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Abstract— Most full-reference fidelity/quality metrics compare
the original image to a distorted image at the same resolu-
tion assuming a fixed viewing condition. However, in many
applications, such as video streaming, due to the diversity of
channel capacities and display devices, the viewing distance
and the spatiotemporal resolution of the displayed signal may
be adapted in order to optimize the perceived signal quality.
For example, at low bitrate coding applications an observer
may prefer to reduce the resolution or increase the viewing
distance to reduce the visibility of the compression artifacts. The
tradeoff between resolution/viewing conditions and visibility of
compression artifacts, requires new approaches for the evaluation
of image quality that account for both image distortions and
image size. In order to better understand such tradeoffs, we
conducted subjective tests using two representative still image
coders, JPEG and JPEG 2000. Our results indicate that an
observer would indeed prefer a lower spatial resolution (at a
fixed viewing distance) in order to reduce the visibility of the
compression artifacts, but not all the way to the point where
the artifacts are completely invisible. Moreover, the observer is
willing to accept more artifacts as the image size decreases. The
subjective test results we report can be used to select viewing
conditions for coding applications. They also set the stage for
the development of novel fidelity metrics. The focus of this paper
is on still images, but it is expected that similar tradeoffs apply
to video.

Index Terms— Scalability, image quality, image fidelity, noise
visibility, just noticeable distortion, JND, human visual percep-
tion.

I. INTRODUCTION

ECENT advances in video capture and display tech-

nologies and digital communications have led to the
development of a wide variety of video services. The spa-
tiotemporal resolution of the video signals that these services
provide depends on the video capture device, the transmission
bandwidth, and the display system. In many scenarios, a video
sequence may be transmitted to a variety of users with different
bandwidths and different display devices. This gives rise to
the need of a scalable scheme for maximal results. A scalable
scheme may be implemented at the source, where a scalable
coder is employed, or embedded in the transmission proto-
col, which requires that the source bit-stream be transcoded
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somewhere along the transmission path to support the service
needs in quality while minimizing the throughput demand on
the network. In any event, the transmitted video streams need
to be adjusted according to the channel bandwidth and the
display device of the user.

The adaptive scaling scheme also involves the user’s view-
ing conditions. As an example, in low bitrate coding appli-
cations, the compressed image or video may be too distorted
and the viewer may prefer to reduce the resolution (or size)
or increase the viewing distance to reduce the visibility
of the compression artifacts. Such kind of situation has at
least two implications that warrant investigation. First, exist-
ing subjective evaluations or objective image fidelity/quality
metrics based on a fixed set of viewing conditions may
not be reasonably extrapolated for measuring the perceived
image quality under such potentially mismatched viewing
conditions. Second, since most fidelity metrics (and coding
schemes that are guided by them) were designed under the
assumption of fixed viewing conditions, they only measure
the noise/distortion visibility for a given image, and do not
account for changes in the signal visibility when the viewing
conditions (e.g., resolution or viewing distance), and hence, the
signal itself, changes. For example, when the viewing distance
is infinite, the noise becomes invisible, but so does the signal!

In order to cope with the new application scenarios, there
is a need for a fundamental change in our understanding of
image fidelity assessment, both subjective and objective. The
goal of this paper is to highlight this need and to explore some
of the tradeoffs that must be addressed by those who design
subjective experiments or develop fidelity metrics.

We present a subjective study that measures the effects of
viewing conditions on perceived image quality. In particular,
our goal is to explore tradeoffs between spatial resolution and
image compression artifacts in order to obtain the optimal
display conditions for an image that has been compressed
by a given algorithm at a given bitrate. As we will discuss
below, there are similar tradeoffs between viewing distance
and compression artifacts. The focus of this paper is on still
images, but we expect that similar tradeoffs apply to video.
Of course, formal experiments would be necessary to quantify
such tradeoffs, as well as tradeoffs that arise from varying the
temporal resolution of the video sequence.

First we clarify two terms: image fidelity and image quality
since these two have been interchangeably referred to in the
literature. In this paper, our use of these two terms carries the
following somewhat unconventional notions. Image fidelity is
a measure that always involves a reference; it can be either
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objective under a prescribed set of conditions or subjective
for same or different conditions. In the case that an objective
image fidelity metric employs a perceptual model, it is referred
to as a perceptual image fidelity metric. On the other hand,
image quality denotes the perceived characteristics of an
image. Such an assessment may or may not involve a reference
signal; its measurement is primarily based on the viewers’
long-term psychophysical experience. In this paper, when there
is an explicit comparison with a reference image, we will use
the term image fidelity. When the comparison is indirect or
implicit, we will use the term image quality.

The paper is organized as follows. In the remainder of
this introduction, we discuss the motivation, methodology, and
prior work. Section II reviews objective image fidelity metrics.
The setup for the subjective tests is presented in Section III.
Section IV presents and analyzes the experimental results. The
concluding remarks are provided in Section V.

A. Motivation and Methodology

The primary goal of this paper is to test the hypothesis
that there exist unconventional tradeoffs between the spatial
resolution of a given image and its perceived quality, and to
provide guidelines for determining the most efficient spatial
resolution at a given level of noise. This is in contrast to other
psychophysical experiments that try to quantify parameters
of an algorithm, e.g., visual thresholds. Our main interest
here is noise that arises from compression artifacts, but while
rigorous studies are necessary, we expect to see similar types
of tradeoffs in other distortions and applications.

Before introducing the methodology of perceptual analysis,
let us first state three fundamental assumptions of the human
psychophysical behavior as related to visual perception.

1) Relatively, a human observer perceives an image of
higher spatial resolution as having higher quality, pro-
vided that the image is a natural one without obvious
known artifacts.

2) Relatively, a human observer rates an image as of lower
quality if it contains more compression artifacts.

3) There exist varying threshold levels of noise visibility
below which an observer cannot perceive the noise.
These are commonly referred to as just-noticeable dis-
tortion (JND) levels.

With these axiomatic assumptions, one key hypothesis to be
verified and an objective to be accomplished in our current
study can be stated as follows.

1) The visibility of compression artifacts (or noise vis-
ibility) decreases as the spatial resolution decreases.
At the same time, the signal visibility (or presence in
a more general sense) also decreases with decreasing
spatial resolution, albeit at a different rate from the noise
visibility. Consequently, there exist some unconventional
tradeoffs between the spatial resolution of a given image
and its perceived quality.

