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Review

Eulerian/Hamiltonian
Tours/Paths[[

Eulerian: “e” for edge, visit each edge ex-
actly once; Hamiltonian: visit each vertex
exactly once

]]
Claim: A connected graph has an Eulerian
tour if and only if each vertex has even degree.


Proof by taking arbitrary walk until get
stuck (this will be a tour), then repeat
process starting on edge adjacent to cur-
rent tour, then splice together tours.




Planar graphs


Planarity: can be drawn in plane with no
edge crossings; can be constructed recur-
sively from single vertex by splitting faces
and adding bridges




Claim: Planar with n vertices, m edges, f
faces has:

• n−m + f = 2[[
Proof by induction using recursive con-
structor.

]]
• m ≤ 3n− 6

[[
Proof by counting number of edges adja-
cent to faces in two ways, subbing into
above formula.

]]

Trees

• Useful representation (e.g., decision
trees, search trees, family trees)

• Many problems easy on trees (e.g., col-
oring)

• Graphs can be approximated by trees

Example: Draw a decision tree (e.g., stay
home or go to school, if stay home watch
t.v. or play computer games or do homework,
etc.). Sometimes a tree is the natural result
of the nature of the abstraction.

Formally,

Def: A tree is a connected graph with no
cycles.

Some important properties of trees.

Claim: Every tree has the following proper-
ties:

1. Any connected subgraph of a tree is a
tree

2. There is a unique simple path between
any pair of vertices

3. Adding an edge between any pair of ver-
tices creates a cycle
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4. Removing any edge disconnects the
graph

5. If there are at least 2 vertices, then there
are at least 2 leaves

6. The number of vertices is one more than
the number of edges

Proof: Of (1). By contrapositive. If H is
a subgraph of G and H has a cycle. Since
the edge set and node set of H is a subset
of G, then that cycle also exists in G. Thus
not H implies not G. So it must be that any
subgraph of an acyclic graph is also acyclic.
Then, if it is connected, it is a tree by defini-
tion.
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Proof: Of (2). Suppose there are two dif-
ferent paths between u and v. Let x be the
first place they diverge. Let y be the next
place they meet. Then there are two dis-
joint subpaths between x and y which is a
cycle. This contradicts the acyclic assump-
tion. Thus there is only one path.
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Proof: Of (3). There is a path between u
and v already by (2). Adding in an edge to
u and v will from the cycle of that path plus
this new edge. 2

Proof: Of (4). Suppose there is an edge
between u and v. This edge constitutes a
path. By (2) it is the only path connecting
the two vertices, so removing it disconnects
the graph.
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Proof: Of (6).

• By induction: P (n) = a tree on n ver-
tices has (n− 1) edges.

• Base case P (1): a tree on 1 vertex has 0
edges.

• Inductive hypothesis: P (n)

• Inductive step:

– Consider tree on P (n + 1) vertices

– Remove leaf. Why can we always
remove a leaf? Because of definition
5.

– By I.H., remaining tree has (n− 1)
edges

– Add back leaf and get (n − 1) + 1
edges
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Things are easy on graphs. Like coloring
(skip it time is short).

Proof: Via induction.

• Induction on n, number of nodes. Let
P(n) be a tree of n nodes is 2-colorable.

• Base case: 2 nodes. Color each one a
different color.

• Assume for P(m) for all m ≤ n.

• Consider tree of n+1 vertices. By (5)
there exists some leaf node. Remove
that.

• There is now a graph on n vertices. Ap-
ply the IHOP.

• Add back in that leaf. Since it only has
one edge, just color it the opposite of
whatever it is connected to. Now we
have a valid 2-coloring of the n+1 graph.

• done.
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Def: A spanning tree of a graph G is a sub-
graph that’s a tree and contains all vertices
of G.

Claim: Every connected graph contains a
spanning tree.

Proof: Let T be a connected subgraph of
G with smallest # of edges.

• Show T acyclic by contradiction.

• Suppose T has a cycle
(v0, v1), . . . , (vk, v0).

• Remove (vk, v0). For any x and y with
path P in T using (vk, v0), reroute P
through (vk, vk−1), . . . , (v1, v0).

• Hence T still connected with less edges.
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Applications:

Consider a weighted metric graph.

• weights w(v1, v2) on edges

• metric if weights satisfy triangle inequal-
ity:

w(v1, v2) + w(v2, v3) ≥ w(v1, v3)

plus w(v1, v2) = w(v2, v1) and
w(v1, v1) = 0.

Example: cities of IL (draw sample)

• nodes are cities

• edges are roads (assume complete graph)

• weight of an edge is travel time

NOTE: weights correspond to distance
and so satisfy triangle inequality.

Question (TSP):

How to visit all cities exactly once in mini-
mum time and return to start?

In math, find a minimum length Hamiltonian
cycle
Famous problem in CS, give TSP story,

NP-hard in general, but can find a near-
optimal solution quickly in metric graphs
as above.




Solution:

• Find spanning tree of minimum weight

• Double edges of tree

• Find Eulerian tour of tree (“depth-first
search”)

[[How do we know one exists? ]]

• Convert to Hamilitonian tour by “skip-
ping” revisits

[[can do since graph complete ]]

Example: Draw process in IL graph

Claim: Takes at most double the time of an
optimal tour.

Proof: Optimal tour is at least minimum
spanning tree (why?) and skipping is actually
shortcutting since metric graph. 2[[

Instance of an approximation algorithm,
important CS topic.

]]
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