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ABSTRACT tent of textured regions. However, because of their stoachas

We propose a new texture-based compression approach ifiicrand r_epetmve nature, textures contain a lot of redmegla
relies on new texture similarity metrics and is able to eiplo | '€ Main idea of the proposed approach is to encode selected
texture redundancies for significant compression gainis-wit Pl0CKs Of textures — as well as smooth blocks and blocks con-
out loss of visual quality, even though there may visible dif taining poundanes_ between sm_ooth and/or textured regions
ferences with the original image (structurally losslesgy- ~ PY Pointing to previously occurring (already encoded) kioc
isting techniques rely on point-by-point metrics that cann of similar textures. Bloqks that are not encoded in this way,
account for the stochastic and repetitive nature of testure 2'€ encoded by a baseline method, such as JPEG. The key to

The main idea is to encode selected blocks of textures — &°€0mplishing this is the use of a netwuctural texture sim-
well as smooth blocks and blocks containing boundaries bé!@/ity metric (STSIM) [2-4], which allows visible point-by-
tween smooth and/or textured regions — by pointing to previpo'm variations in textures that are virtually indistirigfuable

ously occurring (already encoded) blocks of similar tessyr [due to the stochastic nature of the variations]. Another ke

blocks that are not encoded in this way, are encoded by a bad@-th€ success of the proposed approach is the use of texture

line method, such as JPEG. Experimental results with nlatur2!€nding [5] to eliminate stitching artifacts.

images demonstrate the advantages of the proposed approach BY allowing substantial point-by-point variations in tex-
tured areas the proposed approach deviates from the “gold

standard” ofperceptually lossless compression, whereby the
compressed image is visually indistinguishable from thg-or
1. INTRODUCTION inal in a side-by-side comparison. The new goaktisic-

- ) o ) ~turally lossless compression [1], whereby the original and
With impressive advance_s in image and wdep compressiofympressed images have the same high visual quality, even
over the past decades, existing approaches to image compresgoygh in a side-by-side comparison there are visible wiffe
sion are approaching saturation. However, they are still fagnces — that do not affect the structure of the image. Sueh dif
from approaching the efficiency of the human brain in storferences would be difficult to detect when the reproduction i
ing visual mfprmatlon. Qne of the keys to further advances;jeywed by itself, while in a side-by-side comparison, itslio
is a more efficient handling of texture [1]. Current compres—ot pe obvious which image is the original. Thus, structyral
sion techniques rely on point-by-point similarity metriost  |ssjess compression bridges the gap between perceptually
cannot account for the stochastic nature of textures, whicfyssless and perceptually lossy compression.
can appear virtually identical even though they have substa The proposed approach is one way to achieve structurally

tial (visible when one looks carefully) point-by-point - ,sqje5 compression. Of course, there may be other ways to
ences. This paper proposes a new texture-based compress'&wthat’ e.g., ways that allow smoothly modifying or moving
approach that relies on new similarity metrics for texturad 46 eges. The goal of this paper is to show that by allow-
ages [2-4] that overcome limitations of existing metrics. i yigiple texture variations that do not affect visual lifya

State of the art techniques rely on (temporal or spatialy,e hronosed scheme can achieve acceptable quality at rates
prediction in combination with transform/subband/watele at which conventional approaches (JPEG) break down.

based compression of the residual, or the original image if The signal processing community has identified exploit-

a good prediction cannot be found. Such techniques are qwlt g texture as a key to increasing compression efficiengy, (e.

efficient in smooth and piecewise smooth image regions buS : e w :
o . . . > . " 'see selected papers in [6, 7]); one approach is “compression
are inefficient in regions that contain textures. This is be; pap [6, 71) P P

cause limitations of current metrics cause prediction tb fa by-synthesis” whereby the encoder tries to detect pure tex-
. . . : P ture regions which it then represents with appropriate rhode
in textured regions, while the direct encoding of textures r

. . h X ) parameters. What distinguishes our approach from those of
quires high bitrates due to the typically high frequency-con other authors is the use of an explicit texture similaritytmgce

This research was funded in part by Sony Electronics Inc. and the idea of structurally lossless compression.

Index Terms— structural similarity metric, blending,
side-matching, direct block matching




In Section 2 we discuss texture similarity metrics while in N x N target block
Section 3 we present the new coding approach.