2) Quantification of the thresholds for noise visibility may
provide a guideline for determining the most efficient
spatial resolution at a given noise level.
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In order to to verify the above hypothesis and to gain
a better understanding of different tradeoffs and the related
quantification of perceptual parameters, we conducted two
subjective experiments.

The goal of the first experiment is to find the just-noticeable
level of distortion (JND) for a given image at a given resolution
and viewing distance, that is, to find the lowest bitrate at which
no compression artifacts are visible. We refer to this as the just-
noticeable noise perception assessment (JNNP). Conversely,
for a fixed bitrate and viewing distance, this experiment can
be used to find the highest resolution at which the compression
artifacts are not visible. In principle, the JND levels can
be predicted using existing perceptual fidelity metrics [1].
The goal of this experiment is then to verify the predictive
capability of the metrics.

The goal of the second experiment is to explore the tradeoffs
between noise and signal visibility. For a given encoding
rate and viewing distance, the goal of this experiment is to
determine the spatial resolution that gives the best overall
subjective quality. We refer to this as the relative perceived
quality assessment (RPQ). In this experiment, each subject
was presented with a set of images at various spatial res-
olutions while the resolution of the display (in pixels per
degree) was fixed. This setup allows easy administration of
the assessment procedure, as the only thing that changes is
the size of the displayed image. The subjects were asked to
select one displayed image that is of the highest subjective
quality. The subjects were instructed to base their decisions
on the overall image quality, i.e., including both distortion
artifacts and signal visibility. The images were obtained by
downsampling (i.e., anti-alias filtering and decimation) from
the same image, which was encoded and reconstructed using
two still image coders (JPEG and JPEG 2000) at several
encoding rates. In other words, the encoding was all done at
the highest resolution. An alternative would be to downsample
the original image first, and then encode it at different bit rates.
Both alternatives are reasonable, but they address different
applications. Our primary interest here is in applications in
which the receiver has no control over the transmitter or
encoder, and is simply trying to optimize the displayed image
quality.

We also made an attempt to relate the results of our
subjective tests to existing objective image fidelity metrics.
As we saw above, the existing fidelity metrics assume that
the original and distorted image are at the same resolution
and viewing conditions, and hence, cannot provide quantita-
tive estimates of image quality across resolutions or viewing
distances. Moreover, most of the existing metrics have been
calibrated for CRT displays, and a direct comparison with our
experiments, which were conducted with flat panel displays,
is difficult.

Based on the test results, we experimentally verified that
there exist sensible tradeoffs as hypothesized. Furthermore, we
found that the acceptable noise visibility level under varying
signal visibility conditions (spatial resolution) is in general sig-
nificantly higher than the conventional JND thresholds under
fixed viewing conditions. This can be understood as a human
observer tends to be willing to accept more compression arti-
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facts than what may be predicted by existing fidelity measures
as long as the operating resolution does not unduly increase
the visibility of the artifacts. These findings suggest that a new
measure of visual fidelity must take into account the spatial
resolution discrepancy between the original image and the
viewed image, and that many image coding applications can
achieve higher coding performance by exploiting the human
psychophysical behavior in a variety of viewing conditions.
The ultimate goal, of course, is to develop novel fidelity
metrics for a wide range of applications that involve variable
bitrates and display devices. Indeed, the subjective evaluations
we present in this paper set the stage for the development of
such metrics.

B. Prior Work

The study of image quality as a function of viewing
distance, resolution, and picture size was the topic of early
work by Westerink and Roufs [2], who found that angular
resolution (in cycles per degree) and picture angle each influ-
ence image quality independently. They found that subjective
quality increases with resolution but saturates at approximately
25 cycles per degree. Their results also indicate a linear rela-
tionship between subjective quality and the logarithm of the
picture angle. Their experiments, which used slide projections
of complex scenes as stimuli, set the foundations of modern
image quality analysis and had a major impact on the design
of the high-definition TV standard. The effect of the display
resolution, image size, and other display parameters on the
perception of image quality was considered by Barten [3]-[5],
who proposed a metric, the square root integral (SQRI), that
given the modulation transfer function of a particular display
device, can be used to estimate the optimal viewing distance
for a given spatial resolution. However, neither Westerink and
Roufs nor Barten took the effects of compression artifacts into
consideration. Since then the topic has received little attention
in the literature. In the mean time, new communications appli-
cations have evolved that require a new look at the parameters
that influence image quality, and especially tradeoffs between
them, e.g., angular (or spatial) resolution versus picture angle
(or image size). Kuhmiinch et al. [6] considered the tradeoff
between temporal and spatial resolution in the context of
scalable video coding. They proposed a video fidelity metric
that is based on the concepts introduced by Webster et al. in
[7] and used it to find the ratio between spatial and temporal
scaling that maximizes perceived quality as measured by the
metric. The proposed metric obtains separate estimates of
static and dynamic image quality, and then combines them
additively or multiplicatively. Although their work provides a
valuable approach for video scalability, they do not address the
noise versus signal visibility tradeoff considered in this paper.
Feghali et al. in [8] considered tradeoffs between temporal
resolution and quantization, and proposed a new, empirically-
derived, metric that takes into account quantization errors,
frame rate, and motion speed. The viewing conditions were
fixed, however. Koumaras et al. [9], [10] considered subjective
and objective estimates of upper and lower bounds in the
perceived quality of video clips with different resolutions and
spatio-temporal activity levels. Finally, Schilling and Cosman

[11] evaluated a number of progressive coders based on
the assumption that the time it takes a human observer to
recognize a given image relates to image fidelity.

II. OBJECTIVE IMAGE FIDELITY METRICS

The study of multimedia communication applications
(speech, image, and video), which inevitably involve some
types of signal distortion, requires the evaluation of signal
fidelity in its reconstructed form. This can be done with
objective criteria, but since the ultimate user is usually a
human, any such evaluation or assessment should consistently
reflect human perceptual preference. In this section, we review
objective measures for still image fidelity that have been
proposed with varying degrees of success in predicting the
subjective preference.

