EECS 310: Discrete Math Graph Theory

Lecture 8

Reading: MIT OpenCourseWare 6.042 Euler's Formula

Chapter 5.8

Planar Graphs

Def: A graph is planar if it can be drawn in the plane without crossing edges.
$\left.\left[\begin{array}{l}\text { Useful for designing circuit boards, for } \\ \text { example. }\end{array}\right]\right]$
Example: Draw planar graph, label faces
[[cycles correspond to faces
Note: bridges/dongles.

Recursive Defn

Def: planar embedding: non-empty set of closed walks (i.e. faces) constructed recursively by:

- Base case: single vertex v, one closed walk of length zero, one face.
- Constructor case (split a face): add edge $\{a, b\}$ between non-adjacent vertices on closed walk - splits face into two
- Constructor case (add a bridge): given two disconnected planar graphs G and H, add edge between vertices on faces - merges faces into one
$\left[\left[\begin{array}{l}\text { think of embedding on sphere, outer face } \\ \text { not special }\end{array}\right]\right]$
Claim: Let G be a connected planar graph with n vertices, f faces, and m edges. Then $n-m+f=2$.

Proof:

- base case: $m=0, n=1, f=1$.
- constructor case (spit face): gain one face, gain one edge
- constructor case (add bridge): $m=$ $m_{G}+m_{H}+1, n=n_{G}+n_{H}, f=$ $f_{G}+f_{H}-1$, so

$$
\begin{gathered}
n-m+f= \\
\left(n_{G}+n_{H}\right)-\left(m_{G}+m_{H}+1\right)+\left(f_{G}+f_{H}-1\right)= \\
\left(n_{G}-m_{G}+f_{G}\right)+\left(n_{H}-m_{H}+f_{H}\right)-2=2
\end{gathered}
$$

$\left[\left[\begin{array}{l}\text { Consequences: planar graphs can't have } \\ \text { too many edges. }\end{array}\right]\right]$
Claim: A connected planar graph with n vertices and m edges has $m \leq 3 n-6$.
Proof: Let m_{f} be \# edges on face f.

- Each edge is on at most 2 faces, so $\sum_{f} m_{f} \leq 2 m$.
- Each face has at least 3 edges, so $\sum_{f} m_{f} \geq 3 f$.
- Therefore $3 f \leq \sum_{f} m_{f} \leq 2 m$ so $f \leq$ $\frac{2}{3} m$.
- By Euler, $2=n-m+f \leq n-m+\frac{2}{3} m=$ $n-\frac{1}{3} m$.
- Rearranging we get $\frac{1}{3} m \leq n-2$ so $m \leq$ $3 n-6$.

Example: Is K_{4} planar?
$m=4 \cdot 3 / 2=6, n=4$, and $6 \leq 3 \cdot 4-6=6$, so maybe.
In fact, yes, draw embedding.
Example: Is K_{5} planar?
$m=5 \cdot 4 / 2=10, n=5$, and $10>3 \cdot 5-6=9$, so no.

Example: Is $K_{3,3}$ planar?
In bipartite graph, each face has at least 4 edges! Replace the 3 by a 4 in proof.

- $4 f \leq \sum_{f} m_{f} \leq 2 m$ so $f \leq \frac{1}{2} m$
- $2=n-m+f \leq n-m+\frac{1}{2} m=n-\frac{1}{2} m$ or $m \leq 2 n-4$
$m=3 \cdot 3=9, n=6$, and $9>2 \cdot 6-4=8$, so no.
Subclaim: A graph containing K_{5} or $K_{3,3}$ is not planar.
Def: graph minor: graph obtained from G by deleting edges/vertices and merging vertices.
Subclaim: A graph is not planar iff it contains K_{5} or $K_{3,3}$ as a minor.

Coloring Planar Graphs

A 5-color theorem.
Goal: 5-color a map

Example:

Duality:

- vertex for each face
- edge if faces share a boundary

Example:

Note: Dual is also planar.
Claim: Any planar graph has a vertex of degree at most 5 .
Proof: Suppose not. Then $2 m=$ sum of degrees $\geq 6 n$, so $m \geq 3 n$, but by Euler, $m \leq$ $3 n-6$.

Claim: Planar graphs can be 6-colored.

Proof:

- By induction on vertices.
- Inductive step: Remove vertex v with degree at most 5 , inductively color graph, add back vertex and color with a color not equal to its neighbors.

Claim: Planar graphs can be 5-colored.
Proof: As above. Note v has two neighbors u and w that are not themselves neighbors (otherwise we found a K_{5}). Merge u and w
and color graph. Split them, now v 's neighbors have just 4 colors!

