EECS 310: Discrete Math Proofs, Sets, Functions, Induction

Reading: MIT OpenCourseWare 6.042 Chapter 3.1-3.2

Proof Review

Recipes:

- 1. Direct proof: To prove $P \to Q$, assume N P and derive Q.
- 2. Proof by contrapositive: To prove $P \rightarrow Q$, prove $\neg Q \rightarrow \neg P$ by direct proof.
- 3. Proof by contradiction: To prove P, assume $\neg P$ and derive a contradiction.
- 4. Proof by cases: Break into substatements and prove each individually using one of above recipes.

Miniquiz time. Go over below solution after miniquiz (have someone volunteer to write it on the board).

Sets

Set theory formalized by Georg Cantor in 1895 who died in a mental hospital in 1918.

Def: A set is a collection of elements.

Example:

• Letters of the alphabet $\{a, b, \ldots, z\}$

- Natural numbers $\mathbb{N} = \{0, 1, \ldots\}$
- Integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- Reals \mathbb{R}
- Rationals $\mathbb{Q} = \{p/q : p, q \in Z\}$ Note notation.

Note:

- no order: $\{a, b\} = \{b, a\}$
- no repetition: $\{a, a\} = \{a\}$

Membership:

- x is an element of set A: $x \in A$
- examples: $3 \in \mathbb{N}, \sqrt{2} \notin \mathbb{Q}$

Set builder notation:

Define set using predicate – set is everything s.t. predicate is true:

Even
$$\#'s = \{n \in \mathbb{N} : n = 2k \text{ for some } k \in \mathbb{N}\}\$$

Odd
$$\#'s = \{n \in \mathbb{N} : n = 2k+1 \text{ for some } k \in \mathbb{N}\}\$$

Comparing and Combining

Set operations:

• union: $A \cup B = \{x : x \in A \lor x \in B\}$

- $B\}$
- complement: $A^c = \{x : x \notin A\}$

Venn diagrams:

- $A = \{1, 2, 3\}$
- $B = \{3, 4, 5\}$

Disjoint: intersection is empty.

• even and odd integers disjoint

Subset: $A \subseteq B$ if and only if every element of A is an element of B.

$$[A \subseteq B] \leftrightarrow [\forall x : x \in A \to x \in B]$$

 $[[like \leq sign$

Strict subset: $A \subset B$ if $A \subseteq B$ and $\exists x : x \in$ B and $x \notin A$.

[[like < sign

Equality: $\forall x, x \in A \iff x \in B$.

• even \cup odd = \mathbb{N}

[prove equality by proving biconditional,] each subset of other.

Representation

Computer representation:

- Universe $U = \{1, 2, 3\}$ as master set
- Subset as vector of zero-one, e.g., {1,2} is vector 110.

Containment? Union? Intersection?

• intersection: $A \cap B = \{x : x \in A \land x \in Well-Ordering Principle\}$

Claim: Every *nonempty* set of *nonnegative* integers has a smallest element.

Obvious? Not true for every set, e.g., negative integers, rational numbers.

Proof by least counterexample

Example:

11

]]

Claim: For any integers m and n, the fraction m/n can be written in lowest common form.

Check: m = 10, n = 20, fraction 10/20 =1/2.

Proof: By least counter-example.

- Let $C = \{m | \exists n : m/n \text{ has no lowest} \}$ common form.
- Assume by way of contradiction that $C \neq \emptyset.$
- By well-ordering, C has smallest element m_0 .
- Let n_0 be such m_0/n_0 can not be written in lowest common form.
- Then $\exists p$ such that $p|m_0$ and $p|n_0$.
- Then $m_0/n_0 = (m_0/p)/(n_0/p)$ so this also can't be written in lowest common form.
- Thus $m_0/p \in C$.
- But $m_0/p < m_0$, contradicting that m_0 was smallest element in C.

Template: To prove P(n) by least counterexample,

- 1. Define set $C = \{n | \neg P(n)\}$ of counterexamples to P(n).
- 2. Use proof by contradiction to assume $C \neq \emptyset$.
- 3. Use well-ordering to claim \exists smallest element $n \in C$.
- 4. Reach contradiction (usually by using n to construct a smaller element in C).
- 5. Conclude $C = \emptyset$.

Induction

 $\begin{bmatrix} Line \ of \ dominoes: \ first \ falls, \ if \ n'th \ falls \\ then \ (n+1)'st \ falls, \ so \ all \ fall. \end{bmatrix}$ Notation:

• Sum: for numbers x_1, \ldots, x_n :

$$x_1 + \ldots + x_n = \sum_{i=1}^n x_i$$

• Product: for numbers x_1, \ldots, x_n :

$$x_1 \cdot \ldots \cdot x_n = \prod_{i=1}^n x_i.$$

Example: Let P(n) be the predicate that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Claim: $\forall n \in Z^+, \sum_{i=1}^n i = \frac{n(n+1)}{2}$

Proof:

- For n = 1, $\sum_{i=1}^{1} i = 1 = \frac{1(2)}{2}$.
- For n = 2, $1 + 2 = \frac{1(2)}{2} + 2 = \frac{1(2)}{2} + \frac{4}{2} = \frac{1(2)+2(2)}{2} = \frac{2(3)}{2}$.
- For n = 3, $1+2+3 = \frac{2(3)}{2}+3 = \frac{2(3)+2(3)}{2} = \frac{3(4)}{2}$.

