Lecture 6

Reading: Chapter 5.3-5.5

Graph Coloring

Matching: edges represent compatibility.

Coloring: edges represent conflict.

rexam scheduling, coloring a map, updates to servers where certain pairs can't be taken down simultaneously since they L cover similar critical functionality, etc. **Def:** k-coloring: label nodes with one of k

colors so adjacent nodes get different colors.

Question: How many colors do you need for an *n*-node graph of type:

- empty graph
- line graph
- cycle, n = 2k
- "star" graph
- bipartite graph
- cycle, n = 2k + 1
- complete graph

Def: chromatic number $\chi(G)$: smallest k s.t. G is k-colorable.

[NP-hard to find smallest, if you can you] get clay prize of \$1M. But can bound degree based on other properties. Ideas?

MIT OpenCourseWare 6.042 **Def:** clique number $\omega(G)$: largest k s.t. G contains a complete graph on k vertices.

Claim: $\chi(G) \ge \omega(G)$

Def: max degree $\Delta(G)$: degree of max-degree vertex.

Claim: $\chi(G) \leq \Delta(G) + 1$

Proof: By induction.

On what? Choices: max degree, nodes, edges.

- By induction on number of vertices: P(n) =for all k, a graph on n vertices with max deg. k is (k+1)-colorable.
- Base case: 1 vertex needs 1 color, so (0 +1) = 1-colorable.
- Inductive hypothesis: n vertices with max deg. k is (k+1)-colorable.
- Inductive step:
 - Let G be an (n+1) vertex graph with max deg at most k.
 - Remove v and incident edges to get G'. Color G' inductively.
 - Add back v and edges. Since v has at most k neighbors, must be an available color.

Paths and Walks

Def: walk: sequence of vertices of G, v_0, \ldots, v_k , and edges of G, $\{v_0, v_1\}, \ldots, \{v_{k-1}, v_k\}$:

- may repeat vertices or edges
- starts at v_0
- ends at v_k
- *length* is k (number of times traverse an edge)

Def: path: walk where all v_i 's are distinct

Example: Draw graph and specify a walk and a path.

Claim: If there's a walk, then there's a path.

Proof: well-ordering, see text

Note: length of path at most length of walk

Numbers of walks

[[how many ways to get from here to there?]]

Def: adjacency matrix A: $A_{ij} = 1$ if $\{i, j\} \in E, 0$ otherwise

Example: adjacency matrix of square with one diagonal

Claim: Number of walks of length k from i to j is ij'th entry of A^k .

Example: square and cube adjacency matrix of previous example

proof gives insight to relationship between adjacency matrix multiplication and numbers of walks, important ingredient in pagerank.

Proof: By induction on k.

• Base case, k = 1.

- case 1: $\{i, j\} \in E$ then $A_{ij} = 1$ and there's 1 walk from *i* to *j* of length one.
- case 2: $\{i, j\} \notin E$ then $A_{ij} = 0$ and there's no walk from *i* to *j* of length one.
- Inductive Step.
 - Let P_{xy}^k be number walks of length k from x to y.
 - By I.H., P_{tj}^k is tj'th entry of A^k , call it A_{tj}^k .
 - Group walks from i to j by first edge $\{i, t\}$:

$$P_{ij}^{k+1} = \sum_{t:\{i,t\}\in E} P_{tj}^k$$

- Since
$$A_{it} = 1$$
 iff $\{i, t\} \in E$

$$P_{ij}^{k+1} = \sum_{t=1}^{n} A_{it} P_{tj}^k$$

- Using I.H.,

$$P_{ij}^{k+1} = \sum_{t=1}^{n} A_{it} A_{tj}^k$$

- Which is A_{ij}^{k+1} by matrix multiplication.

Question: Find length of shortest paths? $\begin{bmatrix} compute \ powers \ of \ A \ until \ A_{ij}^k > 0 \end{bmatrix}$

Connectivity

[can we get from here to there? can each node in the network send packets to each other node? **Def:** i, j connected if there is a path from i to j

Note: *i* connected to itself by convention

Def: *G* connected if all pairs of nodes connected

Example: Draw a disconnected graph, two edges and a triangle.

Def: connected components: subgraph of G consisting of a node and every node connected to it.

Bounds on number connected components in graph G of n nodes?

Bounds on number of edges in connected graph G of n nodes? How about G with n connected components? 2 connected components?

Claim: Every graph with n vertices and m edges has at least n - m connected components.

Proof: Induction on m. Let $P(m) = \forall n \in \mathbb{N}, G$ with m edges has n - m connected components.

- Base case: m = 0, each vertex is connected component so there are n connected components.
- Inductive step: Assume for every m-edge graph. Consider (m + 1)-edge graph.
 - remove arbitrary edge $\{i, j\}$
 - by induction, remaining graph G'has n - m connected components
 - add back edge
 - * if i, j in same connected component of G', then G has n-m > n - (m+1) connected components.
 - * if i, j in different connected components of G', then two

components merge when add back, so G has n - m - 1 =n - (m + 1) connected components.

[induction on edges and on nodes very] common, we've seen both this lecture, questions?

Note: In inductive step, take (m + 1)-edge graph (or (n + 1)-node graph) and *delete* element.

Build-up Error

Claim: If every node has degree ≥ 1 , G is connected.

Question: [[Graph of two edges Counterexample?

Example: draw graph on two edges

Proof: Use induction on n.

- Let P(n) = if every node in *n*-vertex graph has degree ≥ 1 , then G is connected.
- Base case: only one 1-node graph, degree zero, statement vacuously true.
- Inductive step:
 - Consider *n*-node graph G' where each vertex has degree 1.
 - By assumption G' connected, i.e., there's a path between each i, j in G'
 - Now add one more node k with degree one to get (n + 1)-node graph
 G. This node must connected to a node, say l, in G'.

- Then G is connected since for any $i, j \neq k$ we can use path from G' and for i = k, we can use edge $\{k, l\}$ with path from l to j in G'.

 $\begin{bmatrix} Where's \ error? & We \ can't \ get \ every \\ (n+1)-node \ graph \ with \ min-degree \ 1 \ by \\ adding \ to \ n-node \ graph \ with \ min-degree \\ 1! \ Example \ above \ is \ counter-example. \end{bmatrix}$

MANTRA:

SHRINK-DOWN, GROW-BACK.

[[repeat out loud

]]

Note: if we shrink-down grow-back in above,

- Inductive step:
 - Consider (n + 1)-node graph Gwhere each node has degree ≥ 1
 - Delete a node to get G'
 - − Then in G' each node has degree $\geq \dots$ uh oh!