EECS 310: Discrete Math Graph Theory, Matching

Lecture 5

Reading: MIT OpenCourseWare 6.042
Chapter 5.1-5.2

Induction Review

Basic Induction:
Want to prove $P(n)$.

- Prove base case $P(1)$.
- Prove $P(n) \rightarrow P(n+1)$ (by direct proof).
- Inductive hypothesis: assume $P(n)$.
- Inductive step: using hypothesis, derive $P(n+1)$.

Strong Induction:
Want to prove $P(n)$.

- Prove base case $P(1)$.
- Inductive hypothesis: assume $P(m)$ for all $m \leq n$.
- Inductive step: using hypothesis, derive $P(n+1)$.

Graphs

Def: A simple graph consists of

- a set of vertices or nodes V
- a set of edges or collection of two-elt subsets of vertices E.

Denote graph by $G(V, E)$.
Example: Draw a directed and undirected graph.
Note: By definition, undirected, no selfloops, no multi-edges
Terminology:

- adjacent nodes - share an edge
- edge incident to nodes it joins
- degree of node is number of incident edges
- G_{1} subgraph of G_{2} if $V_{1} \subseteq V_{2}$ and $E_{1} \subseteq$ E_{2}

Example: Find examples of each of these definitions in above graph.

Common Graphs

- Empty graph: no edges
- Complete graph: an edge between every pair of vertices (how many?)
- Line: n-node graph with $n-1$ edges:

$$
\begin{aligned}
& V=\left\{v_{1}, \ldots, v_{n}\right\}, \quad E= \\
& \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}\right\}
\end{aligned}
$$

- Cycle: n-node graph with n edges: add edge $\left\{v_{n}, v_{1}\right\}$ to above

Isomorphism

Example: squares with different node labels, pentagon vs star.

Def: $G_{1}\left(V_{1}, E_{1}\right)$ is isomorphic to $G_{2}\left(V_{2}, E_{2}\right)$ if there's a function f mapping each $v \in V_{1}$ to a unique $v \in V_{2}$ (bijection) s.t.
$\forall u, v \in V_{1},\{u, v\} \in E_{1} \leftrightarrow\{f(u), f(v)\} \in E_{2}$.

- sum degrees of men: $\sum_{v \in M} \operatorname{deg}(v)$
- sum degrees of women: $\sum_{v \in W} \operatorname{deg}(w)$
- $\{u, v\} \in E$ if u and v have sex.

Example: draw potential graph
Claim: Surveys are inaccurate.
Proof: Two ways to count edges:

Same up to relabeling.
Isomorphism for examples? Simple \rceil Divide by $|M||W|$:
checks? (number vertices same, degree $\left[\begin{array}{l}\text { sequence same) No easy-to-check neces- } \\ \text { sary and suff condition. }\end{array}\right] \frac{1}{|W|} \sum_{v \in M} \operatorname{deg}(v) /|M|=\frac{1}{|M|} \sum_{v \in W} \operatorname{deg}(v) /|W|$

$$
\operatorname{avedeg}(v \in M)=\frac{|W|}{|M|} \operatorname{avedeg}(v \in W)
$$
 Matching Problems

 $\operatorname{avedeg}(v \in M)=\frac{|W|}{|M|} \operatorname{avedeg}(v \in W)$

 $\operatorname{avedeg}(v \in M)=\frac{|W|}{|M|} \operatorname{avedeg}(v \in W)$}Nodes - people Edges - u likes v Matching marriages (no polygamy)
$\left[\left[\begin{array}{l}\text { Match packets to paths, traffic to web } \\ \text { servers, etc. }\end{array}\right]\right]$

Sex in America

Question: Who has more (heterosexual) sex?

- UofC survey, 1994: men have 74% more partners
- ABC News, 2004: men have 20, women have 6
- NYTimes, 2007: men have 7, women have 4

Graph $G(V, E)$,

- V are people, split into M (men) and W (women), suppose no one is both or neither man or woman,

So men have $\frac{|W|}{|M|}=3.5 \%$ more sex.
[[Promiscuity irrelevant.
Question: Minority students study more with non-minority students (Boston Globe). Surprising or not?
$\left[\left[\begin{array}{l}\text { Key observation for above, relationship } \\ \text { between degrees and edges. More general: }\end{array}\right]\right]$
Claim: Handshaking Lemma: The sum of the degrees of vertices in a graph is twice the number of edges.
Proof: Each edge contributes twice to the sum of degrees, once for each end.

Bipartite Graphs

Def: A graph is bipartite if there're subsets L and R of vertices s.t.

$$
\text { - } L \cap R=\emptyset \text { and } L \cup R=V
$$

- every edge incident to one $u \in L$ and one $v \in R$.

Example: Boys and girls and relationships in a heterosexual world.

