EECS 310: Discrete Math

Reading: MIT OpenCourseWare 6.042
Chapter 3.1-3.2

Proof Review

Recipes:

1. Direct proof: To prove $P \rightarrow Q$, assume P and derive Q.
2. Proof by contrapositive: To prove $P \rightarrow$ Q, prove $\neg Q \rightarrow \neg P$ by direct proof.
3. Proof by contradiction: To prove P, assume $\neg P$ and derive a contradiction.
4. Proof by cases: Break into substatements and prove each individually using one of above recipes.

- Natural numbers $\mathbb{N}=\{0,1, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Reals \mathbb{R}
- Rationals $\mathbb{Q}=\{p / q: p, q \in Z\}$

Note notation.

Note:

- no order: $\{a, b\}=\{b, a\}$
- no repetition: $\{a, a\}=\{a\}$

Membership:

- x is an element of set $A: x \in A$
- examples: $3 \in \mathbb{N}, \sqrt{2} \notin \mathbb{Q}$

Set builder notation:
Define set using predicate - set is everything
s.t. predicate is true:
Even $\#^{\prime} s=\{n \in \mathbb{N}: n=2 k$ for some $k \in \mathbb{N}\}$
Odd $\#^{\prime} s=\{n \in \mathbb{N}: n=2 k+1$ for some $k \in \mathbb{N}\}$

Comparing and Combining

Set operations:

- union: $A \cup B=\{x: x \in A \vee x \in B\}$
- intersection: $A \cap B=\{x: x \in A \wedge x \in$ Well-Ordering Principle $B\}$
- complement: $A^{c}=\{x: x \notin A\}$

Venn diagrams:

- $A=\{1,2,3\}$
- $B=\{3,4,5\}$

Disjoint: intersection is empty.

- even and odd integers disjoint

Subset: $A \subseteq B$ if and only if every element of A is an element of B.

$$
[A \subseteq B] \leftrightarrow[\forall x: x \in A \rightarrow x \in B]
$$

$[[$ like \leq sign]]
Strict subset: $A \subset B$ if $A \subseteq B$ and $\exists x: x \in$ B and $x \notin A$.
[llike < sign
Equality: $\forall x, x \in A \Longleftrightarrow x \in B$.

- even \cup odd $=\mathbb{N}$
$\left[\left[\begin{array}{l}\text { prove equality by proving biconditional, } \\ \text { each subset of other. }\end{array}\right]\right]$

Representation

Computer representation:

- Universe $U=\{1,2,3\}$ as master set
- Subset as vector of zero-one, e.g., $\{1,2\}$ is vector 110 .

Containment? Union? Intersection?

Claim: Every nonempty set of nonnegative integers has a smallest element.
$\left[\left[\begin{array}{l}\text { Obvious? Not true for every set, e.g., } \\ \text { negative integers, rational numbers. }\end{array}\right]\right]$

Proof by least counterexample

Example:

Claim: For any integers m and n, the fraction m / n can be written in lowest common form.
Check: $m=10, n=20$, fraction $10 / 20=$ 1/2.
Proof: By least counter-example.

- Let $C=\{m \mid \exists n: m / n$ has no lowest common form $\}$.
- Assume by way of contradiction that $C \neq \emptyset$.
- By well-ordering, C has smallest element m_{0}.
- Let n_{0} be such m_{0} / n_{0} can not be written in lowest common form.
- Then $\exists p$ such that $p \mid m_{0}$ and $p \mid n_{0}$.
- Then $m_{0} / n_{0}=\left(m_{0} / p\right) /\left(n_{0} / p\right)$ so this also can't be written in lowest common form.
- Thus $m_{0} / p \in C$.
- But $m_{0} / p<m_{0}$, contradicting that m_{0} was smallest element in C.

Template: To prove $P(n)$ by least counterexample,

1. Define set $C=\{n \mid \neg P(n)\}$ of counterexamples to $P(n)$.
2. Use proof by contradiction to assume $C \neq \emptyset$.
3. Use well-ordering to claim \exists smallest element $n \in C$.
4. Reach contradiction (usually by using n to construct a smaller element in C).
5. Conclude $C=\emptyset$.

- For $n+1$,
- Assume $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
- Then:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\sum_{i=1}^{n} i+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =(n+1)\left(\frac{n}{2}+1\right) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Induction

$\left[\left[\begin{array}{l}\text { Line of dominoes: first falls, if } n \text { 'th falls } \\ \text { then }(n+1) \text { 'st falls, so all fall. }\end{array}\right]\right]$ Notation:

- Sum: for numbers x_{1}, \ldots, x_{n} :

$$
x_{1}+\ldots+x_{n}=\sum_{i=1}^{n} x_{i}
$$

- Product: for numbers x_{1}, \ldots, x_{n} :

$$
x_{1} \cdot \ldots \cdot x_{n}=\prod_{i=1}^{n} x_{i}
$$

Example: Let $P(n)$ be the predicate that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
Claim: $\forall n \in Z^{+}, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Proof:

- For $n=1, \sum_{i=1}^{1} i=1=\frac{1(2)}{2}$.
- For $n=2,1+2=\frac{1(2)}{2}+2=\frac{1(2)}{2}+\frac{4}{2}=$ $\frac{1(2)+2(2)}{2}=\frac{2(3)}{2}$.
- For $n=3,1+2+3=\frac{2(3)}{2}+3=\frac{2(3)+2(3)}{2}=$ $\frac{3(4)}{2}$.
- Prove base case $P(1)$.
- State inuductive hypothesis $P(n)$.
- Prove $P(n) \rightarrow P(n+1)$ for all $n \geq 1$.
- Conclude $P(n)$ for all $n \geq 1$.

