EECS 310: Discrete Math
 Lecture 7 Graph Theory

Reading: MIT OpenCourseWare 6.042
Chapter 5.7

Review

Eulerian/Hamiltonian
 Tours/Paths

$\left[\left[\begin{array}{l}\text { Eulerian: "e" for edge, visit each edge ex- } \\ \text { actly once; Hamiltonian: visit each vertex } \\ \text { exactly once }\end{array}\right]\right]$
Claim: A connected graph has an Eulerian tour if and only if each vertex has even degree.
[[Proof by taking arbitrary walk until get stuck (this will be a tour), then repeat process starting on edge adjacent to current tour, then splice together tours.]

Planar graphs

Trees

- Useful representation (e.g., decision trees, search trees, family trees)
- Many problems easy on trees (e.g., coloring)
- Graphs can be approximated by trees

Example: Draw a decision tree (e.g., stay home or go to school, if stay home watch t.v. or play computer games or do homework, etc.). Sometimes a tree is the natural result of the nature of the abstraction.
Formally,
Def: A tree is a connected graph with no cycles.
Some important properties of trees.
Claim: Every tree has the following properties:

Claim: Planar with n vertices, m edges, f faces has:

- $n-m+f=2$
$\left[\left[\begin{array}{l}\text { Proof by induction using recursive con- } \\ \text { structor. }\end{array}\right]\right.$
- $m \leq 3 n-6$

1. Any connected subgraph of a tree is a tree
2. There is a unique simple path between any pair of vertices
3. Adding an edge between any pair of vertices creates a cycle
4. Removing any edge disconnects the graph
5. If there are at least 2 vertices, then there are at least 2 leaves
6. The number of vertices is one more than the number of edges

Proof: Of (1). By contrapositive. If H is a subgraph of G and H has a cycle. Since the edge set and node set of H is a subset of G, then that cycle also exists in G. Thus not H implies not G. So it must be that any subgraph of an acyclic graph is also acyclic. Then, if it is connected, it is a tree by definition.

Proof: Of (2). Suppose there are two different paths between u and v. Let x be the first place they diverge. Let y be the next place they meet. Then there are two disjoint subpaths between x and y which is a cycle. This contradicts the acyclic assumption. Thus there is only one path.

Proof: Of (3). There is a path between u and v already by (2). Adding in an edge to u and v will from the cycle of that path plus this new edge.

Proof: Of (4). Suppose there is an edge between u and v. This edge constitutes a path. By (2) it is the only path connecting the two vertices, so removing it disconnects the graph.

Proof: Of (6).

- By induction: $P(n)=$ a tree on n vertices has $(n-1)$ edges.
- Base case $P(1)$: a tree on 1 vertex has 0 edges.
- Inductive hypothesis: $P(n)$
- Inductive step:
- Consider tree on $P(n+1)$ vertices
- Remove leaf. Why can we always remove a leaf? Because of definition 5.
- By I.H., remaining tree has $(n-1)$ edges
- Add back leaf and get $(n-1)+1$ edges

Things are easy on graphs. Like coloring (skip it time is short).
Proof: Via induction.

- Induction on n, number of nodes. Let $\mathrm{P}(\mathrm{n})$ be a tree of n nodes is 2-colorable.
- Base case: 2 nodes. Color each one a different color.
- Assume for $\mathrm{P}(\mathrm{m})$ for all $m \leq n$.
- Consider tree of $n+1$ vertices. By (5) there exists some leaf node. Remove that.
- There is now a graph on n vertices. Apply the IHOP.
- Add back in that leaf. Since it only has one edge, just color it the opposite of whatever it is connected to. Now we have a valid 2 -coloring of the $n+1$ graph.
- done.

Question (TSP):
Def: A spanning tree of a graph G is a subgraph that's a tree and contains all vertices of G.
Claim: Every connected graph contains a spanning tree.
Proof: Let T be a connected subgraph of G with smallest \# of edges.

- Show T acyclic by contradiction.
- Suppose T has a cycle $\left(v_{0}, v_{1}\right), \ldots,\left(v_{k}, v_{0}\right)$.
- Remove $\left(v_{k}, v_{0}\right)$. For any x and y with path P in T using $\left(v_{k}, v_{0}\right)$, reroute P through $\left(v_{k}, v_{k-1}\right), \ldots,\left(v_{1}, v_{0}\right)$.
- Hence T still connected with less edges.

Applications:

Consider a weighted metric graph.

- weights $w\left(v_{1}, v_{2}\right)$ on edges
- metric if weights satisfy triangle inequality:

$$
\begin{aligned}
& \quad w\left(v_{1}, v_{2}\right)+w\left(v_{2}, v_{3}\right) \geq w\left(v_{1}, v_{3}\right) \\
& \text { plus } w\left(v_{1}, v_{2}\right)=w\left(v_{2}, v_{1}\right) \quad \text { and } \\
& w\left(v_{1}, v_{1}\right)=0
\end{aligned}
$$

Example: cities of IL (draw sample)

- nodes are cities
- edges are roads (assume complete graph)
- weight of an edge is travel time

NOTE: weights correspond to distance and so satisfy triangle inequality.

How to visit all cities exactly once in minimum time and return to start?
In math, find a minimum length Hamiltonian cycle
$\left[\left[\begin{array}{l}\text { Famous problem in CS, give TSP story, } \\ \text { NP-hard in general, but can find a near- } \\ \text { optimal solution quickly in metric graphs } \\ \text { as above. }\end{array}\right]\right]$
Solution:

- Find spanning tree of minimum weight
- Double edges of tree
- Find Eulerian tour of tree ("depth-first search")
[[How do we know one exists?
- Convert to Hamilitonian tour by "skipping" revisits [[can do since graph complete

Example: Draw process in IL graph
Claim: Takes at most double the time of an optimal tour.
Proof: Optimal tour is at least minimum spanning tree (why?) and skipping is actually shortcutting since metric graph.
$\left[\left[\begin{array}{l}\text { Instance of an approximation algorithm, } \\ \text { important CS topic. }\end{array}\right]\right]$

