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ABSTRACT

Perceptual image quality metrics have explicitly accounted for per-
ceptual characteristics of the human visual system (HVS) by mod-
eling sensitivity to subband noise as the just-noticeable threshold of
distortion. While such metrics can successfully account for contrast
and luminance masking, they are quite sensitive to spatial shifts,
intensity shifts, contrast changes, and scale changes. In contrast,
the recently proposed Structural SIMilarity (SSIM) metrics account
for perception more implicitly with the assumption that the HVS is
adapted for extracting structural information (relative spatial covari-
ance) from images. As such, they have the potential to be much
more effective in quantifying suprathreshold compression artifacts
than traditional perceptual metrics, as such artifacts tend to distort
the structure of an image. We use a (perceptually) weighted varia-
tion of the Complex Wavelet SSIM (CWSSIM) to evaluate standard
image compression techniques such as JPEG, JPEG 2000, SPIHT,
and the Safranek-Johnston perceptual image coder. Our experimen-
tal results indicate that the weighted CWSSIM generally agrees with
subjective evaluations.

Index Terms— perceptual quality, structural similarity, image
compression, JPEG, JPEG 2000, perceptual subband image coder

1. INTRODUCTION

Perceptual image quality metrics have explicitly accounted for per-
ceptual characteristics of the human visual system (HVS) by mod-
eling sensitivity to subband noise as the just-noticeable threshold of
distortion [1]. While these metrics were developed for near-threshold
applications, their use has been extended to suprathreshold appli-
cations [2, 3]. More systematic studies of the suprathreshold case
have been conducted by Hemami’s group [4–7]. However, while
perceptual metrics can successfully account for contrast and lumi-
nance masking, they are quite sensitive to spatial shifts, intensity
shifts, contrast changes, and scale changes. Moreover, Chenet al.[3]
found that perceptual metrics based on a given subband decomposi-
tion (DCT, wavelet, generalized quadrature-mirror filters) are inher-
ently biased towards the coders that use the same decomposition.

Another class of quality metrics, known as Structural SIMilarity
(SSIM) [8], account for perception more implicitly with the assump-
tion that the HVS is adapted for extracting structural information
(relative spatial covariance) from images. While the structural simi-
larity metrics have been shown to have a number of desirable prop-
erties, there has been no systematic study in the context of image
compression. In this paper, we use a perceptually weighted varia-
tion of the most sophisticated and effective of the structural simi-
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larity metrics, the Complex Wavelet SSIM (CWSSIM), to evaluate
standard image compression techniques such as JPEG, SPIHT [13],
the Safranek-Johnston perceptual image coder [12], and JPEG2000.
Since the SSIM metrics are derived from assumptions about the
high-level functionality of the HVS, they have the potential to be
much more effective in quantifying suprathreshold compression ar-
tifacts, as such artifacts tend to distort the structure of an image. Our
experimental results indicate that the (perceptually) weighted CWS-
SIM (WCWSSIM) generally agrees with subjective evaluations.

2. STRUCTURAL APPROACH TO IMAGE QUALITY
MEASUREMENT

2.1. SSIM review

The motivation behind the structural similarity approach of measur-
ing image quality is the concept that the human visual system is not
built for detecting absolute, exact intensities. Instead, the HVS is
adapted to help us navigate the three-dimensional space we live in
and, consequently, the ability to quickly perceive the connectedness
or structureof natural images is evolutionally advantageous. Our
visual system is the preprocessor for one of our greatest strengths:
visual pattern recognition. Our recognition system is robust to many
changes — we can accurately recognize faces from many angles, un-
der bright or dim lighting, and with partial obscuration because our
HVS is very good at extracting structure from the underlying plenop-
tic light data produced by the interaction of light and the objects we
are observing.

The suggestion that useful image quality metrics can be created
based on the idea that the HVS extracts structural information is de-
veloped and explained in [8]. It is desirable for an image quality
measurement system to be able to account for a wide variety of pos-
sible image distortions in a way that agrees with the human percep-
tion. Some of the most common distortions that the HVS encounters
are due to changes in lighting [9]. Our visual system adapts to a very
wide range of lighting changes without any conscious intervention
from the perceiver. We consider it useful that the structural simi-
larity approach is mostlyinsensitiveto the distortions that lighting
changes create: changes in the mean and contrast of an image. It
also makes sense that structural approaches aresensitiveto distor-
tions that break down natural spatial correlation of an image: blur,
blocking, ringing, and noise fall into this category.

