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Abstract— Perceptual image quality metrics have explicitly
accounted for human visual system (HVS) sensitivity to subband
noise by estimating just noticeable distortion (JND) thresholds.
A recently proposed class of quality metrics, known as structural
similarity metrics (SSIM), models perception implicitly by taking
into account the fact that the HVS is adapted for extracting
structural information from images. We evaluate SSIM metrics
and compare their performance to traditional approaches in the
context of realistic distortions that arise from compression and
error concealment in video compression/transmission applica-
tions. In order to better explore this space of distortions, we
propose models for simulating typical distortions encountered in
such applications. We compare specific SSIM implementations
both in the image space and the wavelet domain; these include
the complex wavelet SSIM (CWSSIM), a translation-insensitive
SSIM implementation. We also propose a perceptually weighted
multi-scale variant of CWSSIM, which introduces a viewing
distance dependence and provides a natural way to unify the
structural similarity approach with the traditional JND-based
perceptual approaches.

Index Terms— Error concealment, human perception, image
quality, structural similarity, video coding, video compression.

I. INTRODUCTION

MOST existing objective fidelity metrics compare the
reference and distorted images on a point-by-point

basis, whether this is done in the original image domain,
as in mean squared error based metrics such as peak signal
to noise ratio (PSNR), or in a transform domain, such as
the perceptually weighted subband/wavelet or discrete cosine
transform (DCT) domain [1]. The most advanced of these
metrics are based on low-level models of the HVS. On the
other hand, a recently proposed class of quality metrics,
known as Structural SIMilarity (SSIM) [2], accounts for high-
level HVS characteristics and allows substantial point-by-point
distortions that are not perceptible, such as spatial and intensity
shifts, as well as contrast and scale changes. Our goal is to
evaluate SSIM metrics and to compare their performance to
traditional approaches in the context of realistic distortions
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that arise from compression and error concealment in video
compression/transmission applications. In order to explore this
space of distortions in an efficient and systematic manner, we
propose models for simulating typical distortions encountered
in such applications.

Perceptual image quality metrics have relied on explicit low-
level models of human perception that account for sensitivity
to subband noise as a function of frequency, local luminance,
and contrast/texture masking [1], [3]. Typically, the signal
is analyzed into components (e.g., spatial and/or temporal
subbands), and the role of the perceptual model is to provide
the maximum amount of distortion that can be introduced to
each component without resulting in any perceived distortion.
This is usually referred to as the just noticeable distortion level
or JND. While these metrics were developed for near-threshold
applications, they have also been used in suprathreshold appli-
cations [4], [5]. The main idea is to normalize the distortion by
the JND [6], [7]. More systematic studies of the suprathresh-
old case have been conducted by Hemami et al. [8]–[11].
However, while perceptual metrics can successfully account
for subband (frequency) dependence of the HVS sensitivity
to noise and contrast and luminance masking, they cannot
account for imperceptible structural changes, such as spatial
shifts, intensity shifts, contrast changes, and scale changes.

The SSIM metrics [2] are based on high-level properties of
the HVS, but employ no explicit model of the HVS. They are
derived from assumptions about the high-level functionality
of the HVS, and in particular, account for the fact that it is
adapted for extracting structural information (relative spatial
covariance) from images. Thus, they can more effectively
quantify suprathreshold compression artifacts, as such artifacts
tend to distort the structure of an image. Even though the SSIM
metrics are not based on explicit models or measurements of
HVS sensitivities, they implicitly account for important HVS
properties such as light adaption and masking, in addition
to the perception of image structure [2]. However, while the
SSIM metrics have been shown to have a number of desirable
properties, they have not been systematically studied in the
context of image and video compression artifacts.

In an increasing number of applications, such as video
transmission over bandlimited and noisy channels, there is
a need to achieve very high compression ratios. In such
cases, a certain amount of perceived distortion is unavoidable.
Thus, there is an increased need for quantitative objective
measures of perceived distortion. In this paper, we examine the
performance of SSIM metrics for such suprathreshold video
transmission applications and compare their performance to
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traditional approaches.
In typical video transmission applications one encounters a

variety of distortions due to source coding (quantization) and
packet losses, which are concealed by different techniques. In
order to isolate the different types of distortion, analyze their
severity (as perceived by the HVS), and evaluate how well
they correspond to metric predictions, we propose models for
typical distortion artifacts such as DCT coefficient quantiza-
tion, spatial interpolation concealment, temporal replacement
concealment, and DC coefficient loss. These models can
be used to generate typical video coding and concealment
artifacts using still images, which considerably simplifies the
computational cost for the simulations, and provides flexibility
in isolating and controlling the severity of specific types of
distortions. We demonstrate that these models make it easy
to explore the space of realistic distortions, and provide an
invaluable tool for metric development and evaluation.

We compare specific SSIM index implementations both
in the image space and the wavelet domain. These in-
clude the complex wavelet SSIM (CWSSIM), a translation-
insensitive SSIM implementation. We also propose a percep-
tually weighted multi-scale variant of the complex wavelet
SSIM (WCWSSIM). We show that the perceptual weight-
ing is necessary for distortions that are critically dependent
on viewing distance, such as white noise and DCT-based
compression. Moreover, it provides a natural way to unify
the structural similarity approach with traditional JND-based
perceptual approaches. Our experimental results indicate that,
while structural similarity metrics – and especially the CWS-
SIM and WCWSSIM – provide significant advantages over
traditional approaches, they also have important limitations.
We believe that the proposed distortion models will be the
key to addressing such limitations.