The most commonly used objective fidelity measure is the
mean squared error (MSE), most commonly expressed as peak
signal-to-noise ratio (PSNR), which is known to be inadequate
as a measure of perceptual distortion. A number of perceptual
measures have also been proposed. These measures have relied
on certain explicit low-level models of human perception that
account for sensitivity to subband noise as a function of the
spatial frequency, the local luminance, and the contrast or
texture masking [1], [12]. Another recently proposed class
of fidelity measures, known as Structural SIMilarity (SSIM)
[13], uses implicit perceptual models to account for high-
level characteristics of the human visual system (HVS). Such
measures take into account point-by-point distortions that
may not be relevant to perception of quality, such as spatial
translation and intensity shifts, as well as contrast and scale
changes. We review all these measures in this section.

A. Perceptual Metrics with Explicit Visual Model

Most of the existing perceptually based image fidelity
measures incorporate explicit models of human perception
[1], [12]. As mentioned earlier, these measures assume that
the reference and the processed (reconstructed) images have
the same resolution, and are viewed at a prescribed distance,
i.e., under identical viewing conditions. Most measures are
based on a multi-scale spatial frequency decomposition using
methods such as discrete wavelet transform (DWT), filterbank
(i.e., the subband method), or discrete cosine transform (DCT).
Perceptual sensitivity usually can be better addressed in the
transform domain than with the original pixel array.

Our focus here is on measures that have been developed
specifically for image compression applications. We assume
that a proper transformation that is commensurate with the
adopted perceptual model has been performed, resulting in
the set of coefficients {b; .}, where k denotes the index in the
transform domain and ¢ is the location index of the transformed
image block. For each coefficient of the decomposed signal,
such measures employ a noise visibility threshold ¢; j,, referred
to as the just noticeable distortion level or JND, to quantify
the perceived distortion. This threshold accounts for human
visual sensitivity to spatial frequency, local luminance, and
contrast/texture masking. The distortion for the overall image
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is then computed as:

— (D

i,keER

where l;lk is the coefficient of the processed (or distorted)
image corresponding to b; ;, and N is the total number of
coefficients (equivalently, pixels). The value of Qs is em-
pirically determined from psychophysical experiments. (For
a discussion, see [1].) Note that when the difference of the
two coefficients is below the visibility threshold, the noise is
essentially invisible and the actual value of the difference does
not matter. When the difference is higher than the threshold,
it is normalized by the JND level. Thus, D,, represents the
average distortion expressed in JNDs.

In order to be consistent with traditional error metrics, we
express the perceptual metric in terms of “visual decibels
(dB).” We define the “masked peak signal-to-noise ratio (MP-

SNR)” as

2552
MPSNR = 10 log;y —or-. 2)
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Note that the maximum value of MPSNR is 48.13 dB, which
corresponds to the perceptually transparent condition. For
this paper, we considered several measures, one developed
by Safranek and Johnston for subband coders [14], one by
Watson for DCT coders [15][6], and another by Watson et
al. for wavelet-based coders [16]. A detailed description of
the measures can also be found in [1]. Even though these
measures were developed for near-threshold applications, they
have also been used in supra-threshold applications [17], [18].
More systematic studies of the supra-threshold case can be
found in [19]-[22].

B. Structural Similarity Metrics

In contrast to the perceptual metrics we described above,
the Structural SIMilarity (SSIM) metrics, proposed by Wang
et al. [13], [23], are not based on measurements of noise
sensitivities; instead, they attempt to take into account higher-
level functionalities of the HVS, and in particular, they attempt
to make explicit use of the “structural” information in the
viewing field. An important property of the SSIM measures
is that they are only supposed to respond to significant
structural changes, while perceptually insignificant point-by-
point distortions, such as contrast and intensity changes, are
not substantially penalized. These measures assume that the
structural information is available or can be extracted from
the image. Thus, they are expected to be more effective
in measuring supra-threshold compression distortions, which
affect the structure of an image.

There are several SSIM implementations, both in the im-
age/pixel space and in the wavelet domain. The basic SSIM
index proposed in [13] is a real number in the range [—1, 1]
and is computed based on the second order statistics of the
reference and the distorted image as follows:

S(x,y) = (2papiy + K1) (200y + Ks)
(R oy + Ky (03 +op £ K

3)
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where x and y are two nonnegative image signals (or image
patches), 1, and i, are the mean intensities, o2 and 02 are the
variances, 0, is the covariance of x and y, and K and K3 are
small real constants relative to ji; or fi,,. A more general form
of this metric can be found in [13]. The spatial domain SSIM
has been shown to provide good quality prediction across a
variety of artifacts, but is highly sensitive to spatial translation.

The complex wavelet domain implementation (CWSSIM)
[24] allows imperceptible spatial translations, and also small
rotations and scaling changes. The CWSSIM of a given
subband is given by

2 + K

D2 Ca i€l
1

b
Y lexil® + 3 leyil + K
1 1

where ¢, and ¢, are the wavelet coefficients corresponding
to two images or image patches, ¢* denotes the complex
conjugate of ¢, and K is a small positive constant.

Note that the mean of the wavelet coefficients (except the
baseband) is zero due to the bandpass property of the wavelet
transform. The overall metric value is computed as the mean
of the CWSSIM subband indices. Brooks et al. [25], [26]
proposed a variation of this metric, whereby the subband
indexes are weighted based on human sensitivity to subband
noise. The weighted CWSSIM incorporates an explicit model
of subband sensitivity to noise, and thus, provides a link to
the perceptual metrics described above.

Overall, even though SSIM metrics have introduced a new
way of looking at image fidelity, they are also limited by
the fact that the reference and test images are at the same
resolution and viewing conditions.

Sc(cwacy) = (4)

C. Signal and noise visibility

As will be discussed in the next section, the aim of our
subjective experiments is to measure the effect of viewing
conditions (viewing distance or spatial resolution) on the
perceived image quality. As the amount of distortion increases,
say due to reduced bandwidth or bitrate, it is conjectured
that the perceived quality may benefit from a reduction in the
spatial resolution, or similarly, from an increase in the viewing
distance. Of course, changing the viewing distance is not
equivalent to changing the spatial resolution, as one has to take
into account the specifics of the sampling rate conversion and
characteristics of the display device [27]. However, to a first
order approximation, we can safely assume that reducing the
resolution is equivalent to increasing the viewing distance by
the same factor. The fidelity measures that have been proposed
so far cannot provide a quantitative estimate of the image
quality when the image resolution or the viewing distance has
been altered. One obvious approach to evaluating the visual
fidelity across spatial resolution is to evaluate the images at
the highest resolution using one of the available measures. A
problem with this approach is that it requires image interpo-
lation, and it is not clear what interpolation techniques should
be used since they may introduce unexpected artifacts. More
importantly, this approach is essentially inconsistent with the
way the reconstructed images are viewed or used by a viewer.
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Fig. 1. The Mannos-Sakrison and Daly eye contrast sensitivity functions.
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Fig. 2. The Mannos-Sakrison frequency response with frequency expressed
in cycles/inch at several viewing distances.

