Reading: MIT OpenCourseWare 6.042 Chapter 5.6

Review

- Matchings/perfect matchings
- Hall's Theorem: in a bipartite graph, L can be covered by a matching if $\forall S \subseteq L$, $|S| \leq |N(S)|$.
- Graph coloring:

 $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

- Connectivity: G has at least n m connected components
- Induction on graphs: shrink down, grow back
- [[mini-quiz

Cycles

Def: closed walk: walk with $v_0 = v_k$. **Def:** cycle: path with $v_0 = v_k$.

Claim: The following graph properties are equivalent:

- 1. bipartite
- 2. 2-colorable

- 3. no cycles with odd length
- 4. no closed walks with odd length

[[useful since bipartite graphs come up a lot] in practice, we will revisit this Proof:

- $1 \rightarrow 2$: use partition labels as colors
- $2 \rightarrow 3$: consider 2-coloring and any cycle v_0, \ldots, v_k .
 - since $\{v_i, v_{i+1}\} \in E$, v_i and v_{i+1} must have different colors
 - so v_0, v_2, \ldots have one color and v_1, v_3, \ldots have other color
 - since $v_0 = v_k$, they have same color
 - hence k is even
- $3 \rightarrow 4$: by contradiction
 - suppose odd closed walk and no odd cycle
 - let v_0, \ldots, v_k be shortest odd closed walk
 - since no odd cycle, closed walk must repeat a vertex, say $v_i = v_j$
 - thus closed walk union of two other closed walks:

$$v_0,\ldots,v_i,v_{j+1},\ldots,v_k$$

and

$$v_i, v_{i+1}, \ldots, v_j$$

]]

original walk

- since original is odd, one of these is odd, but shorter, contradiction
- $4 \rightarrow 1$: by contradiction
 - suppose no odd closed walks and not bipartite
 - not bipartite means some connected component G' not bipartite
 - consider any $v \in V'$ and for every $u \in V'$ define dist(u) to be shortest path from u to v
 - define

$$L = \{u : dist(u) \text{ odd}\}\$$

 $R = \{u : dist(u) \text{ even}\}$

- -G' not bipartite means \exists adjacent u_1, u_2 both in L or both in R
- let P_i be shortest path from u_i to v
- then P_1, P_2 either both odd (if $u_1, u_2 \in L$) or even
- so closed walk consisting of union of P_1, P_2 and $\{u_1, u_2\}$ has odd length

splicing/dicing arguments useful for path/cycle constructions

Eulerian Paths and Tours

7 bridges of Konigsberg

[can you cross all 7 bridges without cross-] ing any single bridge more than once?

which partition edge-traversals of **Def:** Eulerian walk: use each edge exactly once.

> **Def:** *Eulerian tour*: closed Eulerian walk. [think of meter maid, wants to cover every] street and not retrace steps

> **Claim:** A connected graph G(V, E) has an Eulerian tour iff every vertex has even degree.

Proof:

- \rightarrow :
 - By direct proof.
 - Suppose G has Eulerian tour.
 - For every vertex $v \in V \{v_0\},\$ every time tour visits v, traverses two edges (one coming in, one going out).
 - Since each edge used exactly once and all edges are used, v has even degree.
 - For v_0 , we can pair initial edge with final edge, so v_0 also has even degree.
- - By direct proof.
 - Suppose G is connected and all vertices have even degree.
 - Construct tour as follows:
 - * start from v_0 and continue traversing untraversed edges until tour gets stuck.
 - * if there are untraversed edges, pick one $\{u, v\}$ with v on current tour and repeat first step with $v_0 = v$.
 - * splice together tours.

Claim 1: In first step, only get stuck at v_0 .

- * in any open walk W, endpoints have odd degree in W
- * since all vertices have even degree, if we're not at v_0 , we can continue

Claim 2: In second step, if \exists untraversed edge, must be one with an endpoint on current tour.

- * let $\{u_1, u_2\}$ be untraversed
- * G is connected
- * so exists path from v_0 to u_1
- * earliest edge on path not on tour is adjacent to tour

Def: *Hamiltonian walk/tour*: visit each *ver*-*tex* exactly once.

[[Much harder to find Hamiltonian] paths/cycles, in fact NP-complete.]] [[traveling salesman, visit each city exactly once and minimize distance, i.e., shortest] hamiltonian path]