The paper is organized as follows. In Section II, we review
traditional perceptual metrics. In Section III, we review the
motivation, development, and theory behind structural met-
rics, and discuss two specific implementations, SSIM and
CWSSIM. Section IV describes the results of using structural
metrics to assess image quality of a variety of suprathreshold
distortions. In Section V, we propose models of source cod-
ing and error concealment distortions in video compression,
and evaluate SSIM techniques; we also extend CWSSIM
to account for viewing distance, and show that there is a
natural way to unify the SSIM approach with the JND-based
perceptual approaches.

II. REVIEW OF PERCEPTUAL METRICS WITH EXPLICIT
VISUAL MODELS

In this section we review perceptual metrics that have been
developed for image compression applications. Such metrics
incorporate explicit models of the HVS that account for the
spatial contrast sensitivity function, contrast masking, and
luminance masking [1], [3]. They are typically based on a
multiscale frequency decomposition such as a discrete wavelet
transform (DWT), subband decomposition, or discrete cosine
transform (DCT). For each subband coefficient, a noise visibil-
ity threshold t(i, k) is obtained that represents the amount of

noise that can be added to the coefficient without resulting in
any perceived distortion. This is the just noticeable distortion
level or JND. Here k denotes the subband index and i the
coefficient location in the (possibly downsampled) subband
image. The image distortion is then computed as follows:
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where b(i, k) is the subband coefficient of the reference image,
b̂(i, k) is corresponding coefficient of the distorted image, and
t(i, k) is the visibility threshold. The value of Qs can be
based on psychophysical experiments. In this paper, we will
use Qs = 2, as in [6]; for a discussion of other choices, see
[1] and references therein. Note that when the difference of
two coefficients is below the visibility threshold, the noise
is invisible no matter what the actual value of the difference
is; otherwise, the difference is normalized by the JND. The
threshold t(i, k) is the product of three terms

t(i, k) = tb(k) τl(i, k) τt(i, k) (2)

where tb(k) is the baseline sensitivity threshold, τl(i, k) is
the luminance masking adjustment, and τc(i, k) is the con-
trast masking adjustment. If we combine the two masking
adjustments into τm(i, k) and assume that we are in a supra-
threshold regime, the image distortion can be expressed as
follows:
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This is illustrated in Fig. 1.
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Fig. 1. Perceptual quality metric

In order to be consistent with the traditional PSNR (where
PSNR = 10log10(2552/MSE)), we express the perceptual
metric in terms of “visual decibels (dB)” [1], [12]. We define
the “masked PSNR” or “perceptual PSNR (P-PSNR)” as

P-PSNR = 10 log10

2552

D2
p

. (4)

Note that the maximum value P-PSNR is 48.13 dB, which
results when all the terms in (1) are equal to 1, and hence
Dp = 1.

In this paper, we will use the metric developed by Safranek
and Johnston for subband coders [6], which we found to
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have the best performance among other similar metrics [5]. A
detailed description of the other metrics can be found in [1].
We will assume a fixed viewing distance of six image heights.
Even though the Safranek-Johnston metric was developed
for near-threshold applications, it can also be used in supra-
threshold applications [4], [5]. More systematic studies of the
suprathreshold case can be found in [8]–[11].

III. STRUCTURAL APPROACH TO IMAGE QUALITY
MEASUREMENT

A. SSIM Review
The motivation behind the structural similarity approach for

measuring image quality is that the HVS is not designed for
detecting imperfections and “errors” in images. Instead, the
HVS has evolved so that it can do visual pattern recognition
in order to be able to extract the structure or connectedness of
natural images. Based on this observation, it makes sense that a
useful perceptual quality metric would emphasize the structure
of scenes over the lighting effects. The idea that image quality
metrics can be created on the basis of this philosophy was first
explored in [13] and then modified, implemented, evaluated,
and developed in [2]. The structural similarity approach is
mostly insensitive to the distortions that lighting changes
create: changes in the mean and contrast of an image. On the
other hand, the structural approach is sensitive to distortions
that break down natural spatial correlation of an image, such
as blur, block compression artifacts, and noise.

As described in [14], the structural philosophy can be im-
plemented using a set of equations defining the SSIM quality
metric in image space. Luminance, contrast, and structure are
measured separately. Given two images (or image patches) x

and y to be compared, luminance is estimated as the mean of
each image

µx =
1

N

N
∑

n=1

xn, (5)

contrast is estimated using standard deviation as
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and structure is estimated from the image vector x by remov-
ing the mean and normalizing by the standard deviation

ςx =
x − µx

σx

. (7)

Then, the measurements µx, µy, σx, σy, ςx, ςy are combined
using a luminance comparison function l(x,y), a contrast
comparison function c(x,y), and a structure comparison
function s(x,y) to give a composite measure of structural
similarity:

SSIM(x,y) = l(x,y)α · c(x,y)β · s(x,y)γ , (8)

where α, β, γ are positive constants used to weight each
comparison function.

