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ABSTRACT

Matched-texture coding (MTC) exploits the redundancy of
textured regions in natural images in order to achieve low-
encoding-rate structurally lossless compression. A key el-
ement of MTC identifying large image blocks that can be
replaced with previously encoded blocks that have similar
structure. The side matching (SM) approach attempts to do
this by matching the upper and left boundary (side) of a tar-
get block with the corresponding boundary of the candidate
block, and then, among the best side matches, selecting the
one that best matches the target block. We explore the ef-
fectiveness of, and interplay between, three SM criteria in
order to increase the number and quality of matches and to
reduce the computational complexity. The criteria are mean-
squared-error, log variance ratio, and partial implementations
of STSIM-2, a recently proposed structural texture similarity
metric. We propose a hierarchical algorithm for side match-
ing, with three layers that utilize the three metrics, that im-
proves performance and reduces the computation complexity.
To set thresholds for the first and second layers of the hier-
archical algorithm, we rely on Bayesian hypothesis testing.
To estimate the necessary local probability densities, we in-
troduce an adaptive estimation technique that depends on the
side matching search region. Experimental results demon-
strate an improvement of quality for a given encoding rate
over previous realizations of MTC.

Index Terms— Side matching, Matched-Texture Coding,
Bayesian Hypothesis Test, Hierarchical Algorithm

1. INTRODUCTION

Matched-Texture coding (MTC) [1, 2, 3] is a recently pro-
posed technique that attempts to exploit the redundancy of
textured regions in natural images in order to achieve struc-
turally lossless compression at low encoding rates. The key
idea of MTC is finding large image blocks that can be re-
placed with previously encoded blocks that have similar struc-
ture. The encoding of such blocks can be done very effi-
ciently without any significant loss in overall image quality,
since there is no encoding of a residual, and as will explain
below, only a few bits are needed for referencing the previ-
ously encoded block [1]. The remaining blocks are encoded

Fig. 1. Side Matching

with a baseline technique like JPEG. Jin et al. [1] have iden-
tified two basic versions of MTC, side matching (SM) and
direct block matching (DBM). The SM approach attempts to
identify blocks that can be replaced by previously encoded
blocks by matching the upper and left boundary (side) of the
target block with the corresponding boundary of the candi-
date block. This is illustrated in Figure 1, where the tar-
get block Bt is shown in blue, the candidate block Bc to be
tested is shown in purple, and the L-shaped boundaries are
shown in orange. If a good side match can be found, then
the chances of target matching, i.e., that the actual target and
candidate blocks are also matching are quite high. Then, all
we need to do is find the top K (say 16) candidates, and se-
lect the one that best matches the target block. This requires
log2K bits (4), plus an additional bit to indicate if a match
has been found. Note that the decoder performs the same side
matching process, but cannot do target matching. For this ap-
proach to work, we need (a) a good side-matching criterion,
(b) a good target matching criterion, and once a good match is
found, (c) a good image blending approach to avoid blocking
artifacts. Note that, in addition to helping identify suitable
candidates for target encoding, side matching is also essen-
tial for ensuring smooth blending [4]. For target matching,
we have identified the need for structural texture similarity
metrics (STSIMs) [5, 3], which account for the stochastic na-
ture of textures, and assign high similarity scores to textures
with substantial (visible) point-by-point differences that are
perceptually equivalent. For blending, we use the approach
proposed by Efros and Freeman [4]. The goal of this paper is
to find better side-matching criteria. Based on the above dis-
cussion, it should be clear that the better the side matching,
the better the chances of finding good target matches, thus



resulting in higher coding gains. However, as we will show
in this paper, finding side-matching criteria that ensure good
blending and at the same time increase the likelihood of target
matching is a challenging problem. Finally, another element
of the MTC, an adaptive lighting correction method was in-
vestigated in [2].

We explore the use of three side matching criteria with the
goal of increasing the number and quality of matches and re-
ducing the computational complexity. The criteria are mean-
squared-error (MSE), log variance ratio (LVR), and hierarchi-
cal implementations of STSIM-2 [5]. The MSE is a natural
choice for facilitating blending and has been used before in
[1, 2]. However, the main issues are to find side matches that
have a good chance of success (target match), and to make
sure that we do not miss any good matches (and the associ-
ated compression gains). For the latter, we need to cover a
large search area, which is computationally expensive. A rea-
sonable alternative that is utilized in DBM [1] is to do a coarse
to fine search. However, MSE is not a good criterion for that,
as small shifts can result in significant MSE fluctuations. As
we will see, as an alternative that relaxes the requirement for
pixel-by-pixel alignment, Jin et al. [2] investigated a linear
combination of MSE and LVR. LVR and STSIM-2, due to
their statistical nature, are much more robust to small shifts,
and for the same reason provide higher probability of target
match. We also conducted a study of how well side match-
ing based on the different metrics predicts target matching,
and found that STSIM-2 has the best performance and MSE
the worst. However, STSIM-2 is the most computationally
demanding.

