EECS 310: Discrete Math

Reading: MIT OpenCourseWare 6.042 Invariants by Induction

Sets Review

Universe $U=\{0,1,2,3\}$ with bit vector $x=$ $x_{0} x_{1} x_{2} x_{3}$.

Sets $A=\{1,2\}, x_{A}=0110$, and $B=$ $\{2,3\}, x_{B}=0011$.
Set concepts:

- union $A \cup B=\{1,2,3\}, x_{A \cup B}=0111$
- intersection $A \cap B=\{2\}, x_{A \cap B}=0010$
- complement $A^{c}=\{0,3\}, x_{A^{c}}=1001$

Induction Review

Basic Induction:
Want to prove $P(n)$.

- Prove base case $P(1)$.
- Prove $P(n) \rightarrow P(n+1)$ (by direct proof).
- Inductive hypothesis: assume $P(n)$.
- Inductive step: using hypothesis, derive $P(n+1)$.
[[Useful to prove algorithm is correct.
Example: Robot moves on diagonals of grid, starting at $(0,0)$.
Claim: Robot never steps on flower at $(0,1)$.
States after
- 1 move: $(1,1),(1,-1),(-1,1),(1,1)$
- 2 moves: $(0,0),(0,2),(2,2),(2,0), \ldots$
- etc.

Sum of coordinates always even!
Predicate $P(t)$: After t steps, if robot is at (x, y), then $x+y$ is even.
Claim: Sum of coordinates always even.
Proof: By induction.

- Base case: $P(0)$ is true since starting position $(0,0)$ is $0+0=0$ is even.
- Inductive hypothesis: after t steps, robot is at (x, y) where $x+y$ is even.
- Inductive step: by cases.
- Robot moved northwest. New position is $(x-1, y+1)$. Sum is $x+y$, even by hypothesis.
- Robot moved northeast. New position is $(x+1, y+1)$. Sum is $x+y+2$, even.
- etc.

Since $1+0=1$ is odd, robot never steps on flower.
Example: The 8-puzzle: slide tiles to convert

A	B	C
D	E	F
H	G	.

into

A	B	C
D	E	F
G	H	\cdot

Claim: Not possible.
Note: Row moves don't change order.
Note: Column moves change order of two pairs.
Def: Tiles T_{1} and T_{2} are inverted if out-ofalphabetical order.

A	B	C
F	D	G
E	H	.

Has three inversions: $(D, F),(E, F),(E, G)$.
Claim: Moves change number of inversions by 2 or 0 .

Proof:

- Row move doesn't change number.
- Column moves switch exactly two pairs:
- If both pairs originally inverted, total number of inversions decreases by 2 .
- If just one pair originally inverted, it gets sorted and other gets inverted, total doesn't change.
- etc.

Claim: In every configuration reachable by legal moves, parity of number of inversions is odd (i.e., sum is an odd number).
Proof: By induction.

- Base case: initial configuration has 1 inversion.
- Inductive hypothesis: after t moves, odd parity.
- Inductive step: by above claim, number changes by 2 or 0 , so $t+1^{\prime}$ th move has odd parity by inductive hypothesis.

Sorted board not reachable since parity is even.

Strong Induction

Useful when predicate $P(n+1)$ naturally depends on some $m<n$.

Suppose you want to prove $P(n)$.

- Prove base case $P(1)$.
- Inductive hypothesis: assume $P(m)$ for all $1 \leq m \leq n$.
- Inductive step: using hypothesis, derive $P(n+1)$.

Example: Prime factorization.
Claim: Every integer $n>1$ is product of primes.

Proof: By strong induction.

- Base case $P(2): 2=1 \times 2$ is product of primes.
- Inductive hypothesis: m is product of primes for all $2 \leq m \leq n$.
- Inductive step:
- If $n+1$ prime, done.
- If not, then $n+1=k m$ for some integers $k, m \in\{2,3, \ldots, n\}$.
- By inductive hypothesis, k, m are products of primes, and thus so is $n+1$.

Example: Making change.
Claim: Every amount of postage of 12 cents or more can be formed using just 4 and 5 cent stamps.
Proof: By strong induction

- $P(n)=n$ cents of postage formed with 4,5 cent stamps
- $P(n)$ true for $n \in\{12,13,14,15\}$
- assume $P(k)$ for all $k \leq n$
- $P(n+1)$: use IH to get $n-3$ cents of postage and add a 4 cent stamp

Claim: It takes at most $n m-1$ breaks to divide an n-by- m chocolate bar.
Proof:

- By strong induction on number k of squares in bar.

Structural Induction

Induction on recursively-defined data types.
Example: parantheses.
Def: Set M of matched parenthetical statements:

- empty string λ is in M
- if $s, t \in M$, then $(s) t \in M$

So

- () $\in M$ using $s=t=\lambda$
- ()()$\in M$ using $s=\lambda, t=()$
- $(()) \in M \operatorname{using} s=(), t=\lambda$
- etc.
- Inductive step:
- Given a bar with $k+1$ squares, use one break to get two bars with s_{1} and s_{2} squares respectively where $s_{1}+s_{2}=k+1$.
- Use inductive hypothesis to break these with $s_{1}-1$ and $s_{2}-1$ breaks respectively.

So used $1+\left(s_{1}-1\right)+\left(s_{2}-1\right)=s_{1}+s_{2}-$ $1=(k+1)-1$ breaks.

- Base case: With 1 square, need $1 \cdot 1-1=$ Template: 0 breaks.
- Inductive hypothesis: Assume any bar with at most k squares can be divided with $k-1$ breaks.
- Prove for base cases of definition.
- Prove for constructor case assuming holds for component types.

Claim: $\forall s \in M, s$ has equal number of open and close parantheses.
Proof: By induction.

- Base case: λ has zero open and zero close paranetheses.
- Constructor case: must show $P(r)$ for $r=(s) t$ assuming $P(s)$ and $P(t)$.
- Let n_{s}, n_{t} be of open parantheses ($=$ number close parantheses by hypothesis) in s, t respectively.
- Then number of open paranetheses in expression is $n_{s}+n_{t}+1$.
- Similarly for close parantheses.