The comparison functions are given as:

l(x,y) =
2µxµy + C1

µ2
x + µ2
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(9)

c(x,y) =
2σxσy + C2

σ2
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(10)

s(x,y) =
〈ςx, ςy〉 + C3

σxσy + C3

=
σxy + C3

σxσy + C3

(11)

where 〈〉 is the inner-product operator defining the correlation
between the structure of the two images.

In this paper, we follow the example in [2] setting α = β =
γ = 1 and C3 = C2/2 to get the specific SSIM quality metric

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (12)

B. Complex Wavelet SSIM Review
As suggested in [15], it is straightforward to implement a

structural similarity metric in the complex wavelet domain.
As more wavelet-based image and video coding techniques are
coming into use, it makes sense to be able to implement image
quality metrics in this domain. In addition, if an application
requires an image quality metric that is unresponsive to spatial
translation, this extension of SSIM can be adapted so that
it has low sensitivity to small translations. This requires an
overcomplete wavelet transform such as the steerable pyramid
[16], for which phase information is available. Fig. 2 shows
a example of such a decomposition with three scales and four
orientations. Note the octave spacing of the radial subbands.

Given complex wavelet coefficients cx and cy that corre-
spond to image patches x and y that are being compared, the
complex wavelet structural similarity (CWSSIM) is given by:

CWSSIM(cx, cy) =
2|

∑N
i=1

cx,ic
∗

y,i| + K
∑N

i=1
|cx,i|2 +

∑N

i=1
|cy,i|2 + K

,

(13)
where K is a small positive constant set to 0.03 in this paper.
This equation differs from (12) because the wavelet filters we
use (with the exception of the baseband) are bandpass (i.e.,
they have no response at zero frequency), thus forcing the
mean of the wavelet coefficients to zero (µx = µy = 0). Note
also that in (13) we have substituted the expanded expressions
for σxy, σx, and σy .

The overall similarity of two images is estimated as the
average of the CWSSIM metric values over all spatial locations
and subbands (or a subset of the the subbands, e.g., one radial
band and all angular bands). In the following experiments, we
compute the CWSSIM metric using a two-scale, 16-orientation
steerable filter decomposition (as in [15]), and average over all
the subbands except the high-pass ones (as opposed to [15],
which uses the second scale averaged over all orientations.)

Wang and Simoncelli note that the wavelet coefficient phase
is the key factor that determines the results of CWSSIM: “the
structural information of local image features is mainly con-
tained in the relative phase patterns of the wavelet coefficients”
[15]. Linear and uniform phase changes correspond to lighting
(brightness and contrast) distortions to which CWSSIM is not
sensitive because the structure is not perturbed. Phase changes
that vary irregularly from one coefficient to the next produce
structural distortion and therefore low CWSSIM.
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Fig. 2. Steerable Filter Decomposition (3 scales, 4 orientations).

IV. USING SSIM TO ASSESS IMAGE QUALITY

A. Suprathreshold Effectiveness
Structural similarity can distinguish between structural and

non-structural distortions, giving results that agree with per-
ception visibly distorted images (suprathreshold distortions).
The structural similarity metrics take values from in the range
from 0.0 to 1.0, where zero corresponds to a loss of all
structural similarity and one corresponds to having an exact
copy of the original image.1

An example of the effectiveness of structural similarity in
measuring suprathreshold distortion is depicted in Fig. 3. The
original image is shown in the upper left, then five distorted
images with equal PSNR, including JPEG compression [17],
blur, Gaussian white noise, mean intensity shift, and contrast
stretch distortions. Note that the perceived quality varies
substantially from the quantized and blurred images (worst),
to the noise image, to the mean and contrast modifications
(best). Both structural similarity metrics, SSIM and CWSSIM,
compute image quality measurements that correspond well
with the idea that change in lighting (mean intensity shift,
contrast stretch) has little impact on image quality, while
changes that affect local relationships between pixels severely
degrade image quality. The last three images (rotation, zoom,
and spatial shift) have lower PSNR but the perceived quality
is about as high as that of the other two images in the bottom
row. The SSIM fails to predict the quality of these three
images because of its sensitivity to translations, while the
CWSSIM does quite well, as it has low sensitivity to small
translations. The figure also shows the WCWSSIM, which
will be discussed in Section V-D. Note that small amounts
of scaling and rotation can be locally approximated as small
translations [15]. In addition, the CWSSIM does a much better
job at predicting the relative quality of the noise, blur, and
JPEG images than the SSIM, because it is implemented in the
subband domain, and considers distortions at different scales.

The P-PSNR predicts the quality of the first four images
quite well,2 does worse with the contrast stretch, and poorly
with small translations. Overall, perceptual image quality

1Note that the image domain SSIM implementation can also take negative
values when the local image structure is inverted.

metrics that are based on HVS sensitivity to just-noticeable
distortions are not expected to provide meaningful measure-
ments at suprathreshold levels of distortion [5], even though
the Safranek-Johnston metric does relatively well in this case.
Note also, that even though the perceptual metrics developed
in [8]–[11] have been specifically adapted to suprathreshold
distortions, they are not designed and are not expected to be
insensitive to translation, scaling, and rotation. SSIM-based
image quality metrics, on the other hand, have a better chance
of dealing effectively with suprathreshold distortions because
they are focusing on the top-down image formation concept
that the local structure of images is the most important aspect
of image quality.