As described in [8], the structural philosophy can be implement-
ed using a set of equations defining the Structural SIMilarity (SSIM)
quality metric. Luminance, contrast, and structure are measured sep-
arately. Given two images (or image patches)x andy to be com-
pared,luminanceis estimated as the meanµ of each image,contrast
is estimated as the standard deviationσ, andstructureς is estimated
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from the image vectorx by removing the mean and normalizing by
the standard deviation.

Then, the measurementsµx, µy, σx, σy, ςx, ςy are combined us-
ing a luminance comparison functionl(x,y), contrast comparison
functionc(x,y), and structure comparison functions(x,y) to give
a composite measure of structural similarity:

SSIM(x,y) = l(x,y)α · c(x,y)β · s(x,y)γ (1)

whereα, β, γ are positive constants used to weight each comparison
function.

Using the comparison functions defined in [8] and settingα =
β = γ = 1 gives the specific SSIM quality metric

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

2.2. CWSSIM review
As suggested in [10], it is straightforward to implement a structural
similarity metric in the complex wavelet domain. As more wavelet-
based image and video coding techniques are coming into use, it
makes sense to be able to implement image quality metrics in this
domain. In addition, if an application requires an image quality met-
ric that is unresponsive to spatial translation, this extension of SSIM
can be adapted in a way such that it has low sensitivity to small trans-
lations. This requires an overcomplete transform such as steerable
pyramid decomposition wherephase information is available.

Given complex wavelet coefficientscx andcy that correspond to
image patchesx andy to be compared, the complex wavelet struc-
tural similarity (CWSSIM) is given by:

CWSSIM(cx, cy) =
2|

PN
i=1 cx,ic

∗
y,i| + KPN

i=1 |cx,i|2 +
PN

i=1 |cy,i|2 + K
(3)

whereK is a small positive constant set to 0.03 in this paper. This
equation differs from (2) because the wavelet filters we use are band-
pass (i.e. they have no response at zero frequency) forcing the mean
of the wavelet coefficients to zero (µx = µy = 0). This fact acts to
cancel the(2µxµy + C1) and(µ2

x + µ2
y + C1) terms of (2).

In [10], Wang and Simoncelli note that wavelet coefficient phase
is the key factor that determines the structural distortion results of
this metric, emphasizing that “the structural information of local im-
age features is mainly contained in the relative phase patterns of the
wavelet coefficients”. Linear scaling of the coefficients corresponds
to lighting (brightness and contrast) distortions to which CWSSIM
is not very sensitive because thestructure is not perturbed (it is
sensitive in a power-law sense similar to Weber’s law). Consistent
phase shift of the coefficients corresponds to spatial translation, an-
other distortion to which CWSSIM is not strongly sensitive. Phase
changes that vary irregularly from one coefficient to the next produce
structural distortion to which CWSSIM is very sensitive.

Fig. 1. Original grayscale images used for coder comparisons.

The structural similarity metric gives a result in the range from
0.0 to 1.0, where zero corresponds to a loss of all structural similarity
and one corresponds to having an exact copy of the original image.
Images with lighting-related distortions alone give high SSIM while
other distortions result in low similarity, corresponding well with the
intuitive perception of quality.

We use the WCWSSIM, a form of CWSSIM that uses weighted
results from multiple subbands, where the weights are derived from
the HVS contrast sensitivity function [14]). We found that this mod-
ification can better handle local mean shift distortions [14]).

3. USING SSIM TO ASSESS IMAGE QUALITY
OF JPEG, JPEG2000, SPIHT, & PIC CODERS

As we discussed above, perceptual image quality metrics have been
based on the human visual system’s sensitivity to just-noticeable dis-
tortions. When images are compressed beyond the threshold of dis-
tortion, the perceptual metrics fail to provide meaningful measure-
ments of the HVS’s response to the severe artifacts [2]. While per-
ceptual metrics have been used in suprathreshold applications [6],
they do not account for the wide variety of compression artifacts
generated by image and video coders at low bit rates. Moreover, as
pointed out in [1], they tend to be biased towards coders that have
the same subband structure. SSIM-based image quality metrics con-
veniently avoid this problem by focusing on the top-down image for-
mation concept that the local structure of images is the most impor-
tant aspect of image quality. The ability of structural similarity to
distinguish between structural and non-structural distortions leads to
results that agree with perception for severely distorted images.

