EECS 310: Discrete Math Lecture 3
Proofs, Sets, Functions, Induction

Reading: MIT OpenCourseWare 6.042
Chapter 3.1-3.2

Natural numbers N = {0, 1, ...}

Integers Z ={...,—2,-1,0,1,2,...}

Reals R

Proof Review

Rationals Q = {p/q: p,q € Z}

Recipes: Note notation.

1. Direct proof: To prove P — (), assume Note:
P and derive Q).

2. Proof by contrapositive: To prove P — ¢ 1O order: {a,b} = {b,a}
=) — =P by direct f. ..
@, prove ~Q Y (et proo e no repetition: {a,a} = {a}

3. Proof by contradiction: To prove P, as-

sume — P and derive a contradiction. Membership:

4. Proof by cases: Break into substate- o 4 isan element of set A: = € A
ments and prove each individually using
one of above recipes. o examples: 3€ N, vV2¢Q

Miniquiz time. Go over below solution af-| | Set builder notation:
ter miniquiz (have someone volunteer to

Define set usi edicate — set is everythi
write it on the board). n using predi Is everything

s.t. predicate is true:
E 's = :n =2k f
Sets ven #'s = {n € N:n = 2k for some k € N}

Odd #'s = {n € N: n = 2k+1 for some k € N}

1895 who died in a mental hospital in
1918.
Def: A set is a collection of elements.

Set theory formalized by Georg Cantor m”

Comparing and Combining

Example: Set operations:

e Letters of the alphabet {a,b, ...z} e union: AUB={z:x€ AVz € B}



e intersection: ANB={z:z€ ANz €
B}
{z:x ¢ A}

e complement: A°¢=
Venn diagrams:

o A=1{1,23}

o B={3,4,5}
Disjoint: intersection is empty.

e cven and odd integers disjoint

Subset: A C B if and only if every element
of A is an element of B.

[ACB| < Ve:x€A—x € B

[like < sign 1]

Strict subset: AC Bif AC Band dz:z €
B and x € A.

[like < sign 1]
Equality: Ve, x € A <— =z € B.

e cven U odd =N

prove equality by proving biconditional,
each subset of other.

Representation

Computer representation:

e Universe U = {1,2,3} as master set

e Subset as vector of zero-one, e.g., {1,2}
is vector 110.

Containment? Union? Intersection?

Well-Ordering Principle

Claim: Every nonempty set of nonnegative
integers has a smallest element.

Obuvious? Not true for every set, e.g.,
negative integers, rational numbers.

Proof by least counterexample

Example:

Claim: For any integers m and n, the frac-
tion m/n can be written in lowest common
form.

Check: m = 10,n = 20, fraction 10/20 =
1/2.

Proof: By least counter-example.

o Let C = {m|3n :

common form}.

m/n has no lowest

e Assume by way of contradiction that

C #0.

e By well-ordering, C' has smallest element
my.

e Let ng be such mg/ngy can not be written
in lowest common form.

e Then Jp such that p|mg and p|ne.

e Then mg/ng = (mo/p)/(no/p) so this
also can’t be written in lowest common
form.

e Thus my/p € C.

e But mg/p < my, contradicting that mq
was smallest element in C.

Template: To prove P(n) by least counter-
example,



1. Define set C' = {n|=P(n)} of counterex- e For n + 1,

amples to P(n).
— Assume ) " 1= @
2. Use proof by contradiction to assume

— Then:
C + 0.
n+1 n
3. Use well-ordering to claim 3 smallest el- ZZ = ZZ +n4+1
ement n € C. i=1 i=1
n(n+1)
4. Reach contradiction (usually by using n - 9 +n+1
to construct a smaller element in C'). = (n+1) (g + 1)
5. Conclude C' = 0. ~ (n+1(n+2)
= 5 .
Induction Mention Gauss’s proof, i th number plus

(n — i+ 1)’th number sum to n+ 1 and
HLine of dominoes: first falls, if n’th falls” there are n/2 pairs.