B. Effect of Window Size
When using SSIM metrics to compare the quality between

two images, it is useful to calculate the local distortion
between corresponding image patches at many locations. This
allows the metric to adapt to the local statistical characteristics
at different image locations. The individual quality measure-
ments can then be combined to give a single number that
represents the similarity between the images. Applications that
need to measure image quality with minimum computation
may only want to compute the metric at a few locations
within the image [18]. However, for this paper, we measure
the similarity with a sliding window at every pixel location,
giving a SSIM distortion map. As suggested in [2], we use
a circular Gaussian weighting function on the image patches
being compared to smooth the similarity map, and we combine
the measurements using a mean operator.

The choice of the W ×W window size provides a balance
between SSIM’s ability to adapt to local image statistics and
its ability to accurately compute the statistics within an image
patch. A large window allows accurate statistical estimation,
at the cost of being less sensitive to fine image distortions. For
typical 512× 512 images, a window size within the range of
7 × 7 to 15× 15 offers a reasonable operating region.

The effect of window size on SSIM is illustrated in Figs. 4
and 5. The first image in the top row of Fig. 5 depicts
the “Lena” image distorted with white Gaussian noise, while
the first image in the bottom row shows “Lena” with JPEG
compression noise; in both cases, the PSNR is 28.5 dB. The
other images show the SSIM similarity map for W × W
windows of sizes W equal to 3, 7, 15, and 31, respectively.
The dark regions represent the highest SSIM distortion. Note
that a W = 3 window is too small to accurately compute the
distortions, giving an almost randomly distributed distortion
map (especially in the bottom row), while a W = 31 window
is too large to adapt to local statistics, resulting in a blurry error
map and image quality scores that are too high in most regions.
The distortion maps computed with W = 7 more accurately
correspond to human perception. Of course, the window size
should depend on viewing distance, an issue to which we
return in Section V-D. Note that white Gaussian noise is most
noticeable in the smooth (low frequency) regions of the image

2Note that the image mean is typically subtracted before the metric
calculation.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)
Distortion PSNR P-PSNR SSIM CWSSIM WCWSSIM
(b) JPEG 24.7 33.7 0.67 0.61 0.71
(c) Blur 24.8 33.5 0.75 0.46 0.65
(d) Noise 24.8 41.3 0.46 0.66 0.81
(e) Mean Shift 24.8 48.1 0.97 1.00 1.00
(f) Contrast 24.8 37.8 0.99 0.99 1.00
(g) Rotation 23.4 32.2 0.78 0.89 0.93
(h) Zoom 21.4 29.8 0.70 0.87 0.91
(i) Spatial Shift 21.7 30.8 0.68 0.90 0.93

Fig. 3. The effect of different distortions on PSNR, SSIM, CWSSIM, weighted CWSSIM, and perceptual PSNR metrics. (a) Original; (b) JPEG compression;
(c) blur; (d) white noise; (e) mean shift; (f) contrast change; (g) rotation (1.3o); (h) zoom in; (h) spatial shift (right by 2 pixels).

such as the shoulder and background. This demonstrates the
strong inherent masking effect of the SSIM metric, which is
primarily due to the contrast comparison term c(x,y) in (8).
(When the variance of the original image is high, then c(x,y)
is high, i.e., the noise is masked.) In the JPEG compression
example, the dark regions correspond well with the most
perceptually annoying compression artifacts: the blockiness on
the shoulder, cheeks, and background. Note that the masking
effect is not as strong, because to some extend, JPEG exploits
masking for compression. (If it did a good job, the distortion
map would be relatively uniform.)

The relationship between SSIM and window size is also
shown in Fig. 4, which plots the overall quality pooled over
the image for each window size. This plot is derived from the
same data set that was used in Fig. 5. Note that as the window
size increases, the metric value approaches 1. Our experiments
indicate that a window around W = 7 works well for a variety
of images and distortions.

V. USING SSIM TO ASSESS VIDEO QUALITY

A. Motivation for Exploring Space of Realistic Distortions
The objective quality metrics that we examine in this paper

are intended to provide a measure of perceptual similarity
between a distorted and a reference image (perceptual image
fidelity). Of course, since the images are intended to be viewed
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IM

 

 

Gaussian Noise
JPEG Compression

Fig. 4. Mean SSIM versus window size for the same data set in Fig. 5.

by human observers, the metric predictions should agree with
subjective evaluations. Subjective evaluation studies collect
opinion scores for a database of distorted images and use
statistical analysis to compute a mean opinion score (MOS)
for each image. The MOS data can then be compared with
the quality metric predictions to validate the effectiveness of
the metric (e.g., see [19]). The selection of the database of
distorted images is critical for the success of such subjective
evaluations, which are quite cumbersome and expensive, as
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Fig. 5. SSIM error maps for different window sizes. The top row shows the “Lena” image distorted with white Gaussian noise, then error maps for window
sizes of 3, 7, 15, and 31. The bottom row shows “Lena” degraded with JPEG compression and corresponding error maps. In the error maps, darker regions
represent higher measured distortion.

an inadequate selection can lead to inconclusive results. In
addition, when designing a metric, an appropriate choice of
distorted test images can significantly improve the process of
metric design, by providing intuitive insights into ways for
improving the metric and eliminating the need for lengthy
subjective evaluations after each modification of the metric
parameters.