2. STRUCTURAL TEXTURE SIMILARITY no
METRICS
One of the keys for the proposed approach is the use of SSIM- split to 4 . y-es i
type metrics for comparing textured patches [8,9]. The guid | ,nplocks find candidate
ing spirit of SSIM metrics is to replace traditional poirg-b “ JPEG

point similarity measurements with measurements based on fail
the similarities of local statistics computed separatelydl
positions of a sliding window. SSIMs can be implemented bass
in the spatial or subband domain. However, close inspection
of SSIMs reveals that they include point-by-point terms. In next b|OCk<—| blending |<7
order to overcome such limitations, Zheioal. [2] proposed
a structural texture similarity metric (STSM) that relies en- Fig. 1. Algorithm
tirely on local image statistics, and is thus completelyadec  jmage. In the latter case, the encoding rate for the block be-
pled from point-by-point comparisons. Zujowtal. further  comes very small.
developed this idea in [3]. Aside from the baseline coding method, the principal
When using a similarity metric, it is important to realize components of this approach are a similarity metric with
that different applications impose different requirensea  which to compare the current block, which we will call the
metric performance. While in image retrieval it may be suffi-target block, to the reproductions of various blocks in the
pient to distingui;h bgtyvgen similar and dissimilar te&mm previously encoded region, from now on calieahdidates, a
Image compression It is important to ensure a monotonic rgnechanism for identifying which candidates are to be tested
lationship between measured and perceived distortio]In [ 5 threshold to determine if the most similar candidate found
Zujovic et al. conducted subjective experiments with synthe-is sufficiently similar, a mechanism for identifying the eho
sized texture distortions that model natural texture Vs  sen candidate to the decoder, and a method for blending the
in order to evaluate the performance of different metrios, i chosen candidates with the reproductions that surroumd.the
cluding PSNR, SSIM, and STSIM. They used different orig-  There are two basic versior&gde Matching (SM) andDi-
inal texture images and different types and degrees ofrdistorect Bjock Matching (DBM), as well as combinations. In both
tions. They found that STSIM metrics provide the best perforyersions, the method operates on successive nonovertappin
mance. In the following, we use the STSIM metric proposedy »  plocks; we foundV = 32 to be a good choice. As il-
in [3], which exhibits an approximately monotonic relation |ystrated in Fig. 1, given th&/ x N block to be encoded next
ship between measured and perceived distortion for naturglyyget), it first seeks atv x N candidate that sufficiently
textures. In smooth regions and near region boundaries, thgatches the target in the sense that the STSIM value between
metric behavior is still approximately monotonic, butthetn e target and candidate is above a specified thresholdvdf s
ric values are not consistent among smooth, pure textuee, aipra| candidates meet the threshold, then the best is chdgen.
boundary regions, and thus an absolute performance thtesha finds one, it must indicate to the decoder what candidage ha
cannot be established. Metric limitations also includeithe  peen chosen. If it does not find one, it divides the target into

ability to distinguish small but perceptible changes irtex 5y ¥ » & subblocks and repeats the process, until the block
orientation and inconsistencies when applied with difiere gjze js equal t8 x 8, in which case the block is encoded with
sliding window sizes. However, as we will see in Section 3he paseline coder, e.g., JPEG. The search for candidates is
when used in combination with MSE for “side-matching,” the not extended to smaller blocks because the potential coding
metric behavior improves considerably. gains and computational complexity and reliability of find-
3. MATCHED-TEXTURE CODING (MTC) ing a good match are not worth it. '!'he rate-quality tradeoff
of both versions can be controlled via the JPEG rate and the
In this section we describe a new approach to image cornguality metric thresholds.
pression that we caMatched Texture Coding (MTC), which ) _
relies on STSIM with the goal of dramatically decreasing the3-1- Side Matching (SM)
number of bits required to encode textured regions of images$n Side Matching the encoder searches for fheandidates
The principal idea is to choose a baseline coding method4 to 16 is typical) in the already coded region whose left
such as JPEG, and then to encode each block of the imagead upper borders regions, called thregintexts, most closely
either by the baseline method or by indicating to the decodematch the corresponding context of the current block, where
that the block is well approximated by the decoded reproduche matching metric is the sum of squared pixel differences.
tion of some block in the previously encoded section of theAs illustrated in Fig. 2, for aiv x N current block (target “T”




past [encoded viously encoded region of the image. Then, if the STSIM
similarity of this candidate to the current block is above a
specified threshold, its location is encoded for the degoder
and the candidate itself becomes the decoded reprodudtion o
the current block.
For anN x N image, encoding the location of a successful
future (uncoded) candidate requires at mo3tog, IV bits. For example, for a
Fig. 2. Side Matching 32 x 32 block of a512 x 512 image, this is at modi8,/1024 =

i i i i 0.018 bits/pixel, which is still a marked reduction over the
shown in green), the context (shown in purple) is typlcallytypica| 0.5-2.0 bpp typically required by JPEG.

