/Biconditional: $P \leftrightarrow Q(P$ if and only if Q)

Other terminology: Given implication $P \rightarrow$ Proof recipes:
Q,

- Converse is $Q \rightarrow P$
- Contrapositive is $\neg P \rightarrow \neg Q$
$\left[\left[\begin{array}{l}\text { Which is logically equivalent to implica- } \\ \text { tion? }\end{array}\right]\right]$
Let D be domain of discourse, $P(x), Q(y), R(x, y)$ be predicates. Quantifiers:
- Existential: \exists

1. Direct proof: To prove $P \rightarrow Q$, assume P and derive Q.
2. Proof by contrapositive: To prove $P \rightarrow$ Q, prove $\neg Q \rightarrow \neg P$ by direct proof.
3. Proof by contradiction: To prove P, assume $\neg P$ and derive a contradiction.
4. Proof by cases: Break into substatements and prove each individually using one of above recipes.
5. Direct proof: To prove $P \rightarrow Q$, assume P and derive Q.
Example: Claim: If n is odd, then $n+1$ is even.

Proof:

- By direct proof.
- Assume n is odd.
- Then $n=2 k+1$ for some integer $k \Rightarrow n+1=2 k+2=2(k+1) \Rightarrow$ $n+1$ is even.

2. Proof by contrapositive: To prove $\neg Q \rightarrow$ $\neg P$: assume $\neg Q$ and derive $\neg P$.

Example: Claim: Let d divide n. If n is odd, then d is odd.

Proof:

- Proof by contrapositive: if d is even, then n is even.
- Assume d is even and d divides n.
- Then $d=2 k$ for some integer $k(d$ is even) and $d l=n$ for some integer $l(d$ divides $n) \Rightarrow n=l(2 k)=2(k l)$ $\Rightarrow n$ is even.

3. Proof by contradiction: To prove P, assume $\neg P$ and reach a logical contradiction.

Example: Claim: Alice wins in Chomp.

Proof:

- Proof by contradiction.
- Assume Alice loses, i.e. for any first move of Alice, Bob can force a win.
- Then consider Bob's response (i, j) when Alice chooses (m, n) as her first move.
- By assumption, Bob forces a win from (i, j), i.e., he has a sequence of responses for any response of Alice that guarantees he wins.
- But then Alice could have chosen (i, j) as her first move and copied Bob's strategy.
- Contradiction: By copying Bob, Alice wins.

Example: Claim: There is no greatest even integer.

Proof:

- Proof by contradiction.
- Assume there is a greatest even integer N.
- Then $N=2 k$ for some integer $k \Rightarrow$ $N+2=2 k+2=2(k+1)$ is even and greater than N.
- Contradiction: $N+2$ is an even integer greater than N.

4. Proof by cases: Break into logical substatements and prove each individually.
Example: Claim: For any two numbers x and $y,(x+y) / 2 \leq \max (x, y)$.
Proof:

- By cases.
- First rewrite as $(x+y) \leq$ $2 \max (x, y)$.
- Case 1: $x \leq y$. Then $(x+y) \leq$ $(y+y)=2 \max (x, y)$.
- Case 2: $x>y$. Then $(x+y)<$ $(x+x)=2 \max (x, y)$.
[[Also proof by contradiction.

More Proofs

Example:

Claim: If the sum of the digits of a number n is divisible by 9 , then n is divisible by 9 .

Proof:

- By direct proof.
- Assume the sum of the digits of n are divisible by 9 .
- Then $x_{0}+\ldots+x_{l}=9 k$ for some integer k where x_{0}, \ldots, x_{l} are the digits of $n \Rightarrow$ $n=x_{0}+10 x_{1}+\ldots+10^{l} x_{l}=\left(x_{0}+\ldots+\right.$ $\left.x_{l}\right)+9 x_{1}+\ldots+99 \ldots 9 x_{l}=9 k+9\left(x_{1}+\right.$ $\left.\ldots+11 \ldots 1 x_{l}\right)=9\left(k+x_{1}+\ldots+11 \ldots 1 x_{l}\right)$.
[$[$ A proof from the book - Erdos said there $]$ was The Book in which God maintains the perfect proofs of mathematical theorems. He has a famous quote that "you need not believe in God but, as a mathematician, you should believe in The
Book".

Example:

Claim: There are infinitely many primes.

Proof:

- By contradiction.
- Assume there are finitely many primes p_{1}, \ldots, p_{n}.
- Consider $q=p_{1} p_{2} \ldots p_{n}+1$. Then q is larger than all p_{i}, so not a prime. Hence q has a prime divisor $p=p_{i}$ for some i. Since $p \mid q$ and $p\left|p_{1} p_{2} \ldots p_{n}, p\right| 1$ which is a]] contradiction.

Example:

Claim: If p^{2} is even, then p is even.
[[Exercise: prove above claim.
Claim: $\sqrt{2}$ is irrational.
Proof:

- Proof by contradiction.
- Assume $\sqrt{2}$ is rational.
- Then $\sqrt{2}=p / q$ for two integers p and q. Choose p and q so that they are not both even. Then $p^{2}=2 q^{2}$ so p^{2} is even.
- p^{2} is even $\Rightarrow p$ is even $\Rightarrow p=2 k$ for some integer $k \Rightarrow p^{2}=4 k^{2} \Rightarrow 2 q^{2}=4 k^{2}$ $\Rightarrow q^{2}=2 k^{2} \Rightarrow q$ is even.
- Contradicts the assumption that not both p and q are even.

Example:

Claim: There exist irrational numbers x and y such that x^{y} is rational.

Proof:

- Proof by cases.
- Let $x=\sqrt{2}$ and $y=\sqrt{2}$.

1. $\sqrt{2}^{\sqrt{2}}$ is rational. Then x and y are irrational and yet x^{y} is rational.
2. $\sqrt{2}^{\sqrt{2}}$ is irrational. Then let $x=$ $\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. Then they are both irrational and yet $x^{y}=\sqrt{2}^{2}=$ 2 is rational.
$\left[\left[\begin{array}{l}\text { Notice we showed existence without con- } \\ \text { cluding which pair is irrational! }\end{array}\right]\right]$