An alternate way of evaluating image quality metrics was
proposed in [20], where the authors suggest a stimulus syn-
thesis approach. The idea is to compare two metrics by
exploring the image space of metric A while holding metric
B constant. This is done via a gradient descent algorithm,
producing the “best” and “worst” images in terms of metric A
for constant metric B and vice-versa. This allows for efficient
evaluation of metrics because the observer only has to look
at a few images (the best and worst) to find weaknesses of
a metric. A limitation of this approach, however, is that the
iterative approach produces distortions that are unlikely to be
encountered in compressed video communication systems.

We propose a method of evaluating quality metrics in which
we explore the space of realistic distortions that are likely
in video compression and communication applications. In our
method we hold metric A constant, then examine the results
given by metric B with different distortions. This approach
provides efficient and valuable intuition for the further im-
provement of an image quality metric. In the remainder of
this section, we present the specifics of the proposed realistic
distortion models, define the space of realistic distortions,
and discuss specific examples of the performance of different
metrics for degraded images in the distortion space.

B. Coding and Concealment Distortion Models
A variety of distortions can be created in video transmission

applications due to source coding or packet loss and conceal-
ment. Lossy video compression distorts the video before it
is transmitted. If the channel is lossy, the error concealment
techniques necessary to reconstruct the video introduce further

distortion. In this paper, we propose a set of realistic models
for the distortions that are likely in a video transmission
system.

We develop models that can be used to simulate video
coding and concealment artifacts using a still image. The
advantage of this approach is that it allows the study of video
distortions in detail without the complexity of evaluating the
performance of an entire video compression, transmission, and
concealment system. In addition, it provides more flexibility
in isolating and controlling the severity of specific types of
distortions (e.g., blocking versus blurring), which allows us to
develop intuition about the effect each distortion type has on
a quality metric.

Error concealment is often necessary in applications such as
real-time video streaming over a lossy network, where packets
are lost or arrive too late to be useful. The most elementary
error concealment approach reconstructs lost image data using
spatial interpolation, which may result in significant blurring
[21]. Improved quality is possible using spatiotemporal ap-
proaches that reconstruct by estimating the lost motion vector
and then substituting displaced patches of image data from past
video frames. Typically, any part of a compressed video stream
can be subject to loss, resulting in distortion. For example, loss
of motion vectors may lead to spatial block shift distortions,
while loss of DC coefficients could create shifts in the mean
values of the video blocks affected.

We assume a block-based compression technique where the
basic units susceptible to distortion are square macroblocks
(MB) with N × N pixels (typically N = 16). The first
distortion arises from compression, which is typically applied
on smaller 8 × 8 blocks. A number of MBs M (sometimes
called a slice) are then grouped into a packet. For simplicity,
we use a straightforward channel model, whereby a packet
is lost with probability Pk. We also include a parameter that
controls the grouping of distortions within the MBs that make
up a single lost packet.

Once it is determined that a macroblock is lost, the model
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Fig. 6. Example frame showing distortions created in a spatial replacement
error concealment approach.

applies a distortion consistent with the concealment technique
used by the receiver. We consider the following types of
distortion: block blur (spatial interpolation), block spatial
shift (temporal replacement), block intensity shift (loss of
DC coefficient), and JPEG compression (DCT coefficient
quantization).

Block blur is modeled as the convolution of the MB image
patch x with a 2-D (N + 1) × (N + 1) smoothing filter f

xblur(x, f) = x(n1, n2) ∗ f(n1, n2), (14)

where “∗” is the 2-D convolution operator. This is a model of
simple spatial interpolation concealment techniques that may
use bilinear interpolation to recreate the lost macroblock data.
Of course more sophisticated spatial interpolation techniques
exist, but this provides a first order approximation. Moreover,
the Gaussian approximation makes it possible to control the
degree of blurring.

Block spatial shift is modeled as a uniform distribution of
spatial shifts with a maximum shift of ±B pixels. The spatially
shifted image patch is described as

xshift(x, b) = x(n1 + b1, n2 + b2), (15)

where b1 and b2 are independent random values chosen from
the uniform distribution in the interval (−B, B). This models
the effect of temporal replacement concealment techniques that
can be used when motion vectors are lost or corrupted, such
as motion-compensated temporal replacement [21].

Block intensity shift is modeled as a uniform distribution of
block mean shifts with a maximum shift factor of ±L, where
±L is varied from 0 to 1. The block shifted patch is defined
as

xlevel(x, L) = x(n1, n2) + s, (16)

where s is a random value chosen from the uniform dis-
tribution in the interval −256L, 256L for 8-bit grayscale
images. This models the distortion that can occur when a DC
coefficient is reconstructed with some error.

Finally, we model source coder distortion as the DCT
coefficient quantization that results when we apply JPEG
compression [17]. This generates 8x8 block distortion across
the entire image and serves as a model of what might occur in
a communication system where source bit rate is sacrificed in
order to achieve improved error resilience. In the experiments

below, we use JPEG with a perceptual quantization matrix
weighted for a viewing distance of six image heights.

Many communication systems produce distortions that can
be modeled with these four distortions. For example, Fig. 6
shows a single frame from a video with spatial translation
and intensity shift distortions that occur when using a spatial
replacement error concealment approach. This example corre-
sponds to the techniques described in [22].