t?k?n tobe IT-shaped with arms Of_Widw4' The candidates Since computing STSIM for every candidate location is
("C" shown in green) corresponding t? tﬁé be‘?‘]t contextjf computationally expensive, DBM uses progressive location
(shown purple above and to the left of “C”) are then teste O%earch and progressive metric calculation. The formenis si

similarity to the current block using STSIM. The C"’mdid"’uelar to hierarchical motion search in video coding, in thatla-s
with the highest STSIM value then becomes the candidate fQl., ¢ |ocations. e g., a coarse lattice, are tested firdtttam

the testin Fig. 1. The idea is that if the context of a_can(dai_dat rther tests are performed in the vicinity of the best found
matches that of the current block, then the candidate itse gcations The latter exploits the fact that most locatipres

IS likely to match th? current block. O_ne_advantage of SMduce poor candidates, many of which can be ruled out based
IS th"’,‘t onlyl(_)g2 K bits are needed_ to mdmate the SeIeCtEdon a very simple metric, leaving only a small number of can-
candidate, since the decoder can itself find Bidest con- iyt for the full STSIM. For example, a simple first metric

texf[s. l_=or anZ\_f - 32 and[_( = 16, this requires 0.004 b_pp, is the percentage difference between the variance of the cur
which is a striking reduction over the 0.5-2.0 bpp typlcallyrent block and that of the candidaqe'Q _ o2 ‘ /o2,
required by JPEG. Such reductions are all the more striking T Cel/rT

begause they u;ually happen for textured cu_rrent blocks, fa3 3 aAdditional MTC Issues
which JPEG is likely to generate more than its average rate . . .
in bits/pixel. Since onlyx STSIM computations are required S15/M Details: We used a complex steerable filter imple-
per block, the main effort in this method is computing thementatllon th'at decomposes ea}ch image into three scales and
context matches. four orientations as in [3]. To limit the amount of computa-

A key element of SM idlending [5]. Even when a can- tion, we used 516_>< 16 sliding window Wlth no overlap. We
didate is very, very similar to the candidate it replacesrgh /S0 found that, in order to meet quality targets across each
will often be a noticeable discontinuities between the bloc POk, the most effective spatial pooling strategy is to thee
and surrounding pixels. For this reason, we use blending tg1nimum value across the windows instead of the average.
reduce or eliminate the appearance of such discontinuitie®€cision Bits: These are bits that are necessary for the en-
Context matching is an essential part of blending [5], thusoder to describe the split or not decisions. A simple method
serving a dual purpose, helping identify suitable candiglat equires at most 5 bits for eadz x 32 block of the image,
for target encoding, and ensuring smooth blending. i.e., 0.005 bpp per block.

Note that the above approach does not have to be limow Frequency Coding (LFC) of Background Gray
ited to blocks with uniform textures. It can also be used forLevel: In preliminary tests, we found that candidates are
blocks containing region boundaries (between smooth and/@ometimes rejected due to a mismatch of overall gray level,
textured regions). While such blocks are not as commorgven though the textures are otherwise well-matched. To
there are nevertheless gains to be made, provided the similancrease the number of viable candidates, we have found
ity metric (STSIM) can accurately predict the perceived-simit best to first encode the very low frequency components
ilarity of the target block in such cases. In practice, a gooaf the image and then apply MTC to the residual. Several
match is secured by a combination of side-matching (MSE)echniques have been tried and the best performance is at-
and STSIM. As we will discuss below, by eliminating unsuit- tained with a form of QPC [10], which typically encodes with
able candidates, side-matching, not only reduces the numbapproximately 0.05 bpp.

of STSIM computations, but also helps obtain better targegjending for JPEG-encoded Blocks: For JPEG encoded
matches than those that could be obtained by STSIM alongygcks, blending with the previously encoded MTC-coded
(This is because STSIM is not yet perfect!) This is true forp|ocks (above and to the left) must be done inside the JPEG
bqth uniform blocks and blocks that contain region boundyjock. To be able to do this smoothly target matching must
aries. include the context below and to the right of the block. Thus,
3.2. Direct Block Matching (DBM) target matching includes a border all around the targetkbloc

In Direct Block Matching the goal is to find the best candidateWith typical width equal to 1/4 of the block dimension. While

for the current block among all possible candidates in tiee pr f[h|s may sllghtly_ re(_jl_Jce the number of z_icc_eptable candidate
it does have a significant effect on continuity.




32x32MTC|16x16 MTC|8x8 JPEG LFC | Overall
image coded 21.3% 22.5% 56.2% 100%
coding rate  0.02 bpp 0.09 bpp | 0.48 bpp
contribution 0.005bpp | 0.02bpp | 0.27 bpp | 0.04 bpg 0.34 bpp

Table 1. Statistics for MTC coding of “woman” (Fig. 3).