In order to explain in simple terms the issues involved, we
consider the contrast sensitivity function (CSF) of the eye.
However, we should point out that the CSF is too simple
of a model of the eye for the purpose of evaluating the
perceived image fidelity. An estimate of the CSF by Mannos
and Sakrison [28] is shown in Fig. 1 in solid red line.
According to the estimate, the eye is a bandpass filter, showing
increasing sensitivity as the spatial frequency rises, peaking at
about 8 cycles per degree, and then decaying exponentially
towards higher frequencies. Also shown in dashed blue line is
the frequency response used by Daly [29]; it models the eye
as a lowpass filter instead of a bandpass one. As illustrated
in Fig. 2, the frequency response changes substantially with
the viewing distance. For example, as the viewing distance
increases, the peak of the response shifts to lower frequencies,
making high frequency details less visible (for more details,
see [30]).

The key parameters for the CSF are the viewing distance
(in inches) and the resolution of the display device (in pixels
per inch). Alternatively, one can specify the viewing distance
in image heights and the image height in pixels (assuming
identical horizontal and vertical display resolution). In either
case, one must derive the “display visual resolution” in pixels
per degree [16]. Note that, since the CSF demonstrates a band-
pass characteristic, it is possible that (low-frequency) image
degradations become more visible as the viewing distance in-
creases [12], [31]. In order to compensate for this undesirable
effect, several researchers have proposed “flattening” of the
eye response [29], [32]-[35] as shown in Fig. 1.

Based on the above discussion, it is clear that increasing
the viewing distance reduces the visibility of compression arti-
facts. However, increasing the viewing distance also decreases
the visibility of the signal itself. In the extreme case of an
infinite viewing distance, no artifacts are visible, but neither

is the signal. Thus, there is a need to find a viewing distance
that achieves the best balance between the signal and the noise
visibility so as to achieve the best overall image quality.

III. SUBJECTIVE EXPERIMENTS

To obtain a better understanding of how the spatial reso-
lution affects the perceived signal quality in the context of
compression artifacts, we conducted subjective image quality
evaluation experiments. Early psychophysical experiments for
analyzing the effect of spatial resolution on image quality
assessment were conducted by Westerink and Roufs [2]. Such
experiments have formed the basis of modern image quality
analysis and had a major impact on the design of the high-
definition TV standard. The goal of this paper is to consider
specific tradeoffs that were not in that early study, and that are
encountered in current communications applications, which
encompass a wide variety of display devices and channel ca-
pacities. In particular, our goal is to explore tradeoffs between
spatial resolution and image compression artifacts in order to
obtain the optimal display conditions for an image that has
been compressed by a given algorithm at a given bitrate.

We conducted two experiments. In both cases, the viewing
distance was fixed. We used a series of compressed images at
different bitrates that were carefully chosen to cover a wide
range of perceptual quality. These images were then down-
sampled using near-optimal sinc-function anti-aliasing filters.
As we noted in the introduction, all the encoding was done
at the highest resolution. The goal of the just-noticeable noise
perception assessment experiment was, at each resolution, to
find the highest compression level at which the artifacts are not
visible, or conversely, for a fixed bitrate and viewing distance,
to find the highest resolution at which the compression artifacts
are not visible. The goal of the relative perceived quality
assessment experiment was to determine the resolution that
gives the best overall subjective quality for a given encoding
rate.

A. Image generation and experimental setup

In our experiments we used a number of test images and
compression techniques. Figure 3 shows thumbnails of the four
test images, “Bank,” “Lena,” “Bike,” and “Woman,” all with
spatial resolution 512 x 512 pixels and 256 quantization levels.
The “Bike” and “Woman” images were cropped from the ISO
400 image set. Note that the “Bank™ image has the highest
amount of detail, followed by “Bike,” “Lena,” and “Woman.”
Note also that in “Lena” the background is blurred, while in
both “Lena” and “Bike” there is some visible noise, most likely
scanning artifacts.

The test images were first encoded using two different
coding algorithms, JPEG [36], [37] and JPEG 2000 [38],
[39]. JPEG is the most widely used method for perceptually
lossless or lossy image compression. It is based on a DCT
decomposition. The JPEG quantization table was based on the
baseline contrast sensitivity thresholds determined by Watson
[1], [15], computed at six image heights. JPEG 2000 is the
most recent standard for image compression, and is based on
a DWT decomposition. The number of decomposition levels
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Fig. 3.

Images for subjective tests, “Bank”, “Lena”, “Bike”, and “Woman”
(in raster scan order).

was set at 5 and the codeblock size was set at 32. Since these
compression methods have different coding efficiencies, the
bitrates for each image and technique were carefully selected
to obtain reasonable differences in perceived quality between
images at consecutive bitrates. The selected bitrates for the two
compression methods and four images are shown in Table L.
In all cases, the highest bitrate was 1.0, at which there are no
distortions visible to human observers.

For each coder and bitrate, the reconstructed images were
then downsampled by factors of 4/3, 2, 8/3, 4, 16/3, and 8
to obtain seven different resolutions, using integer upsam-
pling and downsampling combinations with near-optimal sinc-
function anti-aliasing filters. The viewing distance was fixed at
six image heights of the highest resolution (512 x 512) image,
which is equal to 35.4 inches. The stimuli were displayed
in a blue background and viewed in a darkened room on a
Dell 1905FP flat panel liquid-crystal display (LCD) screen
with contrast ratio 800:1 and a resolution of 86.78 pixels/inch.
The maximum luminance of this display is 250 cd/m? and
the average luminance is 125cd/m?. The resulting spatial
resolutions, viewing angles to the image stimuli, and the
maximum spatial frequencies are listed in Table II.

