
EECS 310: Discrete Math Lecture 6
Graph Theory

Reading: MIT OpenCourseWare 6.042
Chapter 5.3-5.5

Graph Coloring

Matching: edges represent compatibility.

Coloring: edges represent conflict.


exam scheduling, coloring a map, up-
dates to servers where certain pairs can’t
be taken down simultaneously since they
cover similar critical functionality, etc.




Def: k-coloring: label nodes with one of k
colors so adjacent nodes get different colors.

Question: How many colors do you need for
an n-node graph of type:

• empty graph

• line graph

• cycle, n = 2k

• “star” graph

• bipartite graph

• cycle, n = 2k + 1

• complete graph

Def: chromatic number χ(G): smallest k s.t.
G is k-colorable.[[

NP-hard to find smallest, if you can you
get clay prize of $1M. But can bound de-
gree based on other properties. Ideas?

]]

Def: clique number ω(G): largest k s.t. G
contains a complete graph on k vertices.

Claim: χ(G) ≥ ω(G)

Def: max degree ∆(G): degree of max-degree
vertex.

Claim: χ(G) ≤ ∆(G) + 1

Proof: By induction.[[
On what? Choices: max degree, nodes,
edges.

]]

• By induction on number of vertices:
P (n) = for all k, a graph on n vertices
with max deg. k is (k + 1)-colorable.

• Base case: 1 vertex needs 1 color, so (0+
1) = 1-colorable.

• Inductive hypothesis: n vertices with
max deg. k is (k + 1)-colorable.

• Inductive step:

– Let G be an (n + 1) vertex graph
with max deg at most k.

– Remove v and incident edges to get
G′. Color G′ inductively.

– Add back v and edges. Since v has
at most k neighbors, must be an
available color.
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Paths and Walks

Def: walk: sequence of vertices
of G, v0, . . . , vk, and edges of G,
{v0, v1}, . . . , {vk−1, vk}:

• may repeat vertices or edges

• starts at v0

• ends at vk

• length is k (number of times traverse an
edge)

Def: path: walk where all vi’s are distinct

Example: Draw graph and specify a walk
and a path.

Claim: If there’s a walk, then there’s a path.

Proof: well-ordering, see text

Note: length of path at most length of walk

Numbers of walks

[[how many ways to get from here to there?]]

Def: adjacency matrix A: Aij = 1 if {i, j} ∈
E, 0 otherwise

Example: adjacency matrix of square with
one diagonal

Claim: Number of walks of length k from i
to j is ij’th entry of Ak.

Example: square and cube adjacency ma-
trix of previous example


proof gives insight to relationship be-
tween adjacency matrix multiplication
and numbers of walks, important ingre-
dient in pagerank.




Proof: By induction on k.

• Base case, k = 1.

– case 1: {i, j} ∈ E
then Aij = 1 and there’s 1 walk
from i to j of length one.

– case 2: {i, j} 6∈ E
then Aij = 0 and there’s no walk
from i to j of length one.

• Inductive Step.

– Let P k
xy be number walks of length

k from x to y.

– By I.H., P k
tj is tj’th entry of Ak, call

it Ak
tj.

– Group walks from i to j by first
edge {i, t}:

P k+1
ij =

∑
t:{i,t}∈E

P k
tj

– Since Ait = 1 iff {i, t} ∈ E,

P k+1
ij =

n∑
t=1

AitP
k
tj

– Using I.H.,

P k+1
ij =

n∑
t=1

AitA
k
tj

– Which is Ak+1
ij by matrix multipli-

cation.

Question: Find length of shortest paths?[[
compute powers of A until Ak

ij > 0
]]

Connectivity

[[
can we get from here to there? can each
node in the network send packets to each
other node?

]]

2



Def: i, j connected if there is a path from i
to j

Note: i connected to itself by convention

Def: G connected if all pairs of nodes con-
nected

Example: Draw a disconnected graph, two
edges and a triangle.

Def: connected components: subgraph of G
consisting of a node and every node con-
nected to it.[[

Bounds on number connected components
in graph G of n nodes?

]]



Bounds on number of edges in connected
graph G of n nodes? How about G with n
connected components? 2 connected com-
ponents?




Claim: Every graph with n vertices and m
edges has at least n − m connected compo-
nents.

Proof: Induction on m. Let P (m) = ∀n ∈
N, G with m edges has n−m connected com-
ponents.

• Base case: m = 0, each vertex is con-
nected component so there are n con-
nected components.

• Inductive step: Assume for every m-edge
graph. Consider (m+ 1)-edge graph.

– remove arbitrary edge {i, j}
– by induction, remaining graph G′

has n−m connected components

– add back edge

∗ if i, j in same connected compo-
nent of G′, then G has n−m >
n− (m + 1) connected compo-
nents.

∗ if i, j in different connected
components of G′, then two

components merge when add
back, so G has n − m − 1 =
n− (m + 1) connected compo-
nents.

[[
induction on edges and on nodes very
common, we’ve seen both this lecture,
questions?

]]
Note: In inductive step, take (m + 1)-edge
graph (or (n+ 1)-node graph) and delete ele-
ment.

Build-up Error

Claim: If every node has degree ≥ 1, G is
connected.

Question: Counterexample?
[[Graph of two edges ]]

Example: draw graph on two edges

Proof: Use induction on n.

• Let P (n) = if every node in n-vertex
graph has degree ≥ 1, then G is con-
nected.

• Base case: only one 1-node graph, degree
zero, statement vacuously true.

• Inductive step:

– Consider n-node graph G′ where
each vertex has degree 1.

– By assumption G′ connected, i.e.,
there’s a path between each i, j in
G′

– Now add one more node k with de-
gree one to get (n + 1)-node graph
G. This node must connected to a
node, say l, in G′.
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– Then G is connected since for any
i, j 6= k we can use path from G′

and for i = k, we can use edge {k, l}
with path from l to j in G′.


Where’s error? We can’t get every
(n + 1)-node graph with min-degree 1 by
adding to n-node graph with min-degree
1! Example above is counter-example.




MANTRA:

SHRINK-DOWN, GROW-BACK.

[[repeat out loud ]]

Note: if we shrink-down grow-back in above,

• Inductive step:

– Consider (n + 1)-node graph G
where each node has degree ≥ 1

– Delete a node to get G′

– Then in G′ each node has degree
≥ ... uh oh!
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