In all of the above cases, the model parameters (probability
of packet loss, parameters of the blur filter, and spatial shift
and intensity shift distributions) can be selected to match any
given value of any of the objective quality metrics under
consideration.

Now that we have modeled realistic distortions, we can
perform experiments to find out if SSIM quality measurements
agree with the intuition that some distortions are more visible
than others. In the following experiments, we assume a MB
size of N = 16, and as we pointed out in Section III-
B, we compute the CWSSIM metric using a two-scale, 16-
orientation steerable filter decomposition and average over all
the subbands except the high pass.

C. The Space of Realistic Coding Distortions
The distortion model developed in section V-B can be used

as a tool for exploring the performance of SSIM metrics over
a range of distortions. The resulting image data generated by
running the distortion model can be viewed as an exploration
of the multidimensional image space of realistic distortions in
a video communications system. Fig. 7 shows some example
data generated from the “Lena” test image with a window size
of W = 7. The spatial resolution of the test image is 256×256
pixels, and the MB size for the error concealment distortions is
16× 16 pixels. The columns have approximately equal PSNR
with decreasing error from left to right. The metric values for
the various quality metrics are also given on the right of each
image.

A few observations are in order. First, overall, image quality
increases from left to right. This means that, when we compare
images with the same type of distortion, PSNR is a good
predictor of image quality, and so are all the other metrics.
Second, one can argue that the block blur artifact is the most
objectionable artifact. This is because it destroys the image
structure within the blurred region and additionally creates
obvious block edges. Another observation is that the relative
perceptual quality for some of the distortions changes as
we move to higher PSNRs. For example, at 24.6 dB, JPEG
compression is one of the most objectionable, but as the PSNR
increases, it becomes less objectionable relative to the other
distortions. Finally, the perceptual quality for some of the
distortions, like white noise and JPEG compression, changes
significantly with viewing distance, while for others, like the
blur and intensity shift, it is less sensitive to the viewing
distance. (The reader is encouraged to try viewing the PDF
file at different zoom settings.)

Here we should point out that our goal is not to conduct
systematic subjective tests to establish the validity of the
metric results, but to demonstrate that the proposed distortion



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUG. 2008

24.6
30.5

0.828
0.805
0.815

24.6
30.6

0.933
0.909
0.902

24.6
32.7

0.673
0.640
0.754

24.6
32.3

0.848
0.851
0.879

24.6
35.2

0.532
0.678
0.831

26.8
32.4

0.898
0.873
0.891

26.8
31.3

0.962
0.940
0.933

26.8
34.7

0.762
0.699
0.815

26.8
34.4

0.901
0.886
0.914

26.8
35.5

0.622
0.714
0.855

29.0
33.3

0.923
0.896
0.907

29.0
32.7

0.971
0.957
0.954

29.0
35.7

0.837
0.757
0.867

29.0
35.5

0.925
0.946
0.963

29.0
35.9

0.711
0.751
0.878

32.0
34.5

0.963
0.945
0.952

32.0
33.8

0.983
0.970
0.967

32.0
36.2

0.908
0.835
0.923

32.0
35.6

0.962
0.957
0.967

32.0
36.1

0.816
0.803
0.908

36.0
36.3

0.977
0.977
0.988

36.0
35.4

0.989
0.981
0.979

36.0
36.4

0.954
0.904
0.960

36.0
36.0

0.981
0.961
0.971

36.0
36.3

0.911
0.865
0.940

Fig. 7. Example realistic distortion images where columns have approximately equal PSNR. From top to bottom row, the distortions are (1) block blur, (2)
block intensity shift, (3) JPEG compression, (4) block spatial shift, and (5) additive white noise. The metric values to the right of the images correspond to
PSNR, Perceptual PSNR, SSIM, CWSSIM, and WCWSSIM.

models can be used to explore the advantages and limitations
of the different quality metrics. Thus, we rely on informal
subjective evaluations and concentrate on obvious differences
rather than subtle details.

Fig. 8 shows the full-size images that correspond to the
middle column of Fig. 7. Here, one can argue that the spatial
shift has the best overall subjective quality, followed by the
noise and intensity shift, and the JPEG and blur artifacts are
the most objectionable. Again, we rely on informal subjective
evaluations, whereby observers quickly see the distortion in
the JPEG image but typically have to look very closely to
even find the problems in the spatially distorted image (e.g.,
block shifts near the mouth, the hair on the right, the ribbon
on the hat, etc.). Note that the SSIM and CWSSIM metrics
predict the relative performance of the spatial shift image
and the JPEG compression, but give the best score to the
level shift, and the worst score to the noise, both at odds
with the subjective evaluations. The P-PSNR, on the other
hand, gives the JPEG and noise images the highest scores,
also contrary to the subjective evaluations. Comparing the

SSIM and CWSSIM metric predictions, we see that the latter
performs a bit better, giving relatively higher values for the
spatial shift. Here we should point out that image content
can have a significant effect on the perceived distortions, for
example, the distortion is more noticeable when it affects the
eyes or some other salient part of the image. Barring this type
of situation, however, our extensive experiments indicate that
the results we present here are fairly representative of most
situations.