In order to explore the utility of structural similarity metrics for
evaluating compression algorithms, we test a set of coders similar
to the work in [3]. The coders tested are: the standard JPEG al-
gorithm with a perceptually weighted quantization table optimized
for 6 image heights [11]; the Safranek and Johnston Perceptual sub-
band Image Coder (PIC) [12] based on a perceptual masking model
(two versions of this coder were used, with4 × 4 and8 × 8 sub-
band decompositions); the Said-Pearlman SPIHT zero-tree wavelet
coder [13] with perceptual weighting added; and finally the baseline
JPEG2000 coder which is also wavelet-based.

We developed a small database of approximately 1800 com-
pressed images created from 13 original natural images displayed
in Figure 1 with compression ranging from 0.1 to 2.0 bits per pixel
(b/p) for JPEG, SPIHT, JPEG2000, PIC 4x4, and PIC 8x8. The lib-
jpeg 1 and JasPer2 reference software was used to create the JPEG
and JPEG2000 images, respectively. The SPIHT and PIC images
were created using software provided by the corresponding authors.

The compressed images were evaluated for image quality us-
ing PSNR and the WCWSSIM described in Section 2.2. The fo-
cus of this paper is in comparing WCWSSIM to mean squared error
(PSNR). Comparison with perceptually weighted metrics is beyond
the scope of this paper. For some interesting comparisons with per-
ceptually weighted metrics, see [1].

Figure 2 shows scatter plots of the quality metrics for the entire
image database. As might be expected, PSNR varies considerably
based on image content alone. Even at the relatively high bitrate
of 1.0 b/p, PSNR ranges from 25 dB to 37 dB. The WCWSSIM
scatter plot is more tightly clustered with no obvious banding due
to particular image content, therefore, it is measuring the structural
distortion due to compression artifacts and is much less lasensitive to

1libjpeg is available at http://www.iig.org/
2JasPer is available at http://www.ece.uvic.ca/ mdadams/jasper/
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Fig. 2. PSNR and WCWSSIM metrics for JPEG, JPEG2000, SPIHT (“pearl” in legend), PIC 4x4, and PIC 8x8 coders. This plot shows
combined results from the entire database of 13 different images compressed with each coder from 0.05 to 1.0 bits per pixel. Plot (a) exhibits
banding due to variation from image to image, while plot (b) shows consistent results indicating that the numeric results of WCWSSIM have
more meaning in the absolute sense.

Fig. 3. “Rose” image compressed to 0.5 bits per pixel with JPEG2000 (left) and PIC 8x8 (right). The JPEG2000 image has PSNR=23.2 and
WCWSSIM=0.88 while the PIC 8x8 image has PSNR=21.6 and WCWSSIM=0.94.



Fig. 4. PSNR (top) and WCWSSIM (bottom) for “rose” compressed
with JPEG, JPEG2000, SPIHT (“pearl” in legend), PIC 4x4, and PIC
8x8 coders.

intra-image differences. These results indicate that the WCWSSIM
numbers are more meaningful in comparisons across images.

Another notable observation is that PSNR favors the SPIHT and
JPEG2000 images because they are optimized toward minimizing
mean-squared error. Figure 4 shows the relative performance of
different compression techniques according to PSNR and WCWS-
SIM metrics for the “rose” image. Note that, according to WCWS-
SIM, JPEG2000 has the worst performance especially at high bit
rates, generally agreeing with perceived quality in informal subjec-
tive evaluations. This can be accounted for in part by the fact that the
baseline JPEG2000 implementation uses no perceptually weighted
quantization table, while all the other techniques do.

A specific example is shown in Figure 3, where compressed
“rose” images are displayed at 0.5 b/p for JPEG2000 and PIC 8x8
coders. WCWSSIM indicates that the PIC 8x8 image has signifi-
cantly higher quality than the JPEG2000 image. Indeed, the percep-
tual quality of these images correlates well with WCWSSIM’s pre-
dictions. Especially in the pavement region, the JPEG2000 blur dis-
tortions are quite noticeable. WCWSSIM detects this loss of struc-
ture, giving a much higher quality score to PIC 8x8. These results
are very similar for the rest of the images in the database, especially
in the suprathreshold range of 0.3 to 1.0 b/p.

Overall, our results indicate that WCWSSIM provides results
that agree well with informal subjective evaluation of images with
suprathreshold levels of distortion. In addition, it provides an un-
biased metric for comparison across coders and across images. As

such, we believe that it holds great potential for future coder devel-
opment and evaluation.
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