• For n+1,

- Assume
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

– Then:

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + n + 1$$

= $\frac{n(n+1)}{2} + n + 1$
= $(n+1)\left(\frac{n}{2} + 1\right)$
= $\frac{(n+1)(n+2)}{2}$.

 $\begin{bmatrix} Mention \ Gauss's \ proof, \ i'th \ number \ plus \\ (n-i+1)'th \ number \ sum \ to \ n+1 \ and \\ there \ are \ n/2 \ pairs. \end{bmatrix}$

Template: To prove P(n) by induction,

- Prove base case P(1).
- State inuductive hypothesis P(n).
- Prove $P(n) \to P(n+1)$ for all $n \ge 1$.
- Conclude P(n) for all $n \ge 1$.

Example: Let P(n) be the predicate that $\sum_{i=1}^{n} (2i-1) = k^2$ for some integer k.

Claim: Sum of first n odd integers is a perfect square.

Proof:

- By induction.
- Base case $P(1): \sum_{i=1}^{1} (2(1)-1) = 1 = 1^2$ is a perfect square.
- Inductive hypothesis P(n): $\sum_{i=i}^{n} (2i 1) = k^2$ for some integer k.
- Inductive step $P(n) \rightarrow P(n + 1)$: $\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + 2(n + 1) - 1 = k^2 + 2n - 1 = \dots?$

Hard part: what to prove?

 $\begin{bmatrix} Mention \ geometric \ intuition, \ derive \ that \\ sum \ is \ n^2. \end{bmatrix}$

Take two:

Proof: We prove the stronger predicate P'(n) that $\sum_{i=1}^{n} (2i-1) = n^2$.

- By induction.
- Base case P(1): $\sum_{i=1}^{1} (2(1)-1) = 1 = 1^2$.
- Inductive hypothesis P(n): $\sum_{i=i}^{n} (2i 1) = n^2$.
- Inductive step $P(n) \rightarrow P(n + 1)$: $\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + 2(n + 1) - 1 = n^2 + 2n - 1 = (n+1)(n+1).$

Example: Tiling with *L*-shapes.

Claim: Any $2^n \times 2^n$ foot bathroom can be tiled with *L*-shapes, leaving a center square empty for a rubber duck statue.

 $\begin{bmatrix} Draw \ 2 \times 2 \ and \ 4 \times 4 \ examples. \end{bmatrix} \\ \begin{bmatrix} Hard \ to \ prove \ because \ chop \ up \ into \\ four \ sub-squares, \ doesn't \ leave \ center \ tile \\ empty. \end{bmatrix}$

Claim: Any $2^n \times 2^n$ bathroom can be tiled leaving *any* square empty.

Proof: By induction. Let P(n) be the predicate in claim.

- Base case P(1): see example.
- Inductive hypothesis: True for $2^n \times 2^n$ bathrooms.
- Inductive step:
 - Break $2^{(n+1)} \times 2^{(n+1)}$ bathroom up into four 2^n subsquares.

- Desired empty square is in one, tile it using inductive hypothesis.
- Tile other three leaving corners empty using inductive hypothesis.
- Fill corners using an L-shaped tile.

Hard part: what to do induction on? Example: Two-color theorem.

Figure 1: Map to be colored

Claim: Any map drawn with straight lines can be colored with just 2 colors.

Proof:

- By induction on number of lines: P(n) = map with n lines can be colored.
- Base case P(0): Map with 0 lines has 1 region, color it blue.
- Inductive hypothesis P(n): Map with n lines can be colored.
- Inductive step P(n) → P(n + 1): Given map with (n + 1), remove a line. Color by IH. Replace line and flip all colors to one side.
 - 1. If a region was not split by line, then still ok.
 - 2. If a region was split by line, two halves have different colors, and bordering regions still ok.

]]

[[Discuss four-color theorem.

Technique:

 $\begin{bmatrix} Be \ careful \ not \ to \ assume \ what \ you \ want \\ to \ prove! \end{bmatrix}$

Claim: $\forall x \ge 0, n \in \mathbb{N}, (1+nx) \le (1+x)^n$

Pitfalls:

Claim: All horses are the same color.

Proof:

- Let P(n) = all sets of n horses have same color.
- P(1) is true since only one horse.
- P(n+1):
 - number horses from 1 to n + 1
 - sets $S_1 = \{1, \ldots, n\}$ and $S_2 = \{2, \ldots, n+1\}$ have *n* horses, same color by IH
 - sets overlap so color of S_1 must equal color of S_2

 $\begin{bmatrix} Inductive step not complete (for <math>n = 2, \\ sets don't overlap). \end{bmatrix}$