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ABSTRACT

We present a novel, computationally efficient approach for
natural image segmentation that uses the adaptive cluster-
ing algorithm (ACA) to obtain an initial segmentation and
chrominance-based region merging to consolidate regions
of perceptually uniform texture. The combination of ACA
and chrominance-based merging preserves salient edges and
smooths out noise and edges within textured regions. It can
thus be used for image abstraction. Experimental results
with natural images indicate the effectiveness of the proposed
approach.

Index Terms— Adaptive clustering algorithm, region
merging, bilateral filtering.

1. INTRODUCTION

The segmentation of natural images into perceptually uniform
regions remains a challenging task [1]. There is a substan-
tial literature on color image segmentation (e.g., [2, 3]) but
there has been relatively little work on texture (e.g., [4, 5]). In
[6], Chen et al. proposed a perceptually-based color-texture
segmentation algorithm, with good performance on a wide
variety of natural images. However, the computational re-
quirements are quite substantial. The challenge, and primary
goal of this paper, is to develop computationally efficient al-
gorithms without significant sacrifices in performance.

One of the key observations that led to the development of
the color-texture segmentation algorithm proposed in [6] was
that the adaptive clustering algorithm (ACA) [2] is quite suc-
cessful at segmenting images with regions of smoothly vary-
ing intensity but oversegments images with texture. Thus,
there is a need to consolidate oversegmented areas into re-
gions of uniform texture. Chen et al. [6] did this by intro-
ducing two types of features, color composition features that
consist of the dominant colors and associated percentages in
the neighborhood of each pixel, and spatial texture features
that are based on a multiscale frequency decomposition and
describe the spatial characteristics of the grayscale compo-
nent of the texture. However, the computational requirements
associated with these features are quite substantial, requir-
ing median filtering to obtain spatial texture, and an elaborate

metric for comparing color compositions [7].
In this paper, we propose an alternative approach for con-

solidating oversegmented textured regions that is a lot less
computationally demanding. It is based on the observation
that natural textures consist mainly of intensity variations [8]
of a single hue (e.g., green leaves, gray building, blue moun-
tains), and that as a result, significant changes in hue oc-
cur mainly at region boundaries. This is illustrated in Fig-
ure 1, which shows chrominance (hue and saturation) domi-
nant edges on the left and luminance dominant edges on the
right, superimposed on the original image. Note that chromi-
nance edges occur mostly at region boundaries, while lumi-
nance edges can occur both within regions and at boundaries.
This provides a strong clue as to the location of region bound-
aries, but by itself cannot lead to a good segmentation because
of the noise in the data. Note that some edges are completely
missing, some are too thick, etc. On the other hand, as we
will see, ACA [2] segments the image into regions of uniform
color with precise boundary localization. All we have to do,
then, is merge the uniform color blobs of the textured areas
into one region, utilizing the fact that the boundaries within
perceptually uniform areas have very low chrominance con-
trast. In addition to chrominance, we can also utilize other
statistics of textured areas, for example, the size of the uni-
form color blobs, or equivalently, the length of the edges.

Image segmentation is a key step for many image analysis
applications, including content-based retrieval, object recog-
nition, event detection, etc. Segmentation can make images
easier to interpret by getting rid of redundant information, em-
phasizing the most salient image features. As such, one can
think of segmentation as providing image abstraction [9, 10].
In addition to image understanding, image abstraction can
contribute to efficient visual communication, and of course,
it can be used for artistic purposes. In the following, we eval-
uate the proposed image segmentation techniques in terms of
the image abstraction that they can provide.

This paper is organized as follows. In Section 2, we re-
view the adaptive clustering algorithm and compare it to bi-
lateral filtering. The region merging algorithm is presented
in Section 3. The experimental results and conclusions are
presented in Section 4.
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(a) (b)

Fig. 1. Classification of edges. (a) Chrominance dominant
edges. (b) Luminance dominant edges.

2. REVIEW OF ADAPTIVE CLUSTERING

The Adaptive Clustering Algorithm (ACA) [2] is an iterative
algorithm that generalizes K-means clustering by introducing
spatial constraints and spatially varying characteristic func-
tions. ACA segments the image into K classes, each of which
is characterized by a spatially varying function μk(s), instead
of the spatially constant cluster centers of the K-means al-
gorithm; here k denotes the region label and s denotes the
pixel location. Given the μk(s) functions, ACA finds the
MAP estimate for the segmentation given the observed im-
age. The algorithm alternates between estimating the μk(s)
functions and updating the segmentation. At each pixel loca-
tion s, μk(s) is computed as the average color of the pixels in
the neighborhood of s that belong to class k [2]. The initial es-
timate is obtained by the K-means algorithm. The key to ob-
taining accurate estimates for the local image characteristics
is that the ACA estimates the characteristic functions μk(s)
by averaging over a sliding window with progressively de-
creasing size, starting form global estimates and slowly adapt-
ing to the local characteristics of each region.