Six observers (hereafter, sbjl to sbj6) took part in the
experiments. All were binocular with normal color vision and
normal (two) or corrected (four) visual acuity. Five were male
and one female. Their age was between 20 and 30 years old.
The subject group included a balanced mixture of critical and
casual viewers; their familiarity with image processing did not
seen to have any significant effect on the test results. All six
subjects participated in both experiments. Prior to the test,
each observer was presented with the original images and
typical examples of compressed images, in order to become
familiarized with the test environment. During the test, the
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observers were given enough time to make their decisions. In
the relative test, they were also allowed to view the original
test images (at the highest resolution) at any time during the
test. The ordering of images and encoders was randomized to
avoid any biases, but as we will see below, the bitrates were
not.

For a review of the general methodology of designing a
psychophysical test, the reader is referred to [40]-[42].

B. Just-Noticeable Noise Perception Assessment

The goal of the just-noticeable noise perception assessment
is to find the distortion level at which the compression artifacts
become invisible. In theory, the JND can be predicted using
existing perceptual fidelity measures. However, this is not
always true in practice, thus making this experiment necessary.
This experiment is in contrast to the relative perceived quality
test, where we test the expectation that the subjects are willing
to accept some compression artifacts in order to obtain a larger
image, in which case they should select a higher resolution
than the one that corresponds to the JND level.

This experiment consists of a series of two-alternative
forced choice (2AFC) tests. Each observer was presented with
two images, the original and the encoded image, in random
order, and was asked to select the one without compression
artifacts. Both images were downsampled to a given resolution
using the same algorithm. An example of the stimulus is shown
in Figure 4. The test was repeated ten times at each resolution
and distortion level (bitrate). If all the answers are correct, this
indicates that the noise is visible. If the noise is not visible,
then the observer’s selection should be random, i.e., 50% of
the answers should be correct. In a 2AFC experiment like
this, the threshold value for the correct answer is typically
taken as the midpoint between the ideal percentages, which
corresponds to 75% correct [43]. Therefore, if an observer
gives the correct answer eight times or more, then we conclude
that the noise is visible; otherwise it is invisible. The lowest
level of distortion at which the noise is invisible is the JND.
A similar experimental setup was used in [14], [44].

In principle, there should be ten trials for each bitrate,
image, and spatial resolution, which adds up to over a thou-
sand trials for each observer. However, since our goal is to
determine the threshold of perception, the length of the test
can be significantly reduced through the use of a dynamic
threshold determination method. Rather than carrying out an
exhaustive test, each observer was presented with a limited
range of bitrates. The initial bitrate was chosen in the middle of
the range of bitrates. If the compression artifacts at this bitrate
were determined to be visible, then the bitrate was increased
by one step. This procedure was repeated until the artifacts
became invisible. Similarly, if the compression artifacts at the
initial bitrate were determined to be invisible, then the bitrate
was decreased one step at a time until they became visible. In
both cases, once the critical coding bitrate was determined,
an additional test at the next higher or lower bitrate was
conducted, in order to validate the results.
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TABLE I

CODING BITRATES FOR THE TEST IMAGES

Image Coder || Bitrates (bits/pixel)
Bank JPEG 1.0, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.3, 0.25, 0.2
JPEG 2000 1.0, 0.75, 0.6, 0.5, 0.3, 0.2, 0.18, 0.15, 0.12, 0.1, 0.05
Bike JPEG 1.0, 0.8, 0.6, 0.5, 0.4, 0.3, 0.27, 0.23
JPEG 2000 1.0, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.04, 0.03
Lena JPEG 1.0, 0.5, 0.4, 0.35, 0.3, 0.27, 0.25, 0.23, 0.2
JPEG 2000 1.0, 0.5, 0.4, 0.35, 0.3, 0.2, 0.1, 0.08, 0.05, 0.03
Woman JPEG 1.0, 0.6, 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.14
JPEG 2000 1.0, 0.5, 0.3, 0.2, 0.1, 0.08, 0.06, 0.04

TABLE II
SPATIAL RESOLUTIONS AND VIEWING CONDITIONS
Spatial resolution 512 384 256 192 128 96 64
Viewing angle (degree) 9.53 7.15 4.77 3.58 2.39 1.79 1.19
Maximum spatial frequency (cycles/degree) 53.74 4031 26.87 20.15 1344 10.08 6.72

Fig. 4. Test images for the just noticeable noise perception assessment test
(“Bank” coded by JPEG at 0.2 bits/pixel).

C. Relative Perceived Quality Assessment

The goal of the relative perceived quality assessment test
is to study the effect of spatial resolution on the perceived
quality of the displayed images. When the spatial resolution
decreases, the visibility of the compression artifacts is reduced
and so is the visibility of the signal. One key question to be
answered is how the visibility reductions for the signal and
the noise relate to each other perceptually. This subjective
experiment was designed to answer the question by asking
an observer to take both effects into consideration as she/he
selects the resolution that maximizes the perceived quality. In
the subjective experiment, each subject was presented with
a set of images at different spatial resolutions and asked to
select the one of highest subjective quality. All the images
in the set were downsampled from the same decoded image.
Figure 5 illustrates the setup, a seven-alternative forced choice
(7TAFC) stimulus array. The images are ordered clockwise
in increasing resolution in order to facilitate pair-wise com-
parisons between adjacent resolutions. While the images and
compression techniques were randomized, the bitrates were
presented in descending order. This is because the observers
may be confused if the quality jumps around too much, and
also, by moving from higher to lower quality, the observers
have a better sense of what they are looking for.

Fig. 5. Test images for the relative perceived quality assessment test (“Lena”
coded by JPEG 2000 at 0.1 bits/pixel).

IV. EXPERIMENTAL RESULTS

We now examine the results of the subjective experiments.
Due to a variety of factors, it is reasonable to expect that the
results of such subjective evaluations will include a number
of outliers. Thus, as is typical in subjective evaluations, in
each test we excluded the most extreme (high or low) vote.
That is, in the just noticeable noise perception assessment,
for each image and resolution, we excluded the observer
with the most extreme bitrate, while in the relative perceived
quality assessment, for each image and bitrate, we excluded
the observer with the most extreme resolution. When there
were two extreme votes, we excluded the one with the lower
numerical value. We then used both the median and the mean
of the remaining votes as the final outcome of the assessment.

