]]

Reading: MIT OpenCourseWare 6.042 Chapter 3.3-3.5

Sets Review

Universe $U = \{0, 1, 2, 3\}$ with bit vector $x = x_0 x_1 x_2 x_3$.

Sets $A = \{1, 2\}, x_A = 0110$, and $B = \{2, 3\}, x_B = 0011$.

Set concepts:

- union $A \cup B = \{1, 2, 3\}, x_{A \cup B} = 0111$
- intersection $A \cap B = \{2\}, x_{A \cap B} = 0010$
- complement $A^c = \{0, 3\}, x_{A^c} = 1001$

Induction Review

Basic Induction:

Want to prove P(n).

- Prove base case P(1).
- Prove $P(n) \rightarrow P(n+1)$ (by direct proof).
 - Inductive hypothesis: assume P(n).
 - Inductive step: using hypothesis, derive P(n+1).

MIT OpenCourseWare 6.042 Invariants by Induction

[[Useful to prove algorithm is correct.

Example: Robot moves on diagonals of grid, starting at (0, 0).

Claim: Robot never steps on flower at (0, 1). States after

- 1 move: (1,1), (1,-1), (-1,1), (1,1)
- 2 moves: $(0,0), (0,2), (2,2), (2,0), \ldots$
- etc.

Sum of coordinates always even!

Predicate P(t): After t steps, if robot is at (x, y), then x + y is even.

Claim: Sum of coordinates always even.

Proof: By induction.

- Base case: P(0) is true since starting position (0,0) is 0+0=0 is even.
- Inductive hypothesis: after t steps, robot is at (x, y) where x + y is even.
- Inductive step: by cases.
 - Robot moved northwest. New position is (x 1, y + 1). Sum is x + y, even by hypothesis.
 - Robot moved northeast. New position is (x+1, y+1). Sum is x+y+2, even.

Since 1 + 0 = 1 is odd, robot never steps on flower.

Example: The 8-puzzle: slide tiles to convert

into

A	B	C
D	E	F
G	H	

Claim: Not possible.

Note: Row moves don't change order. **Note:** Column moves change order of two pairs.

Def: Tiles T_1 and T_2 are inverted if out-of-alphabetical order.

$$\begin{array}{c|cc} A & B & C \\ \hline F & D & G \\ \hline E & H & . \end{array}$$

Has three inversions: (D, F), (E, F), (E, G).

Claim: Moves change number of inversions by 2 or 0.

Proof:

- Row move doesn't change number.
- Column moves switch exactly two pairs:
 - If both pairs originally inverted, total number of inversions decreases by 2.
 - If just one pair originally inverted, it gets sorted and other gets inverted, total doesn't change.

- etc.

Claim: In every configuration reachable by legal moves, parity of number of inversions is odd (i.e., sum is an odd number).

Proof: By induction.

- Base case: initial configuration has 1 inversion.
- Inductive hypothesis: after t moves, odd parity.
- Inductive step: by above claim, number changes by 2 or 0, so t + 1'th move has odd parity by inductive hypothesis.

Sorted board not reachable since parity is even.

Strong Induction

Useful when predicate P(n+1) naturally depends on some m < n.

Suppose you want to prove P(n).

- Prove base case P(1).
- Inductive hypothesis: assume P(m) for all $1 \le m \le n$.
- Inductive step: using hypothesis, derive P(n+1).

Example: Prime factorization.

Claim: Every integer n > 1 is product of primes.

Proof: By strong induction.

• Base case P(2): $2 = 1 \times 2$ is product of primes.

- Inductive hypothesis: m is product of primes for all $2 \leq m \leq n$.
- Inductive step:
 - If n+1 prime, done.
 - If not, then n + 1 = km for some integers $k, m \in \{2, 3, ..., n\}$.
 - By inductive hypothesis, k, m are products of primes, and thus so is n+1.

Example: Making change.

Claim: Every amount of postage of 12 cents or more can be formed using just 4 and 5 cent stamps.

Proof: By strong induction

- P(n) = n cents of postage formed with 4,5 cent stamps
- P(n) true for $n \in \{12, 13, 14, 15\}$
- assume P(k) for all $k \leq n$
- P(n+1): use IH to get n-3 cents of postage and add a 4 cent stamp

Claim: It takes at most nm - 1 breaks to divide an n-by-m chocolate bar.

Proof:

- By strong induction on number k of squares in bar.
- Base case: With 1 square, need $1 \cdot 1 1 =$ 0 breaks.
- Inductive hypothesis: Assume any bar with at most k squares can be divided with k-1 breaks.

- Inductive step:
 - Given a bar with k+1 squares, use one break to get two bars with s_1 and s_2 squares respectively where $s_1 + s_2 = k + 1.$
 - Use inductive hypothesis to break these with $s_1 - 1$ and $s_2 - 1$ breaks respectively.

So used $1 + (s_1 - 1) + (s_2 - 1) = s_1 + s_2 - s_2 - s_1 + s_2 - s_2 - s_1 + s_2 - s_2 - s_2 + s_2 - s_2 - s_2 + s_2 - s_2$ 1 = (k+1) - 1 breaks.

Structural Induction

Induction on recursively-defined data types.

Example: parantheses.

Def: Set M of matched parenthetical statements:

- empty string λ is in M
- if $s, t \in M$, then $(s)t \in M$

So

- () $\in M$ using $s = t = \lambda$
- ()() $\in M$ using $s = \lambda, t = ()$
- (()) $\in M$ using $s = (), t = \lambda$
- etc.
- Template:
 - Prove for base cases of definition.
 - Prove for constructor case assuming holds for component types.

Claim: $\forall s \in M, s$ has equal number of open and close parantheses.

Proof: By induction.

- Base case: λ has zero open and zero close paranetheses.
- Constructor case: must show P(r) for r = (s)t assuming P(s) and P(t).
 - Let n_s, n_t be of open parantheses (= number close parantheses by hypothesis) in s, t respectively.
 - Then number of open parametheses in expression is $n_s + n_t + 1$.
 - Similarly for close parantheses.