Once the algorithm converges, we can reconstruct an “ab-
stracted” version of the image, by using the corresponding
characteristic function to represent each segment. We refer
to this as the local average image. This is shown in Fig-
ure 2 (a) and (b) for two parameter settings of the algorithm.
Note that ACA smooths over noise and small details, while
preserving the dominant edges of the scene. By varying the
strength of the spatial constraints, or equivalently the estimate
of the noise variance [2], we can vary the amount of detail in
the reconstructed image. Note, however, that in contrast to
other scale-space techniques, the location of the edges does
not change. The only changes are in the smoothness of the
edges and the fact that some edges disappear.

It is interesting to compare the performance of ACA with
bilateral filtering, a class of algorithms designed to smooth
images while preserving strong edges [11]. Thus, both ACA
and bilateral filters can be used to obtain image abstractions.

(a) (b)

(c) (d)
Fig. 2. First row: ACA with different noise variances: (a)
σ = 8; (b) σ = 32. Second row: bilateral filtering using
different sets of parameters: (c) σd = 3 and σr = 0.1. (d)
σd = 3 and σr = 0.3.

Bilateral filtering is similar to Gaussian filtering except that it
also considers the variation of image intensities. Smoothing
is conducted only when two pixels are both spatially close
and similar in the photometric range. The definition of the
bilateral filter is as follows:

BF [I]
p

=
1

Wp

∑

q∈S

Gσs
(||p− q||) Gσr

(|Ip − Iq|) Iq (1)

where Wp is a normalization factor:

Wp =
∑

q∈S

Gσs
(||p− q||) Gσr

(|Ip − Iq|) (2)

(1) shows that bilateral filtering is the combination of two
Gaussian filters: a spatial one Gσs

and a range one Gσr
. The

spatial Gaussian acts like the normal Gaussian filter in as-
signing larger weights to nearby pixels and smaller weights
to distant pixels. The effect of Gσr

is to include only pixels
with intensity values similar to Ip. Thus strong edges with
high contrast image intensities on each side are preserved.

From the above analysis, it is clear that the bilateral filter
is controlled by two parameters: the spatial domain standard
deviation σs and the intensity domain standard deviation σr .
The larger the σr, the closer it is to Gaussian blur and the less
edges are preserved. Also, increasing σs can result in smooth-
ing over larger features. Figure 2 (c) and (d) shows the result
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1. Use ACA to segment original image; obtain local aver-
age image

2. Do connected components labeling
3. Extract all the edges between regions
4. For each pair of regions i and j

Compute the edge length Li,j

Compute the normalized edge strength Si,j

End
5. Compute the histogram of Sij

6. Calculate thresholds Tlow and Thigh

7. Do region merging based on Tlow

8. Recalculate characteristic functions and update Si,j ’s
9. Do region merging based on Thigh

Fig. 3. The proposed algorithm.

of bilateral filtering for two parameter settings. Note that, like
ACA, the parameters can be chosen to vary the amount of de-
tail. In Figure 2 (c) the range parameter (σr = 0.1) is small
enough for the range Gaussian to play the dominant role, and
thus preserve most of the edges. In Figure 2 (d) the range
parameter is bigger (σr = 0.3), while the domain parameter
remains the same as in (c) (σd = 3). Now the domain Gaus-
sian filter has a more dominant effect, and thus fewer edges
are preserved. Note that for σr = 0.3, edges with amplitude
changes less than 30% of the full intensity span are blurred.

When we compare the results of bilateral filtering to those
of ACA, we observe that, as we discussed above, ACA ex-
tracts precise and crisp edges for all parameter settings, while
in bilateral filtering the edge blurring varies with the amount
of detail. In addition, bilateral filtering may introduce artifacts
near the edges, especially in smoother settings. One possible
solution to this problem is to do multiple iterations [11, 12].
However, this may introduce ringing or halo artifacts. Over-
all, the superiority of ACA is obvious with cleanly smoothed
regions and well preserved edges without artifacts.