A. Just Noticeable Noise Perception Assessment

Figure 6 plots the noise visibility thresholds that were ob-
tained from the Just Noticeable Noise Perception Assessment.
Note that the axes of these plots have been interchanged in
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Fig. 6. Noise visibility thresholds for all the subjects. Their votes are indicated by the dotted lines and their median value is by the solid line.

order to provide consistency with the figures that follow. In
general, we expect the noise visibility threshold to decrease as
the spatial resolution increases, and thus, the selected bitrate
to increase with increasing resolution. Observe that this is not
true for all of the results. Several violations of this expectation
can be seen in Fig. 6 (a), (b), (d), (f), and (h). For example,
note the graph for sbjS in the “Bike” image of Fig. 6 (b)
and (f). This may be explained by the fact that the inherent
noise in the original uncompressed image could influence
the observer’s choice. Image compression algorithms typically
drop high frequencies, and this results in image smoothing.
When the original image is noisy (or even textured, e.g.,
in a face), the observers may then consider the smoother
compressed image as superior to the noisy original and, thus,
label it as original.

The overall JND level (median) is shown in solid line in
the figure. At a given resolution, this represents the bitrates at
which the compression artifacts become invisible. Note that
at low resolutions, the JND levels for images generated by
JPEG 2000 correspond to lower bitrates than those for JPEG
images, while at higher resolutions, the results are mixed.
This should be expected because at lower rates JPEG 2000
provides superior rate-distortion performance, while at higher
rates JPEG outperforms JPEG 2000 for highly detailed images
(like “Bank”, “Bike”) but is less efficient for images with low
detail, whose quality is not affected by a certain amount of
blurring (like Lena and “Woman”).

B. Relative Perceived Quality Assessment

Figure 7 depicts the most preferred spatial resolution from
the results of the relative perceived quality assessment. As
in Fig. 6, the x-axis and the y-axis correspond to the coding
bitrate and the spatial resolution, respectively. Note that in
Fig. 7 (c), (e), and (g) one can see several measurement

inconsistencies. As we saw above, the final result (solid lines)
was obtained as the median values of the subjects’ votes after
excluding one extreme measurement for each test. Note that
as the bitrate decreases, the subjective quality decreases, and
that the observers prefer to reduce the spatial resolution in
order to reduce the visibility of the compression artifacts.
The question is whether they always prefer the resolution
at which no compression artifacts are visible, or they are
willing to accept some artifacts instead of a further decrease
in image resolution (and size). To answer this question, we
now compare the results of the two subjective experiments.

C. Comprehensive Analysis and Statistical Validation of Ex-
perimental results

Figures 8 and 9 plot the results of the two tests (from
Figs. 6 and 7, respectively) on one graph for each image
and compression technique. Black solid lines with triangle
markers correspond to the median of the measured JND levels.
The error bars show the standard deviation and are centered
on the mean values, which are marked with blue triangles.
The red dashed lines connect the error bars to outline the
area within a standard deviation of the measured JND values.
The medians of the observer votes for the relative perceived
quality test are shown in black solid lines with circle markers.
The corresponding error bars are centered on the mean values,
which are marked with blue circles. Note that since the tests
included a discrete set of bit rates and spatial resolutions, the
medians may be more meaningful than the means, but the
means and error bars are also included as an indication of the
most likely range of values of the respective quantities. Note
that for the most part, the most preferred noise-level/resolution
points of the relative perceived quality test are well outside
the JND range. This is true for both JPEG and JPEG 2000
encoding. Table III shows the ratio of the observer votes in
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TABLE III

RATIO OF OBSERVERS’ VOTES IN THE RELATIVE PERCEIVED QUALITY
TEST THAT FALL WITHIN A STANDARD DEVIATION OF THE JND (%)

JPEG | JPEG 2000 |

Bank 1.67 9.09
Bike 14.58 10.06
Lena 18.52 28.33
Woman 26.67 12.50
[ Average | 15.32 | 15.00 |

the relative perceived quality test that fall within a standard
deviation of the JND level for each image and coding method.
Based on these observations, we conclude that the difference
between the noise visibility levels that correspond to the most
preferred resolution and the JND levels is significant.

A couple of additional observations are in order. At the
maximum spatial resolution of 512 x 512, the relative perceived
quality levels saturate before the maximum coding bitrate of
1.0 bpp is reached. For “Lena” coded by JPEG 2000 in Fig. 9
(c), the JND level is lower than the relative perceived quality
level at the highest resolution (512 x 512). Our interpretation
of this somewhat unexpected result is that the original “Lena”
image has visible noise artifacts that get wiped out by JPEG
2000 compression. Thus, in the JNP test, the observers prefer
the lower rate images. On the other hand, in the relative
perceived quality test, the observers simply pick the largest
image in spite of the noise artifacts. A similar observation
holds for the “Woman” image. In this case, there is no noise;
it is just that smoother faces look better than textured faces.

For comparison, we also include the predictions of the
Safranek-Johnston fidelity metric [14], shown as image in-
tensities using the heated object color map [45]. As we
discussed, existing metrics assume that the original and dis-
torted image are at the same resolution, and cannot provide

(g) “Lena” — JPEG 2000 (h) “Woman” — JPEG 2000

Most preferred resolution for all the subjects. Their votes are indicated by the dotted lines and their median value is by the solid line.

quantitative estimates of image quality across resolutions.
Thus, the metric values were computed on the downsampled
original and compressed images, and are shown as independent
horizontal stripes for each resolution. Note that the predictions
of the Safranek-Johnston fidelity metric are mostly consistent
with the results of our JNNP test, i.e., the JNNP test line
is close to the points where the distortion map reaches its
maximum (becomes white). However, there are also significant
deviations, e.g., in Figures 7(c) and 8(c). We also compared
the results of the other objective measures we discussed in
Section II, such as the SSIM and its variations, Watson’s DCT
metric, as well as wavelet based metrics. We found that their
JND predictions do not correspond well with our subjective
tests.

For a given spatial resolution, we can say that the difference
between the perceptually noise-transparent level and the level
that corresponds to the most preferred resolution represents the
perceptual tolerance of the observer. This perceptual tolerance
can be expressed in visual dBs as the difference of the
corresponding MPSNRs, or can be converted to JNDs by
inverting (2). Thus, for the JPEG encoded “Bank” image, at
256 x 256, the perceptual tolerance is 0.64 visual dB or 1.076
JNDs. Figures 10(a) and 11(a) show the perceptual tolerances
for each image and coding technique as a function of spatial
resolution, averaged over the observers. The error bars show
the standard deviations. Observe that the perceptual tolerance
increases as the spatial resolution decreases. This is true for
all images and both compression schemes. Figures 10(b) and
11(b) show the averages over all the images; the standard
deviations account for variations both in observer preferences
and image content. Note again, that there is a significant
difference from the JND level, but the standard deviations
are perhaps too high to reliably predict the most preferred
resolution for each image.
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Fig. 10. Perceptual tolerance expressed in JNDs for JPEG compression.
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Fig. 11. Perceptual tolerance expressed in JNDs for JPEG 2000 compression.

