EECS 310: Discrete Math
 Lecture 6 Graph Theory

Reading: MIT OpenCourseWare 6.042 Def: clique number $\omega(G)$: largest k s.t. G

Chapter 5.3-5.5

Graph Coloring

Matching: edges represent compatibility.
Coloring: edges represent conflict.
$\left[\begin{array}{l}e x \\ d \\ b \\ c\end{array}\right.$ dates to servers where certain pairs can't be taken down simultaneously since they

Def: k-coloring: label nodes with one of k colors so adjacent nodes get different colors.
Question: How many colors do you need for an n-node graph of type:

- empty graph
- line graph
- cycle, $n=2 k$
- "star" graph
- bipartite graph
- cycle, $n=2 k+1$
- complete graph

Def: chromatic number $\chi(G)$: smallest k s.t. G is k-colorable.

contains a complete graph on k vertices.
Claim: $\chi(G) \geq \omega(G)$
Def: max degree $\Delta(G)$: degree of max-degree vertex.

Claim: $\chi(G) \leq \Delta(G)+1$
Proof: By induction.
$\left[\left[\begin{array}{l}\text { On what? Choices: max degree, nodes, } \\ \text { edges. }\end{array}\right]\right]$

- By induction on number of vertices: $P(n)=$ for all k, a graph on n vertices with max deg. k is $(k+1)$-colorable.
- Base case: 1 vertex needs 1 color, so ($0+$ 1) = 1-colorable.
- Inductive hypothesis: n vertices with max deg. k is $(k+1)$-colorable.
- Inductive step:
- Let G be an $(n+1)$ vertex graph with max deg at most k.
- Remove v and incident edges to get G^{\prime}. Color G^{\prime} inductively.
- Add back v and edges. Since v has at most k neighbors, must be an available color.

Paths and Walks

Def: walk: sequence of vertices of $G, \quad v_{0}, \ldots, v_{k}, \quad$ and edges of G, $\left\{v_{0}, v_{1}\right\}, \ldots,\left\{v_{k-1}, v_{k}\right\}:$

- may repeat vertices or edges
- starts at v_{0}
- ends at v_{k}
- length is k (number of times traverse an edge)

Def: path: walk where all v_{i} 's are distinct
Example: Draw graph and specify a walk and a path.
Claim: If there's a walk, then there's a path.
Proof: well-ordering, see text
Note: length of path at most length of walk

Numbers of walks

[[how many ways to get from here to there?]]
Def: adjacency matrix $A: A_{i j}=1$ if $\{i, j\} \in$ E, 0 otherwise

Example: adjacency matrix of square with one diagonal
Claim: Number of walks of length k from i to j is $i j$ 'th entry of A^{k}.

Example: square and cube adjacency matrix of previous example
[[proof gives insight to relationship be-] tween adjacency matrix multiplication and numbers of walks, important ingreLdient in pagerank.
Proof: By induction on k.

- Base case, $k=1$.
- case 1: $\{i, j\} \in E$
then $A_{i j}=1$ and there's 1 walk from i to j of length one.
- case $2:\{i, j\} \notin E$
then $A_{i j}=0$ and there's no walk from i to j of length one.
- Inductive Step.
- Let $P_{x y}^{k}$ be number walks of length k from x to y.
- By I.H., $P_{t j}^{k}$ is $t j$ 'th entry of A^{k}, call it $A_{t j}^{k}$.
- Group walks from i to j by first edge $\{i, t\}$:

$$
P_{i j}^{k+1}=\sum_{t:\{i, t\} \in E} P_{t j}^{k}
$$

- Since $A_{i t}=1$ iff $\{i, t\} \in E$,

$$
P_{i j}^{k+1}=\sum_{t=1}^{n} A_{i t} P_{t j}^{k}
$$

- Using I.H.,

$$
P_{i j}^{k+1}=\sum_{t=1}^{n} A_{i t} A_{t j}^{k}
$$

- Which is $A_{i j}^{k+1}$ by matrix multiplication.

Question: Find length of shortest paths?
[[compute powers of A until $\left.\left.A_{i j}^{k}>0 \quad\right]\right]$

Connectivity

Def: i, j connected if there is a path from i to j
Note: i connected to itself by convention
Def: G connected if all pairs of nodes connected
Example: Draw a disconnected graph, two edges and a triangle.
Def: connected components: subgraph of G consisting of a node and every node connected to it.
$\left[\left[\begin{array}{l}\text { Bounds on number connected components } \\ \text { in graph } G \text { of } n \text { nodes? }\end{array}\right]\right]$
$[[$ Bounds on number of edges in connected $]$ graph G of n nodes? How about G with n connected components? 2 connected components?
Claim: Every graph with n vertices and m edges has at least $n-m$ connected components.

Proof: Induction on m. Let $P(m)=\forall n \in$ \mathbb{N}, G with m edges has $n-m$ connected components.

- Base case: $m=0$, each vertex is connected component so there are n connected components.
- Inductive step: Assume for every m-edge graph. Consider ($m+1$)-edge graph.
- remove arbitrary edge $\{i, j\}$
- by induction, remaining graph G^{\prime} has $n-m$ connected components
- add back edge
* if i, j in same connected component of G^{\prime}, then G has $n-m>$ $n-(m+1)$ connected components.
* if i, j in different connected components of G^{\prime}, then two
components merge when add back, so G has $n-m-1=$ $n-(m+1)$ connected components.
$\left[\left[\begin{array}{l}\text { induction on edges and on nodes very } \\ \text { common, we've seen both this lecture, } \\ \text { questions? }\end{array}\right]\right]$
Note: In inductive step, take $(m+1)$-edge graph (or ($n+1$)-node graph) and delete element.

Build-up Error

Claim: If every node has degree $\geq 1, G$ is connected.
Question:
Counterexample?
[[Graph of two edges
Example: draw graph on two edges
Proof: Use induction on n.

- Let $P(n)=$ if every node in n-vertex graph has degree ≥ 1, then G is connected.
- Base case: only one 1-node graph, degree zero, statement vacuously true.
- Inductive step:
- Consider n-node graph G^{\prime} where each vertex has degree 1 .
- By assumption G^{\prime} connected, i.e., there's a path between each i, j in G^{\prime}
- Now add one more node k with degree one to get $(n+1)$-node graph G. This node must connected to a node, say l, in G^{\prime}.
- Then G is connected since for any $i, j \neq k$ we can use path from G^{\prime} and for $i=k$, we can use edge $\{k, l\}$ with path from l to j in G^{\prime}.
$\left[\left[\begin{array}{l}\text { Where's error? } \quad \text { We can't get every } \\ (n+1) \text {-node graph with min-degree } 1 \text { by } \\ \text { adding to n-node graph with min-degree } \\ 1!\text { Example above is counter-example. }\end{array}\right]\right]$

MANTRA:

SHRINK-DOWN, GROW-BACK.
[[repeat out loud]]
Note: if we shrink-down grow-back in above,

- Inductive step:
- Consider $(n+1)$-node graph G where each node has degree ≥ 1
- Delete a node to get G^{\prime}
- Then in G^{\prime} each node has degree $\geq \ldots$ uh oh!