Based on all of the above considerations, we selected a
hierarchical SM approach, with three layers. The first layer
relies on LVR for side matching on blocks centered on a
coarse grid of pixels to narrow down the regions where good
side (and target) matches are likely. The second layer uses
MSE for side matching on a dense grid to eliminate candi-
dates that are unsuitable for blending. The third layer uses
a partial implementation of STSIM-2 for side matching to
reduce the number of candidates, and hence the number of
bits for encoding the location of the best candidate. Setting
the right thresholds for each layer is critical. For that we rely
on Bayesian hypothesis testing. To estimate the necessary lo-
cal probability densities, we introduce an adaptive estimation
technique that depends on the side matching search region.

Experimental results demonstrate that the layered use of
the metrics and the soft thresholding (i.e. Bayesian Hypothe-
sis Tests) approach result in improved perceptual quality and
reductions in computational complexity over previous real-
izations of MTC.

In addition to MTC, a number of other approaches have
been proposed for exploiting the redundancy of textured re-
gions for image and video compression. However, in con-
trast to MTC, most of the recently proposed approaches ap-
proaches (as well as an early approach by Popat and Picard

[6]) rely on texture analysis/synthesis techniques and trans-
mission of the texture parameters [7, 8].

The remainder of this paper is organized as follows. In
Section 2, we discuss the effectiveness of the three metrics for
side and target matching. Section 3 presents the hierarchical
SM approach. Section 4 introduces the Bayesian hypothesis
test approach for soft thresholding and the associated adaptive
training procedure. Selected coding result is shown in Section
5 and the conclusions are summarized in Section 6.

2. IMPROVED SIDE MATCHING

In the original Matched-Texture Coding (MTC) approach [1],
MSE was used as the metric for Side Matching. The SM and
DBM versions differed in the order of performing the side
matching and target matching tests. In the SM version, the
coder used the L-shaped side of target block to find the best
K candidates in the previously encoded region. The STSIM-2
was then applied to find the best target match. In contrast, the
DBM version used a hierarchical implementation of STSIM-
2 first to select candidate blocks for target matches, and then
MSE to ensure good target blending. Since the decoder can-
not perform target matching, DBM necessitates the transmis-
sion of a motion vector.

In most of the initial experiments, the coding quality of
DBM version outperformed the SM version. This indicates
that using MSE first for side matching misses a lot of valid
candidates. In [2], the LVR r = clipα(log(vc/vt)), where
vc and vt are the side variance of candidate and target, re-
spectively, and clipα(z) bounds the value of z between −α
and α, was proposed as a good measure of texture dissimilar-
ity. Then, in order to balance the two requirements (blending
and good target matching), the LVR constrained MSE, Eλ =
MSE + λr, was incorporated in MTC-2 [2]. By properly ad-
justing λ the coding quality was significantly improved. How-
ever, the effectiveness of this approach is not well understood,
and a different λmay be needed for different images. We thus
conducted a study to determine how well side matching based
on the different metrics predicts target matching.

Our goal was to find the metric whose side matching
values best correlate with the target matching values of
STSIM-2. The metrics we tested were MSE, LVR, Eλ,
STSIM-2 (applied to side matching), and a simplified version
of STSIM-2, denoted STSIM-P, based on a steerable filter
decomposition[9] with only three scales and one orientation,
and pooling over only the L (illumination) and C (contrast)
terms. (For the definitions, see [5].) We computed the corre-
lation coefficient between the value of each metric on the side
matching and the value of STSIM-2 on the target match. The
data was collected during the coding process of several im-
ages; the absolute value of correlation coefficient ρ are shown
in Table 1. Note that MSE has the lowest correlation and
STSIM-P has the highest. Surprisingly, STSIM-P performs
significantly better than STSIM-2. Moreover, by properly



