EECS 310: Discrete Math
 Lecture 7 Graph Theory

Reading: MIT OpenCourseWare 6.042
Chapter 5.6
3. no cycles with odd length
4. no closed walks with odd length
$\left[\left[\begin{array}{l}\text { useful since bipartite graphs come up a lot } \\ \text { in practice, we will revisit this }\end{array}\right]\right]$
Proof:

- $1 \rightarrow 2$: use partition labels as colors
- $2 \rightarrow 3$: consider 2 -coloring and any cycle v_{0}, \ldots, v_{k}.
- since $\left\{v_{i}, v_{i+1}\right\} \in E, v_{i}$ and v_{i+1} must have different colors
- so v_{0}, v_{2}, \ldots have one color and v_{1}, v_{3}, \ldots have other color
- since $v_{0}=v_{k}$, they have same color
- hence k is even
- $3 \rightarrow 4$: by contradiction
- suppose odd closed walk and no odd cycle
- let v_{0}, \ldots, v_{k} be shortest odd closed walk
- since no odd cycle, closed walk must repeat a vertex, say $v_{i}=v_{j}$
- thus closed walk union of two other closed walks:

$$
v_{0}, \ldots, v_{i}, v_{j+1}, \ldots, v_{k}
$$

and

$$
v_{i}, v_{i+1}, \ldots, v_{j}
$$

which partition edge-traversals of original walk

- since original is odd, one of these is odd, but shorter, contradiction
- $4 \rightarrow 1$: by contradiction
- suppose no odd closed walks and not bipartite
- not bipartite means some connected component G^{\prime} not bipartite
- consider any $v \in V^{\prime}$ and for every $u \in V^{\prime}$ define $\operatorname{dist}(u)$ to be shortest path from u to v
- define

$$
\begin{aligned}
L & =\{u: \operatorname{dist}(u) \text { odd }\} \\
R & =\{u: \operatorname{dist}(u) \text { even }\}
\end{aligned}
$$

- G^{\prime} not bipartite means \exists adjacent u_{1}, u_{2} both in L or both in R
- let P_{i} be shortest path from u_{i} to v
- then P_{1}, P_{2} either both odd (if $\left.u_{1}, u_{2} \in L\right)$ or even
- so closed walk consisting of union of P_{1}, P_{2} and $\left\{u_{1}, u_{2}\right\}$ has odd length
$\left[\left[\begin{array}{lll}\text { splicing/dicing arguments useful for } \\ \text { path/cycle constructions }\end{array}\right]\right.$

Eulerian Paths and Tours

7 bridges of Konigsberg
$\left[\left[\begin{array}{l}\text { can you cross all } 7 \text { bridges without cross- } \\ \text { ing any single bridge more than once? }\end{array}\right]\right]$

Def: Eulerian walk: use each edge exactly once.

Def: Eulerian tour: closed Eulerian walk.
$\left[\left[\begin{array}{l}\text { think of meter maid, wants to cover every } \\ \text { street and not retrace steps }\end{array}\right]\right]$
Claim: A connected graph $G(V, E)$ has an Eulerian tour iff every vertex has even degree.

Proof:

- \rightarrow :

- By direct proof.
- Suppose G has Eulerian tour.
- For every vertex $v \in V-\left\{v_{0}\right\}$, every time tour visits v, traverses two edges (one coming in, one going out).
- Since each edge used exactly once and all edges are used, v has even degree.
- For v_{0}, we can pair initial edge with final edge, so v_{0} also has even degree.
- \leftarrow :
- By direct proof.
- Suppose G is connected and all vertices have even degree.
- Construct tour as follows:
* start from v_{0} and continue traversing untraversed edges until tour gets stuck.
* if there are untraversed edges, pick one $\{u, v\}$ with v on current tour and repeat first step with $v_{0}=v$.
* splice together tours.

Claim 1: In first step, only get stuck at v_{0}.

* in any open walk W, endpoints have odd degree in W
* since all vertices have even degree, if we're not at v_{0}, we can continue

Claim 2: In second step, if \exists untraversed edge, must be one with an endpoint on current tour.

* let $\left\{u_{1}, u_{2}\right\}$ be untraversed
* G is connected
* so exists path from v_{0} to u_{1}
* earliest edge on path not on tour is adjacent to tour

Def: Hamiltonian walk/tour: visit each vertex exactly once.
$\left[\left[\begin{array}{l}\text { Much harder to find Hamiltonian } \\ \text { paths/cycles, in fact NP-complete. }\end{array}\right]\right]$ [[traveling salesman, visit each city exactly $]$ once and minimize distance, i.e., shortest $]$ Lhamiltonian path