Fig. 9 shows another example with a 512 × 512 image;
this is a segment of the JPEG2000 “Bike” test image. The
MB size is the same as in Fig. 8, and the other distortion
parameters have similar values; the PSNR is equal to 27 dB.
Here again the the spatial shift has the best overall quality,
but now the intensity shift and blurring artifacts are the most
objectionable. Note that, even though the PSNR is lower,
the JPEG artifacts and white noise distortion become less
objectionable, due to the higher spatial resolution. (For the
same viewing distance, the viewing angle in pixels/degree has
been reduced by a factor of two.) Note also that the smaller
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(a) (b) (c)

(d) (e) (f)
Distortion P-PSNR SSIM CWSSIM HP L1 L2 L3 LP WCWSSIM
(b) JPEG 35.70 0.837 0.757 0.152 0.489 0.777 0.944 0.999 0.867
(c) Noise 35.88 0.711 0.751 0.290 0.493 0.793 0.967 1.000 0.878
(d) Level Shift 32.69 0.971 0.957 0.930 0.941 0.926 0.939 0.991 0.954
(e) Spatial Shift 35.47 0.925 0.946 0.867 0.905 0.933 0.970 0.998 0.963
(f) Blur 33.29 0.923 0.896 0.828 0.851 0.846 0.879 0.995 0.907
Weights 0.000 0.127 0.229 0.306 0.338

Fig. 8. Degraded images with equal PSNR = 29 dB. (a) Original; (b) JPEG compression; (c) white noise; (d) block intensity shifts; (e) block spatial shifts;
(f) block blur. These images correspond to the middle column of Fig. 7. The values for different metrics are given in the table.

relative size of the concealed packets makes the blurring and
intensity shift artifacts a bit less objectionable, too. Again, the
SSIM and CWSSIM metrics predict the relative performance
of the spatial shift image and the JPEG compression, but
give the best score to the level shift, and the worst scores
to the noise and JPEG compression, both at odds with the
subjective evaluations. The P-PSNR, consistent with the earlier
observations, gives the JPEG and noise images the highest
scores, also contrary to the subjective evaluations. One could
argue that the examples in this figure correspond to CCIR601
transmission over packet-lossy networks, while the 256× 256
examples of Fig. 8 correspond to the CIF case.

Figs. 8 and 9 demonstrate both advantages and weaknesses
of the SSIM and CWSSIM metrics. A significant advantage is
that, as we saw above, they predict the relative performance
of the spatial shift image and the JPEG compression. These
types of distortions are commonly encountered in video com-
pression/transmission applications, where there is a tradeoff
between source coding errors and errors due to packet losses

[23]. In a specific example that demonstrates the potential of
the SSIM metrics, a video sequence was encoded at a lower
rate so that the entire sequence can be transmitted without
losses; the resulting PSNR (averaged over the sequence) was
30.0 dB. We then encoded the same sequence at a significantly
higher rate, so that a number of blocks had to be dropped
and concealed; the resulting average PSNR was 27.5 dB.
A representative frame from each implementation is shown
in Fig. 10. Despite the packet losses, which result in some
incorrect blocks in the decoded image, the visual quality of
the second implementation was significantly higher and was
correctly predicted by the SSIM and CWSSIM metrics.

A weakness of the SSIM and CWSSIM metrics is the fact
that the intensity shift distortions have higher values than the
spatial shift distortions. Most human observers make the op-
posite choice, giving the spatially shifted image higher quality
ratings. Another weakness of the SSIM and CWSSIM metrics
becomes obvious when we compare the metric predictions
for the white noise image in the two figures to those for



10 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUG. 2008

(a) (b) (c)

(d) (e) (f)
Distortion P-PSNR SSIM CWSSIM HP L1 L2 L3 LP WCWSSIM
(b) JPEG 43.68 0.784 0.830 0.173 0.522 0.834 0.963 1.000 0.890
(c) Noise 43.77 0.709 0.844 0.420 0.588 0.822 0.968 1.000 0.897
(d) Level shift 33.28 0.960 0.949 0.957 0.957 0.940 0.940 0.964 0.950
(e) Spatial Shift 37.21 0.907 0.947 0.855 0.893 0.927 0.972 0.998 0.960
(f) Blur 34.69 0.900 0.903 0.846 0.861 0.870 0.890 0.989 0.920
Weights 0.000 0.127 0.229 0.306 0.338

Fig. 9. Degraded images with equal PSNR = 27 dB. (a) Original; (b) JPEG compression; (c) white noise; (d) block intensity shifts; (e) block spatial shifts;
(f) block blur. The values for different metrics are given in the table.

(a) (b) (c)
Fig. 10. Video over wireless example: (a) original frame; (b) frame encoded at lower rate without packet losses (PSNR=30.5 dB, CWSSIM=0.88). (c) frame
encoded at higher rate with packet losses (PSNR=28.3 dB, CWSSIM=0.90). CWSSIM metric predicts that video on the right is of higher quality in agreement
with subjective evaluations.
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(a) (b) (c)
Distortion P-PSNR SSIM CWSSIM WCWSSIM
M = 1 38.4 0.966 0.929 0.922
M = 5 38.2 0.978 0.960 0.954
M = 32 38.1 0.978 0.961 0.954

Fig. 11. Effect of MB grouping parameter (M blocks per packet) for equal PSNR (31.9 dB). (a) M = 1, (b) 5, and (c) 32 (entire row). The CWSSIM and
WCWSSIM values agree with subjective evaluations that image on the left has lower perceptual quality than the other two.

the blurring and intensity shift distortions. The SSIM and
CWSSIM values for the white noise distortion are too low,
especially for Fig. 9.