Another illustration of the results of the two subjective tests
is provided in Tables IV and V, which list the Safranek-
Johnston metric predictions for each resolution and bitrate,
with JND levels shown as shaded cells and the most preferred
resolutions shown in boldface numbers. For all the tables,
the highest quality is at the lowest spatial resolution and
highest bitrate (bottom-right), and the lowest quality is at the
highest spatial resolution and lowest bitrate (top-left). Note
that because of the way the two experiments were designed,
each row contains one shaded box (the lowest bitrate for that
resolution at which artifacts are not visible), and each column
contains one boldface number (the most preferred resolution).

Overall, based on the results of the two experiments, we can
conclude that in most cases the most preferred resolution is
higher than the perceptually transparent resolution (JND). In
other words, human observers are willing to accept some vis-
ible distortion in order to obtain higher resolution. Moreover,
the amount of acceptable distortion, what we called perceptual
tolerance, increases as the spatial resolution decreases.

V. CONCLUSIONS

We considered tradeoffs between spatial resolution and
the visibility of compression artifacts. Such tradeoffs are
not reflected in existing fidelity measures, which ignore the
signal visibility and only measure the visibility of compression
distortions, which decrease with image size. The analysis of
such tradeoffs is of importance in applications that involve a
wide variety of bitrates and display devices, including scalable
image compression applications.

Based on three fundamental assumptions of human psy-
chophysical behavior, we designed two subjective tests to
experimentally verify the hypothesis that there are unconven-
tional tradeoffs between spatial resolution and the visibility of
compression artifacts. The goal of the just noticeable noise
perception assessment test was to obtain the resolution at
which no compression artifacts are visible. The goal of the
relative perceived quality assessment test was to find, for each
image and bitrate, the most preferred resolution on the basis
of both image size and visibility of compression artifacts.
We used two standard image coders (JPEG and JPEG 2000)
and a set of representative images. Our results indicate that
the tradeoffs that we hypothesized exist and that the most
preferred resolution is higher than the resolution at which there
are no visible distortion artifacts. Conversely, the distortion
levels at the most preferred resolution are significantly higher
than the JND thresholds. In other words, human observers
are willing to accept some visible distortion in order to
obtain higher resolution. Moreover, the amount of acceptable
distortion, which we call perceptual tolerance, increases as the
spatial resolution decreases. We also attempted to quantify this
perceptual tolerance in terms of the masked peak signal-to-
noise ratio. However, our results indicate that the variance of
the measurements is too high to reliably predict the perceptual
tolerance across different images and observers. The focus of
this paper was on still images, but similar tradeoffs also apply
to video. Of course, in the video case there are additional
tradeoffs to be explored as the temporal resolution can also be
varied.
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TABLE IV
MPSNR VALUES (DB) OBTAINED BY THE SAFRANEK-JOHNSTON METRIC OVER DIFFERENT CODING RATES AND SPATIAL RESOLUTIONS FOR JPEG
CODED IMAGES (JUST-NOTICEABLE LEVELS IN SHADED CELLS, MOST PREFERRED RESOLUTIONS IN BOLD NUMBERS)

| Resolution/bpp | 02 [ 025 [ 03 | 04 [ 045 ] 05 ] 06 [ 07 [ 08 [ 1.0 |
512 37.19 | 40.13 | 42.00 | 44.28 | 44.99 | 45.67 | 46.44 | 46.99 | 47.36 | 47.96
384 38.07 | 41.11 | 43.05 | 45.26 | 45.87 | 46.50 | 47.11 | 47.50 | 47.73 | 47.98
256 3993 | 43.02 | 44.74 | 46.55 | 46.94 | 47.35 | 47.69 | 47.89 | 47.99 | 48.09
192 41.05 | 44.07 | 45770 | 47.18 | 47.44 | 47.70 | 47.93 | 48.02 | 48.08 | 48.13
128 42.05 | 45.18 | 46.50 | 47.61 | 47.76 | 4791 | 48.03 | 48.08 | 48.11 | 48.13
96 43.10 | 46.12 | 47.20 | 47.86 | 47.95 | 48.04 | 48.10 | 48.12 | 48.13 | 48.13
64 44.92 | 4737 | 47779 | 48.06 | 48.07 | 48.11 | 48.12 | 48.13 | 48.13 | 48.13
(a) “Bank” JPEG
[ Resolution/bpp | 023 [ 027 [ 03 | 04 [ 05 | 06 [ 08 [ 1.0 |
512 39.22 | 40.87 | 41.70 | 43.75 | 45.04 | 46.02 | 47.11 | 4791
384 40.27 | 42.00 | 42.84 | 4483 | 46.01 | 46.81 | 47.61 | 47.90
256 4245 | 44.10 | 4490 | 46.45 | 47.20 | 47.64 | 47.99 | 48.08
192 44.59 | 45.08 | 45.83 | 47.04 | 47.56 | 47.85 | 48.06 | 48.11
128 44.81 | 46.10 | 46.70 | 47.54 | 47.84 | 48.01 | 48.11 | 48.13
96 45.83 | 46.78 | 47.24 | 4783 | 4798 | 48.08 | 48.12 | 48.13
64 47.12 | 47.60 | 47.78 | 48.04 | 48.10 | 48.12 | 48.13 | 48.13
(b) “Bike” JPEG
| Resolution/bpp | 0.2 | 0.23 | 0.25 | 0.27 | 0.3 | 0.35 | 0.4 | 0.5 | 1.0 |
512 39.53 | 41.22 | 42.12 | 42.80 | 43.74 | 4496 | 45.67 | 46.69 | 48.09
384 40.36 | 42.10 | 43.02 | 43.71 | 44.55 | 45.70 | 46.36 | 47.22 | 48.11
256 4235 | 4397 | 4482 | 45.45 | 46.07 | 4692 | 4733 | 47.81 | 48.13
192 43.50 | 4497 | 45775 | 46.24 | 46.76 | 47.40 | 47.69 | 4797 | 48.13
128 44.61 | 4590 | 46.67 | 46.95 | 4733 | 47.76 | 4792 | 48.07 | 48.13
96 45.69 | 46.66 | 47.20 | 47.46 | 47.69 | 47.95 | 48.04 | 48.11 | 48.13
64 46.69 | 4745 | 47.82 | 4792 | 48.02 | 48.08 | 48.11 | 48.13 | 48.13
(c) “Lena” JPEG
| Resolution/bpp | 0.14 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.5 | 0.6 | 1.0 |
512 38.92 | 40.16 | 43.70 | 45.08 | 45.94 | 46.46 | 46.86 | 47.35 | 47.63 | 48.09
384 39.39 | 40.72 | 4435 | 45.72 | 46.53 | 46.99 | 4731 | 47.69 | 47.89 | 48.11
256 40.90 | 4236 | 4583 | 46.90 | 47.45 | 47.70 | 47.86 | 48.03 | 48.09 | 48.13
192 41.72 | 4322 | 46.54 | 4733 | 47.75 | 47.90 | 48.00 | 48.08 | 48.11 | 48.13
128 42.66 | 4427 | 4724 | 47771 | 47.96 | 48.04 | 48.09 | 48.12 | 48.13 | 48.13
96 43.72 | 4532 | 47.63 | 4794 | 48.06 | 48.09 | 48.11 | 48.13 | 48.13 | 48.13
64 4547 | 46.84 | 4798 | 48.09 | 48.12 | 48.13 | 48.13 | 48.13 | 48.13 | 48.13
(d) “Woman” JPEG
This paper has highlighted the need for a fundamental REFERENCES