MSE LVR Eλ STSIM-2 STSIM-P
|ρ| 0.12 0.38 0.43 0.39 0.70

Table 1. Absolute correlation coefficient between side fea-
tures to STSIM-2(Bt, Bc)
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Fig. 2. Subband Correlation Coefficient to Core STSIM-2
score

selecting λ, on the average, Eλ results in higher correlation.
Note also that LVR performs almost as well as STSIM-2,
which justifies its use in the hierarchical side matching we
discuss below, especially because the computational com-
plexity of STSIM-2, and even STSIM-P is so high. We also
computed the correlation coefficient between individual terms
of STSIM-2 applied to side matching and the full STSIM-2
applied to target matching. The results are shown in Figure
2. The horizontal axis labels correspond to the 3 scales, and
4 orientations of the steerable filter bank, as follows: labels
1 to 4 correspond to subbands in the 4 orientations of scale
1 (highest frequency); labels 5 to 8 correspond to subbands
in the 4 orientations of scale 2; labels 9 to 12 correspond to
subbands in the 4 orientations of scale; and finally, labels 13
and 14 correspond to the highpass and lowpass subbands, re-
spectively. Note that the L and C terms showed consistently
higher correlations compared to the horizontal and vertical
correlation coefficients (C01 and C10, respectively). This
explains the superior performance of STSIM-P compared to
STSIM-2.

The side matching step can be improved by use all of side
features above. However, the computation complexity is ex-
treme high for testing each candidates.

3. HIERARCHICAL SIDE MATCHING

In order to obtain a reasonable tradeoff between accurate side
matching and computational complexity, we implemented a
hierarchical decision algorithm. It consists of three layers,
as shown in Figure 3. In the first layer the side matching is
done on blocks centered on a coarse grid of pixels, with the

goal of narrowing down the regions where good side (and tar-
get) matches are likely. For this we need a robust (to spatial
shifts) side matching metric with good correlation with tar-
get matching. STSIM-2, STSIM-P, and LVR are good can-
didates for this, but based on computational complexity, we
selected LVR. For a side region containing N pixels, only
Θ(N) operations are required for LVR, while STSIMs cost
at least Ω(NlogN). Thus, LVR is selected for the first layer.
To further reduce the computation, as we saw above, the side
matching search in the first layer is done on a coarse grid grid
with spacing of G × G a typical value for is G = 8. If a
candidate on the grid passes the first layer test, then all the
neighboring candidates within the G/2 ball are tested in the
second layer using MSE (which ensures good blending). Fi-
nally, for all the candidates that pass the second layer test,
side matching is carried out with STSIM-P in the third layer,
in order to select the best K candidates for the target test.

Fig. 3. Side Matching Hierarchy

In Layers 1 and 2, there is a need for a hard threshold.
Overall, the threshold in Layer 1 should be loose. For the pur-
pose of finding more “good” candidates, a easy-come-hard-go
strategy should be used. Layer 2 on the other hand must re-
duce the number of candidates passing to Layer 3, which is
the most computationally expensive. Thus, the threshold in
Layer 2 must be tough.

4. SOFT THRESHOLDING BY BAYESIAN
HYPOTHESIS TEST

Let θ be the vector of metric values when the three metrics
are applied for side matching

θ = {E, r, Sp}. (1)

where E is MSE, r is LVR, and Sp is STSIM-P. Given the
three metric values when side matching is applied to every
block in the previously encoded image, the side matching
problem can be reformulated as finding candidates that have
the highest target match based on STSIM-2 denoted by S∗2 .



Selecting hard thresholds for the first two layers of hierar-
chical side matching is heuristic and depends highly on image
characteristics. It is important to develop an automatic deci-
sion algorithm that could adapt to individual images as well
as local characteristics. The side matching problem can be
formulated as a hypothesis test. Given a threshold η for the
target matching, the two hypotheses, to accept the candidate
H∞ and to reject the candidateH′, are defined as:{

H0 if S2(Bc, Bt) ≤ η
H1 otherwise (2)

where Bc and Bt are the candidate and target blocks, re-
spectively. For a candidate and target pair, an observation
of side matching features θ, defined in (1), can be computed.
The likelihood of hypotheses {H0 and H1}, generating the
given observation θ, is measured by the conditional proba-
bility densities p(θ|H0) and p(θ|H1), respectively. To test a
side matching metric, a Bayesian Decision rule can be used:

p(θ|H1)

p(θ|H0)

H1

≷
H0

p(H0)C10

p(H1)C01
, (3)

where p(Hi) is the prior probability density of hypothesis i,
C01 is the cost of decision H0 when H1 is true (miss) and
C10 is the cost of decision H1 when H0 is true (false alarm).
There is always a tradeoff between the miss rate and the false
alarm rate.