The tables associated with Figs. 8 and 9 show a scale-by-
scale CWSSIM calculation (over three scales, the low-pass,
and the high-pass subbands), each averaged over six angular
orientations for the different distortion types.3 Note that for
the white noise and JPEG compression, the value of the metric
varies widely from level to level, while for the other distortions
the value of the metric does not change as much. Thus, the
CWSSIM metric values are expected to change significantly if
a different set of subbands is used to compute the metric value.
As we will see below, simple averaging is not necessarily the
best thing to do.

Another interesting application of the proposed distortion
models is depicted in Fig. 11, where we evaluate the effect
of MB grouping into M blocks per packet. For approximately
equal PSNR (31.9 dB), both SSIM and CWSSIM predict that
the images with single MB packets (M = 1) have lower
quality than the images with packets that contain M = 5
MBs or an entire row of MBs (M = 32). This result agrees
with informal subjective, and indicates that using larger packet
sizes to obtain better compression efficiency does not result in
any losses in perceptual quality.

D. Perceptually-Weighted CWSSIM
In order to address some of the weaknesses described

above, we propose a weighted complex wavelet SSIM im-
plementation (WCWSSIM) that combines the results from
multiple wavelet scales. This is similar to the multiscale

3Note that the CWSSIM metric values are still computed using a two-
scale, 16-orientation decomposition, averaged over the two scales and 16
orientations, as we saw in Section III-B.

SSIM approach proposed in [24], but uses the steerable filter
decomposition instead of the Gaussian pyramid. In order to
avoid cumbersome subjective experiments for determining the
subband weights, we loosely base the weight selection on
the wavelet threshold measurements in [25]. (See also [1].)
For the weight calculation, we assume a viewing distance
of six image heights at the 512 × 512 resolution, which
corresponds to 12 image heights at the 256 × 256 resolution
(so that the viewing angle in pixels/degree remains the same).
Note that even though the two wavelet decompositions are
quite different, they are both octave spaced, and there is an
obvious correspondence between subbands: the L3, L2, and
L1 subbands of the steerable pyramid correspond to the level
3, 2, and 1 LH (or HL) bands of the wavelet decomposition in
[25], respectively, while the LP steerable subband corresponds
to the level 3 LL band in [25]. The resulting weights are listed
in the tables in Figs. 8 and 9. Note that this is only a rough
approximation. More accurate estimates should be based on
subjective experiments that determine the base sensitivity of
each subband for a given viewing distance [1]. The main point
we are trying to make is that the subband weights should
depend on frequency content and viewing distance. We should
also point out that all we propose is to use weights based
on (JND) threshold measurements. Optimizing the weights
for suprathresold distortions would be quite difficult, and is
beyond the scope of this paper.

Using these weights to combine the results from multiple
subbands, we find that this WCWSSIM version of the metric
improves the results of Section V-C. Note that in both Figs. 8
and 9, WCWSSIM gives higher quality ratings to the spatial
shift than the level shift images, better agreeing with the
higher perceived quality of those images. However, while this
definitely represents an improvement, it still does not reflect
the (considerably) superior quality of the spatial shift images.



12 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUG. 2008

We believe that the remaining problems are due to the fact
that the complex SSIM insensitivity to translations is limited
to small translations, while the HVS can tolerate a lot more.
In addition, the SSIM metrics are too insensitive to intensity
shifts. The WCWSSIM metric also increases the values for
the JPEG and white noise distortions. The metric value for
the white noise distortion, however, is still lower than that of
the blur, which is definitely of lower perceptual quality.

A block diagram of the perceptually-weighted CWSSIM
implementation is shown in Fig. 12. The error calculation
consists of the SSIM we reviewed in Section III-A. Note
that there is no explicit masking (shown in dotted line); as
we saw in Section IV-B the contrast masking is implicit,
primarily through the contrast comparison term of (6). Note
also, that if we change the error calculation and make it an
MSE computation and add the masking term, we get the
perceptual metric of (3). Thus, the perceptual weighting of
the WCWSSIM metric provides a natural way to unify the
structural similarity approach with the traditional JND-based
perceptual approaches.

-distorted
image

frequency
analysis

?

-reference
image

frequency
analysis

- SSIM error
calculation

- spatial
pooling

- frequency
pooling

-

- masking
6

- frequency
sensitivity

6

Fig. 12. Perceptual coder

VI. CONCLUSION

We have examined the use of structural similarity metrics in
suprathreshold video compression/transmission applications.
In order to better explore the space of distortions, we proposed
models for typical distortions encountered in these applica-
tions. Our experimental results indicate that, while structural
similarity metrics provide significant advantages over tradi-
tional approaches, they also have important limitations. We
believe that the proposed distortion models will be the key to
addressing such limitations. We also found that the translation-
insensitive complex wavelet SSIM (CWSSIM) is superior to
other SSIM implementations, and proposed a perceptually
weighted multi-scale variant of CWSSIM that accounts for
viewing distance and provides a natural way to unify the
structural similarity approach with the traditional JND-based
perceptual approaches.
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