change in our understanding of image quality assessment, both
subjective and objective. The results of our subjective tests
are expected to be applicable in the development of image
fidelity measures that predict image quality over multiple
resolutions and viewing conditions, and take into account
both the visibility of the compression artifacts and the image
size, i.e., the visibility of the signal itself. Such measures
will be invaluable for scalable image and video compression
applications.
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| Resolution/bpp | 0.05 | 0.1 | 0.12 | 0.15 | 0.18 | 0.2 | 0.3 | 0.5 | 0.6 | 0.75 | 1.0 |
512 3272 | 36.44 | 37.13 38.46 | 39.15 | 4041 4228 | 44.84 | 45.54 | 46.60 | 47.20
384 33.94 | 37.79 | 38.51 3997 | 40.60 | 42.03 | 43.45 | 45.72 | 46.32 | 47.20 | 47.56
256 36.73 | 40.71 41.12 | 4291 | 43.44 | 44.61 4541 | 47.01 4743 | 47.84 | 47.94
192 3840 | 4237 | 4246 | 4455 | 4495 | 45.74 | 46.29 | 47.48 | 47.81 48.03 | 48.05
128 39098 | 4397 | 4396 | 4591 | 4620 | 46.62 | 46.88 | 47.79 | 48.01 48.09 | 48.09
96 41.42 | 4537 | 45.40 | 47.07 | 47.12 | 47.29 | 47.35 | 47.99 | 48.12 | 48.12 | 48.12
64 44.55 | 47.00 | 46.93 | 47.78 | 47.79 | 47.87 | 47.87 | 48.11 48.13 | 48.13 | 48.13
(a) “Bank” JPEG 2000
| Resolution/bpp | 0.03 | 0.04 | 0.05 | 0.08 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.75 | 1.0 |
512 31.85 33.19 34.05 36.14 37.68 40.61 42.13 43.77 44.59 46.17 | 46.85
384 32.71 34.38 35.13 37.46 39.14 42.11 43.54 | 45.13 45.61 47.01 47.33
256 35.47 37.68 38.24 40.39 42.25 44.55 45.85 46.83 46.99 47.80 | 47.88
192 37.20 39.73 40.06 41.96 44.02 | 45.60 46.78 47.40 | 47.47 48.01 48.02
128 3880 | 41.76 | 42.20 | 43.59 | 4557 | 4635 | 47.50 | 47.76 | 47.73 | 48.00 | 48.00
% 3087 | 4398 | 44.56 | 45.07 | 46.86 | 47.17 | 4701 | 4797 | 4797 | 48.12 | 48.12
o4 3417 | 4640 | 46.75 | 4636 | 47.83 | 47.87 | 48.10 | 48.11 | 48.11 | 48.13 | 48.13
(b) “Bike” JPEG 2000
| Resolution/bpp | 0.03 | 0.05 | 0.08 | 0.1 0.2 | 0.3 | 0.35 | 0.4 | 0.5 | 1.0 |
512 32.62 | 3553 | 37.96 | 39.76 | 43.52 | 45.02 | 45.76 | 45.76 | 46.79 | 47.80
384 33.17 36.62 39.07 41.08 44.61 45.77 | 46.50 | 46.75 47.29 47.96
256 3591 39.65 41.60 43.81 46.50 47.02 47.54 | 47.68 47.86 | 48.11
192 37.67 41.46 42.92 45.26 | 47.26 47.46 | 47.89 47.97 48.02 | 48.13
128 39.47 43.11 44.09 46.38 47.72 47.75 48.05 48.08 48.09 48.13
96 41.17 44.94 45.24 47.27 47.98 47.98 48.12 48.12 48.12 | 48.13
64 44.54 | 46.85 46.89 4794 | 48.12 48.12 48.13 48.13 48.13 48.13
(c) “Lena” JPEG 2000
[ Resolution/bpp | 004 ] 006 [ 0.08 | 01 [ 02 | 03 [ 05 [ 1.0 |
512 39.63 | 41.71 | 42.85 | 43.83 | 45.66 | 46.47 | 47.24 | 47.90
384 40.56 42.53 43.72 44.66 46.39 47.09 47.63 48.01
256 42.31 4436 | 45.35 46.30 47.47 47.82 48.03 48.11
192 43.20 45.25 46.08 | 47.00 47.83 48.01 48.11 48.12
128 44.04 46.12 | 46.71 47.56 48.04 48.10 48.13 48.13
96 45.07 47.06 47.26 | 47.92 48.12 48.13 48.13 48.13
64 46.84 47.86 4790 | 48.10 48.13 48.13 48.13 48.13

(d) “Woman” JPEG 2000
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