Question: Given

- n boys B
- n girls G
- Pairs E where $(b, g) \in E$ if boy b and girl g like each other.

Find

- a way to marry everyone off such that each couple likes each other.

Example:

When can we do this?

- Not if some boy likes no girls
- Not if some two boys only like the same girls
- ... not if some k boys collectively like strictly less than k girls.

Example:

Last condition both necessary and sufficient!
Def: A bipartite graph G has vertex set $V=$ $V_{1} \cup V_{2}$ and edge set E such that $\forall(u, v) \in$ $E, u \in V_{1}, v \in V_{2}$ (all edges are between V_{1} and V_{2}).

Def: $M \subseteq E$ is a matching iff each $v \in V_{1} \cup V_{2}$ has at most one edge.

Def: $M \subseteq E$ is a perfect matching iff each $v \in V_{1} \cup V_{2}$ has exactly one edge.

Example:

Notation: For a set of vertices S, let $N(S)$ be the neighbors of vertices in S.

$$
N(S)=\{v: \exists u \in S \wedge(u, v) \in E\} .
$$

Claim: Hall's Theorem: For $G=\left(V_{1}, V_{2}, E\right)$ with $\left|V_{1}\right|=\left|V_{2}\right|$, there is a perfect matching in G iff $\forall S \subseteq V_{1},|S| \leq|N(S)|$.

Proof:

- \rightarrow : For any set $S, N(S)$ includes all matched vertices, so $|S| \leq|N(S)|$.
- \leftarrow : By induction on $n=\left|V_{1}\right|=\left|V_{2}\right|$. Base case $n=1$ holds. Assume true for graphs of size at most n. Two cases:

1. $\forall S \subset V_{1},|N(S)| \geq|S|+1$: Pick $u \in V_{1}, v \in N(\{u\})$. Hall's condition holds for $G-\{u, v\}$, so use I.H.
to find matching. Match u to v to get matching for G.
Example:

2. $\exists S \subset V_{1},|S|=|N(S)|:$ Split graph $G^{\prime}=(S, N(S), E)$ and $G^{\prime \prime}=\left(V_{1}-\right.$ $\left.S, V_{2}-N(S), E\right)$.

Example:

- Hall's condition holds for G^{\prime} so use I.H. to find matching M^{\prime}.
- Consider $T \subseteq V_{1}-S$:

$$
\begin{aligned}
N^{\prime \prime}(T) & =N(T \cup S)-N(S) \\
& \geq|T \cup S|-|S| \\
& =|T|
\end{aligned}
$$

so Hall's condition holds for $G^{\prime \prime}$ so use I.H. to find matching $M^{\prime \prime}$.
Return matching $M^{\prime} \cup M^{\prime \prime}$ for G.

Claim: Every k-regular bipartite graph on vertices (V_{1}, V_{2}) has a perfect matching.

Proof: Each vertex has degree k, so

$$
k\left|V_{1}\right|=|E|=k\left|V_{2}\right| .
$$

As $k>0$ this means $\left|V_{1}\right|=\left|V_{2}\right|$.
Let $S \subseteq\left|V_{1}\right|, E_{1}$ be edges adjacent to S and E_{2} edges adjacent to $N(S)$. Then by definition of $N(S), E_{1} \subseteq E_{2}$, so

$$
k|S|=\left|E_{1}\right| \leq\left|E_{2}\right|=k|N(S)| .
$$

Hence $|S| \leq|N(S)|$ so graph has a perfect matching by Hall's theorem.
[[Can skip below.
Applications:
Def: A Latin rectangle is a $r \times s$ array of digits from $1 \ldots n$ such that any given digit appears at most once in every row and column.

Question: Given an $r \times n$ Latin rectangle, can it be extended to an $n \times n$ Latin square?

Example:

Rectangle:
$\begin{array}{llll}1 & 3 & 2 & 4 \\ 2 & 1 & 4 & 3\end{array}$
Extension:
$\begin{array}{llll}1 & 3 & 2 & 4\end{array}$
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
Claim: Every $r \times n$ Latin rectangle can be extended to a $n \times n$ Latin square.

Proof: Show can extend $r \times n$ to $(r+1) \times n$.

- Make a bipartite graph:
- one node set C is columns of Latin rectangle
- other node set D is digits from 1 to n
- edge (c, d) for $c \in C, d \in D$ iff column c does not contain digit d
[[Draw for example rectangle.
- degree of nodes in C is $n r$
(r digits are ruled out and there are a total of n digits)
- degree of nodes in D is $n-r$
(each digit appears once in every row, so r times in total)
- thus graph is regular bipartite and so has perfect matching
- add row corresponding to matching
$\left[\left[\begin{array}{l}\text { Select matching in drawn example and } \\ \text { show it extends Latin rectangle. }\end{array}\right]\right]$