3. CHROMINANCE-BASED MERGING

As we demonstrated in the previous section, ACA is good at
preserving accurate edges while smoothing out details. How-
ever, it oversegments textured regions. For example, there
are small color blobs in the forest, mountain, and water ar-
eas of Figure 2(a). Increasing the amount of smoothing in
Figure 2(b) eliminate many of the blobs, but also results in
substantial smoothing of the edges. Another approach to con-
solidate the regions of perceptually uniform texture is to do
region merging based on chrominance contrast.

We now outline the basic steps of the region merging al-
gorithm. We start with the local average image (see Section2)
and the corresponding region specification. First, we perform
connected component analysis to identify and label all the
connected regions. We then compute the normalized edge
strength Si,j between each pair of neighboring regions i and
j. That is, for each pixel of region i along the edge, we cal-

(a) (b)

(c) (d)
Fig. 4. Left column: final segmentation using proposed ap-
proach. Right column: result from [6].

culate the chrominance biased L*a*b color difference with
its 4-connected neighbors that belong to region j. In a typi-
cal setting, the luminance is suppressed to half of its original
value so that the ratio of chrominance and luminance is 2:1.
Then we sum the color differences for all pixels and divide the
sum by the number of pixels Li,j on that edge. If there is a big
difference, then the edge is strong and should be preserved.
Conversely, if the difference is small, then the edge is not sig-
nificant and the regions should be merged. The luminance
suppression ensures that luminance dominant edges within
texture regions are more likely to be eliminated. Our merging
criterion also takes into account the edge length; typically two
regions are merged only when the length of the edge between
them is smaller than a threshold. This also favors merging of
within-texture boundaries, based on the fact that edges within
texture regions are usually short, while edges between differ-
ent objects/material are much longer.

The choice of the merging threshold is crucial. We use
two thresholds, a low Tlow and a high Thigh. The lower
threshold is applied first. This removes all the weak edges.
Next, we recompute the characteristic functions of ACA
based on the rearranged regions, recompute the normalized
edge strengths, and apply the second threshold. The flow
of the algorithm is given in Figure 3. Since regions with
similar colors have already been merged in the first iteration,
the new characteristic function calculations are more robust,
and hence more representative of the underlying regions. In
addition, the difference between distinct regions becomes
larger. Therefore, we need to use a higher merging threshold
to get more coherent regions for texture while maintaining
important region boundaries. Using two thresholds instead
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(a) (b) (c) (d)
Fig. 5. Abstraction and segmentation results. (a) Original image. (b) ACA local average image. (c) Abstraction result, based
on chrominance-oriented region merging. (d) Scene segmentation, with edges superimposed on the original image.

of one gives us more leeway when setting the threshold val-
ues. If only one threshold is used, close regions may not
be merged if the threshold is too low, while distinct regions
may be merged if the threshold is too high. The choice of
the two thresholds is image adaptive, and is based on the
histogram of edge strengths. Thigh is usually set at 80% of
the edge strengths below it, and Tlow is set at 40% of the edge
strengths below it.

4. EXPERIMENTAL RESULTS

We now consider the performance of the proposed algorithm.
Figure 5 shows the abstraction and segmentation result. We
can see that the algorithm makes clear distinction among dif-
ferent objects while maintaining coherent regions within each
of the texture areas. Additional segmentation results on pho-
tographic images of natural scenes are shown on the left col-
umn of Figure 4. For comparison, on the right column, we
show the segmentation results obtained by Chen et al. [6].
One can argue that the proposed algorithm gets more accu-
rate segmentations in terms of texture boundaries and unifor-
mity within each texture region. Note that in Figure 4 (a) the
forest is consolidated into one region, while (b) has a couple
of oversegmented blobs. On the other hand, there is a prob-
lem in the segmentation at the bottom tower. Note also that
the water and the sky have been merged due to the small lu-
minance (and no chrominance) difference. The performance
of the two algorithms appears to be comparable in the bot-
tom two images. Note, that the proposed algorithm achieves
a similar degree of merging with less smoothing of the region
boundaries. However, the proposed algorithm is a lot faster
than the one in [6].

In summary, we presented a novel computationally effi-
cient algorithm for segmenting natural images into perceptu-
ally uniform texture regions. The algorithm combines ACA
segmentation with chrominance-based region merging. Ex-
perimental results show that the performance of our algorithm
is comparable to the state of the art at a much lower compu-
tational cost. In future work, we plan to further improve the
algorithm performance by incorporating local constraints in

the region merging process in the form of spatially adaptive
chrominance biasing.
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