Example: Let $P(n)$ be the predicate that $\sum_{i=1}^{n}(2 i-1)=k^{2}$ for some integer k.
Claim: Sum of first n odd integers is a perfect square.

Proof:

- By induction.
- Base case $P(1): \sum_{i=1}^{1}(2(1)-1)=1=1^{2}$ is a perfect square.
- Inductive hypothesis $P(n): \sum_{i=i}^{n}(2 i-$ 1) $=k^{2}$ for some integer k.
- Inductive step $P(n) \rightarrow P(n+1)$: $\sum_{i=1}^{n+1}(2 i-1)=\sum_{i=1}^{n}(2 i-1)+2(n+$ 1) $-1=k^{2}+2 n-1=\ldots$?

Hard part: what to prove?
$\left[\left[\begin{array}{l}\text { Mention geometric intuition, derive that } \\ \text { sum is } n^{2} .\end{array}\right]\right.$
Take two:
Proof: We prove the stronger predicate $P^{\prime}(n)$ that $\sum_{i=1}^{n}(2 i-1)=n^{2}$.

- By induction.
- Base case $P(1): \sum_{i=1}^{1}(2(1)-1)=1=1^{2}$.
- Inductive hypothesis $P(n): \sum_{i=i}^{n}(2 i-$ 1) $=n^{2}$.
- Inductive step $P(n) \rightarrow P(n+1)$: $\sum_{i=1}^{n+1}(2 i-1)=\sum_{i=1}^{n}(2 i-1)+2(n+$ 1) $-1=n^{2}+2 n-1=(n+1)(n+1)$.

Example: Tiling with L-shapes.
Claim: Any $2^{n} \times 2^{n}$ foot bathroom can be tiled with L-shapes, leaving a center square empty for a rubber duck statue.
[[Draw 2×2 and 4×4 examples.]]
$\left[\left[\begin{array}{l}\text { Hard to prove because chop up into } \\ \text { four sub-squares, doesn't leave center tile } \\ \text { empty. }\end{array}\right]\right]$
Claim: Any $2^{n} \times 2^{n}$ bathroom can be tiled leaving any square empty.
Proof: By induction. Let $P(n)$ be the predicate in claim.

- Base case $P(1)$: see example.
- Inductive hypothesis: True for $2^{n} \times 2^{n}$ bathrooms.
- Inductive step:
- Break $\left.\left.2^{(} n+1\right) \times 2^{(} n+1\right)$ bathroom up into four 2^{n} subsquares.
- Desired empty square is in one, tile it using inductive hypothesis.
- Tile other three leaving corners empty using inductive hypothesis.
- Fill corners using an L-shaped tile.

Hard part: what to do induction on?
Example: Two-color theorem.

Figure 1: Map to be colored
Claim: Any map drawn with straight lines can be colored with just 2 colors.

Proof:

- By induction on number of lines: $P(n)=$ map with n lines can be colored.
- Base case $P(0)$: Map with 0 lines has 1 region, color it blue.
- Inductive hypothesis $P(n)$: Map with n lines can be colored.
- Inductive step $P(n) \rightarrow P(n+1)$: Given map with $(n+1)$, remove a line. Color by IH. Replace line and flip all colors to one side.

1. If a region was not split by line, then still ok.
2. If a region was split by line, two halves have different colors, and bordering regions still ok.
[[Discuss four-color theorem.
Technique:
$\left[\left[\begin{array}{l}\text { Be careful not to assume what you want } \\ \text { to prove! }\end{array}\right]\right]$
Claim: $\forall x \geq 0, n \in \mathbb{N},(1+n x) \leq(1+x)^{n}$
Pitfalls:
Claim: All horses are the same color.
Proof:

- Let $P(n)=$ all sets of n horses have same color.
- $P(1)$ is true since only one horse.
- $P(n+1)$:
- number horses from 1 to $n+1$
- sets $S_{1}=\{1, \ldots, n\}$ and $S_{2}=$ $\{2, \ldots, n+1\}$ have n horses, same color by IH
- sets overlap so color of S_{1} must equal color of S_{2}
$\left[\left[\begin{array}{l}\text { Inductive step not complete (for } n=2, \\ \text { sets don't overlap). }\end{array}\right]\right.$

