
EECS 310: Discrete Math Lecture 4
Sets, Induction

Reading: MIT OpenCourseWare 6.042
Chapter 3.3-3.5

Sets Review

Universe U = {0, 1, 2, 3} with bit vector x =
x0x1x2x3.

Sets A = {1, 2}, xA = 0110, and B =
{2, 3}, xB = 0011.

Set concepts:

• union A ∪B = {1, 2, 3}, xA∪B = 0111

• intersection A ∩B = {2}, xA∩B = 0010

• complement Ac = {0, 3}, xAc = 1001

Induction Review

Basic Induction:

Want to prove P (n).

• Prove base case P (1).

• Prove P (n)→ P (n+1) (by direct proof).

– Inductive hypothesis: assume P (n).

– Inductive step: using hypothesis,
derive P (n+ 1).

Invariants by Induction

[[Useful to prove algorithm is correct. ]]

Example: Robot moves on diagonals of grid,
starting at (0, 0).

Claim: Robot never steps on flower at (0, 1).

States after

• 1 move: (1, 1), (1,−1), (−1, 1), (1, 1)

• 2 moves: (0, 0), (0, 2), (2, 2), (2, 0), . . .

• etc.

Sum of coordinates always even!

Predicate P (t): After t steps, if robot is at
(x, y), then x+ y is even.

Claim: Sum of coordinates always even.

Proof: By induction.

• Base case: P (0) is true since starting po-
sition (0, 0) is 0 + 0 = 0 is even.

• Inductive hypothesis: after t steps, robot
is at (x, y) where x+ y is even.

• Inductive step: by cases.

– Robot moved northwest. New posi-
tion is (x− 1, y + 1). Sum is x+ y,
even by hypothesis.

– Robot moved northeast. New posi-
tion is (x+1, y+1). Sum is x+y+2,
even.

1



– etc.

Since 1 + 0 = 1 is odd, robot never steps on
flower.

Example: The 8-puzzle: slide tiles to con-
vert

A B C
D E F
H G .

into

A B C
D E F
G H .

Claim: Not possible.

Note: Row moves don’t change order.
Note: Column moves change order of two
pairs.

Def: Tiles T1 and T2 are inverted if out-of-
alphabetical order.

A B C
F D G
E H .

Has three inversions: (D,F ), (E,F ), (E,G).

Claim: Moves change number of inversions
by 2 or 0.

Proof:

• Row move doesn’t change number.

• Column moves switch exactly two pairs:

– If both pairs originally inverted, to-
tal number of inversions decreases
by 2.

– If just one pair originally inverted,
it gets sorted and other gets in-
verted, total doesn’t change.

– etc.

Claim: In every configuration reachable by
legal moves, parity of number of inversions is
odd (i.e., sum is an odd number).

Proof: By induction.

• Base case: initial configuration has 1 in-
version.

• Inductive hypothesis: after t moves, odd
parity.

• Inductive step: by above claim, number
changes by 2 or 0, so t + 1’th move has
odd parity by inductive hypothesis.

Sorted board not reachable since parity is
even.

Strong Induction

Useful when predicate P (n+ 1) naturally de-
pends on some m < n.

Suppose you want to prove P (n).

• Prove base case P (1).

• Inductive hypothesis: assume P (m) for
all 1 ≤ m ≤ n.

• Inductive step: using hypothesis, derive
P (n+ 1).

Example: Prime factorization.

Claim: Every integer n > 1 is product of
primes.

Proof: By strong induction.

• Base case P (2): 2 = 1 × 2 is product of
primes.

2



• Inductive hypothesis: m is product of
primes for all 2 ≤ m ≤ n.

• Inductive step:

– If n+ 1 prime, done.

– If not, then n + 1 = km for some
integers k,m ∈ {2, 3, . . . , n}.

– By inductive hypothesis, k,m are
products of primes, and thus so is
n+ 1.

Example: Making change.

Claim: Every amount of postage of 12 cents
or more can be formed using just 4 and 5 cent
stamps.

Proof: By strong induction

• P (n) = n cents of postage formed with
4, 5 cent stamps

• P (n) true for n ∈ {12, 13, 14, 15}

• assume P (k) for all k ≤ n

• P (n + 1): use IH to get n − 3 cents of
postage and add a 4 cent stamp
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Claim: It takes at most nm − 1 breaks to
divide an n-by-m chocolate bar.

Proof:

• By strong induction on number k of
squares in bar.

• Base case: With 1 square, need 1·1−1 =
0 breaks.

• Inductive hypothesis: Assume any bar
with at most k squares can be divided
with k − 1 breaks.

• Inductive step:

– Given a bar with k+ 1 squares, use
one break to get two bars with s1
and s2 squares respectively where
s1 + s2 = k + 1.

– Use inductive hypothesis to break
these with s1 − 1 and s2 − 1 breaks
respectively.

So used 1+(s1−1)+(s2−1) = s1 +s2−
1 = (k + 1)− 1 breaks.
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Structural Induction

Induction on recursively-defined data types.

Example: parantheses.

Def: Set M of matched parenthetical state-
ments:

• empty string λ is in M

• if s, t ∈M , then (s)t ∈M

So

• () ∈M using s = t = λ

• ()() ∈M using s = λ, t = ()

• (()) ∈M using s = (), t = λ

• etc.

Template:

• Prove for base cases of definition.

• Prove for constructor case assuming
holds for component types.
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Claim: ∀s ∈M, s has equal number of open
and close parantheses.

Proof: By induction.

• Base case: λ has zero open and zero close
paranetheses.

• Constructor case: must show P (r) for
r = (s)t assuming P (s) and P (t).

– Let ns, nt be of open parantheses
(= number close parantheses by hy-
pothesis) in s, t respectively.

– Then number of open paranetheses
in expression is ns + nt + 1.

– Similarly for close parantheses.
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