then (n+1) st falls, so all fall. Template: To prove P(n) by induction,

Notation:

e Prove base case P(1).

e Sum: for numbers z4,...,z,: . . '
e State inuductive hypothesis P(n).

xl—i-...—l-:vnzzxi. e Prove P(n) - P(n+1) for alln > 1.
i=1

e Conclude P(n) for all n > 1.

e Product: for numbers zq,...,x,:

n Example: Let P(n) be the predicate that
TR sz o (2 — 1) = k? for some integer k.
=1 Claim: Sum of first n odd integers is a per-

' fect square.
Example: Let P(n) be the predicate that

S g = neth) Proof:
i=1" " 2 .
Claim: Vn € Z*,} 7 i = n(n2+1) e By induction.
Frook e Base case P(1): Y1, (2(1)—1) =1 =12
e Forn=1 Zl i=1=12 is a perfect square.
) =1 — L= "o -

e Inductive hypothesis P(n): >0 .(2i —
1) = k? for some integer k.

12)4+2(2) _ 2(3)

2 2 -

. Forn— 3 14243 = 2043 20 _ ° e Sep Pl = P+ 1)
” -9 - 72 - 2 - Do (20 = 1) = X120 — 1) + 2(n +
. —1=k+2n—-1=..27




Hard part: what to prove?

HMemfion geometric intuition, derive that“
sum is n?.

Take two:

Proof: = We prove the stronger predicate
P'(n) that > (2i — 1) = n?.

e By induction.
e Basecase P(1): Y1, (2(1)—1) =1= 1%

e Inductive hypothesis P(n): >." (20 —
1) = n?

e Inductive step P(n) — P(n + 1):

SN2 — 1) = S0 (20 — 1) 4+ 2(n +
)—1=n*+2n—-1=(n+1)(n+1).

O
Example: Tiling with L-shapes.

Claim: Any 2" x 2" foot bathroom can be
tiled with L-shapes, leaving a center square
empty for a rubber duck statue.

[[Draw 2 x 2 and 4 x 4 examples. 1]

four sub-squares, doesn’t leave center tile
empty.

Claim: Any 2" x 2" bathroom can be tiled
leaving any square empty.

Proof: By induction. Let P(n) be the pred-
icate in claim.

Hard to prove because chop up irzto”

e Base case P(1): see example.

e Inductive hypothesis: True for 2" x 2"
bathrooms.

e Inductive step:

— Break 2(n + 1) x 2(n 4 1) bathroom
up into four 2" subsquares.

— Desired empty square is in one, tile
it using inductive hypothesis.

— Tile other three leaving corners
empty using inductive hypothesis.

— Fill corners using an L-shaped tile.

Hard part: what to do induction on?

Example: Two-color theorem.

Figure 1: Map to be colored

Claim: Any map drawn with straight lines
can be colored with just 2 colors.

Proof:
e By induction on number of lines: P(n) =
map with n lines can be colored.

e Base case P(0): Map with 0 lines has 1
region, color it blue.

e Inductive hypothesis P(n): Map with n
lines can be colored.

e Inductive step P(n) — P(n+ 1): Given
map with (n + 1), remove a line. Color
by IH. Replace line and flip all colors to
one side.

1. If a region was not split by line,
then still ok.

2. If a region was split by line, two
halves have different colors, and
bordering regions still ok.



[[Discuss four-color theorem. 1]
Technique:

Be careful not to assume what you want
to prove!

Claim: Vz > 0,n e N, (1 +nz) < (1+2)"
Pitfalls:

Claim: All horses are the same color.
Proof:

e Let P(n) = all sets of n horses have same
color.

e P(1) is true since only one horse.
e P(n+1):

— number horses from 1 ton + 1

—sets S; = {1,...,n} and Sy =
{2,...,n + 1} have n horses, same
color by IH

— sets overlap so color of S; must
equal color of S

O

Inductive step not complete (for n = 2,
sets don’t overlap).