The Bayesian hypothesis test is more effective when it is
applied to the hierarchical SM approach that we introduced
in Section 3, where the metrics are applied layer by layer.
In the first layer, r is used on a G × G grid. In practice,
the metrics are computed separately for the left and upper
parts of the L-shaped side region. Let θr = rl, ru represent
the 2-dimensional vector for left and upper side of LVR. The
data collected from multiple images show that p(θr|Hi), i =
0, 1 can be modeled by the bivariate Laplace distribution [10]
with three parametersL(λi,µr,i,Γi) with probability density
function:

pΘr|Hi
(θr|Hi) =

1

λiπ
K0(

√
2

λi
(θr − µr,i)TΓ−1i (θr − µr,i)),

(4)
where K0(z) is zero order modified Bessel function of the
second kind. For Layer 2, the metric vector is θE = {el, eu}
for left and upper side of MSE, respectively. We model log θe
as random variables generated from a bivariate Gaussian dis-
tribution with mean vector µe,i and covariance Re,i, given
hypothesisHi.

As we saw in Section 3, the hierarchical SM approach
should apply a easy-come-hard-go strategy. In Layer 1, the
encoder prefers lower miss rate than lower false alarm rate.
However, if the false alarm rate is too high, too many can-
didates will need to be tested using more expensive tests in
Layer 3. Thus, in Layer 2, the hypothesis test favors a lower
false alarm rate than a lower miss rate. Heuristically, we set

Fig. 4. Candidate Search Region/Estimation Region

C10/C01 > 1 (say 2 for example) in Layer 1 and C10/C01 <
1 in Layer 2 (say 0.5 for example).

In natural images, the conditional distribution of θr and
θE given hypothesis i may vary depending on the charac-
teristics of local regions. Moreover, precomputing the over-
all p(θr|Hi) and p(θE |Hi) is tedious and impractical. In-
stead, we use an adaptive estimator for the local distribution
of metric values during the coding process. Let the size of
target block be M For a coding target block, the similar can-
didates are always close by. To reduce the searching time,
the side matching search region Zs (within which the candi-
dates are selected) is constrained in a tM × 2tM area within
the reconstructed image as shown in Figure 4. The bivariate
Laplace distribution parameters and bivariate Gaussian distri-
bution parameters, as well as the prior p(H0) and p(H1), are
estimated only from the previously coded targets in the search
region Zs. The parameters for the bivariate Laplace distribu-
tion are estimated by the moment method:

µi = 1
NZs,i

∑
Zs,i

(θr)

λi = |Ri|1/2,
Γi = 1

λi
Ri

(5)

where NZs,i
is number of candidates in the search region that

belong to hypothesisHi (STSIM2(Bt, Bc)≷
i=1
i=0 η). Ri is the

covariance matrix for the metric values of all the candidates
in the search region that belong to hypothesis i. The estima-
tion of parameters is obvious in the Gaussian case and is not
shown here. In case there aren’t enough data in the search re-
gion Z, hard thresholding (same as in Section 3) is activated
again to decide the layer. The alternation between hard and
soft thresholding will save the bits for transmitting model pa-
rameters.

5. EXPERIMENTS

Selected coding results using proposed hierarchical side
matching with soft thresholding are shown in Figure 5. The
coding results are compared to the MTC coding result without
new side matching algorithm as in [2]. Significant improve-
ments are shown in both texture and smooth regions.



Fig. 5. Comparison with previous result. Left: MTC result in
[2]. Right: MTC result with improved side matching method,
where the grid spacing in the first layer is G = 8 and the
ratio of decision costs is C10/C01 = 2 in the first layer and
C10/C01 = 0.5 in the second. The bestK = 8 candidates are
selected in the third layer.

6. CONCLUSION

In this paper, we propose a new Side Matching algorithm for
Matched-Texture Coding (MTC). Mean-Squared-Error, log
variance ratio and STSIM-Partial are selected by consider-
ing the correlation to the STSIM-2 score in target region be-
tween the target block and candidate blocks. Side STSIM-
Part has the highest correlation to the target STSIM-2 score,
however, due to its computation cost, a hierarchical algorithm
with three layers is introduced, where log variance ratio is
tested in layer 1, MSE is tested in layer 2 and at last up
to K candidates who has smallest STSIM-Part value on the
side are selected as Side Matching output. In order to tuning
the threshold in first 2 layers automatically, a soft threshold-
ing using Bayesian hypothesis test has been used. Instead of
training and transmitting global model parameters, an adap-
tive estimation technique which depends on the Side Match-
ing search region is introduced. Experiments shows improve-
ment of quality than previous realizations of MTC.
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