32x32MTC|16x16 MTC |8x8 JPEG LFC | Overall
image coded 25.7% 8.26% 66.1% 100%
coding ratg  0.02 bpp 0.09 bpp | 0.43 bpp
contribution 0.006 bpp | 0.008 bpp | 0.28 bpp | 0.04 bpy 0.34 bpp

Table 2. Statistics for MTC coding of “house” (Fig. 4).

[
Fig. 3. Coding of “woman” at 0.34 bpp. (a) MTC, (b) JPEG

of bits, thus resulting in false contours in the neck and #ie h
areas. While the MTC-coded texture is different, there are no
apparent artifacts, just increased roughness. In Fig. CMT
does a better job in the roof and grass areas. A careful exam-
ination of the windows reveals some artifacts. JPEG on the
other hand, spends a lot of bits in the windows at the expense
of false contours in the roof and grass areas.

Table 1 shows that for 44% of the image, JPEG is replaced
by MTC. On the portions where JPEG is used, it encodes at

- . — - e 0.48 bpp, whereas where MTC is used, only 0.02 bpp and
Fig. 4. Coding of “house” at 0.34 bpp. (a) MTC, (b) JPEG 0.09 bpp are needed f82 x 32 and16 x 16 blocks, respec-
tively. Moreover, the savings in the MTC areas enable the
3.4. Discussion and Experimental Results use of a higher JPEG quality in the rest of the image than

- L . .. would be used if JPEG needed to average to 0.34 bpp. This
Our |p|t|al thinking was that DBM would y|_eld better quall'gy improves the quality of the candidates available for the 44%
candidates than SM at the expense of higher computation here MTC is used

complexity. The higher quality candidates would offset the
small additional bit rate resulting in similar or slightletber 4. REFERENCES

rate vs. distortion performance. However, we discoverat th . . .
SM worked significantly better, A closer look revealed that [1] T.N. Pappaset al., “Image analysis and compression:
Renewed focus on textureMsual Inf. Proc. Comm.,

SM, not only minimizes block boundary discontinuities by

facilitating blending, but most interestingly, also hae #f- San Jose, CA, Jan. 2010, Proc. SPIE, Vol. 7543.
fect of finding candidates whose texture patterns more flose [2] X- Zhao,etal., “Structural texture similarity metrics for
matched those of the current block. In particular, the fact  retrieval applications,1CIP-08, pp. 1196-1199.

that candidates were being chosen based on a point-by-poini3] J- Zujovic, et al., “Structural similarity metrics for tex-
context match tended to increase the likelihood that candi-  ture analysis and retrieval{CIP-09, pp. 2225-2228.

date itself contained texture with features similar to thos  [4] J. Zujovic, et al., “Subjective and objective texture sim-
the current block, e.g., its basic elements would be of aimil ilarity for image compressionCASSP-12. Accepted.
size, shape and orientation. This, of course, points toiggim  [5] A.A. Efros, W.T. Freeman, “Image quilting for texture
tion of STSIM. When side-matching was added as a filter for ~ synthesis and transfer3d GGRAPH-01, pp. 341-346.
eliminating bad candidates, there was a substantial inggrov [6] Special session on “Next generation image and video

ment in performance. Overall, an intertwining of progressi coding through texture analysis and synthesikCIP-
location search, side-matching, and progressive metsluev 09, Nov. 2009.

ation leads to an effective, computationally efficient noeth  [7] “Special issue on emerging technologies for video com-
of finding candidates for the current block. pression,” |[EEE J. S&l. Topics Sg. Proc., vol. 5, no. 7,

Taking into account compression, reproduced image qual- ~ Nov. 2011.
ity, and computational complexity, the best results so fmeh  [8] Z. Wang, et al., “Image quality assessment: From error
been attained with a combination of SM and DBM. Space Visibility to structural similarity,”|EEE Tr. Image Proc.,
does not permit a description of how they were combined, but ~ vol. 13, pp. 600-612, Apr. 2004.
representative results are shown in Figs. 3 and 4, which show9] Z. Wang, E.P. Simoncelli, “Translation insensitive im-
the results of two images encoded by MTC and JPEG at the  age similarity in complex wavelet domair CASSP-05,
same rate, 0.34 bpp for both figures. By magnifying the file, vol. Il, pp. 573-576.
you may note that in Fig. 3, JPEG does a little better job enf10] C.-Y. Teng, D.L. Neuhoff, “A new quadtree predictive
coding the texture in the sweater, but this causes it to riin ou image coder,1CIP-95, vol. Il, pp. 73-76.



