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ABSTRACT

We propose a new texture-based compression approach that
relies on new texture similarity metrics and is able to exploit
texture redundancies for significant compression gains with-
out loss of visual quality, even though there may visible dif-
ferences with the original image (structurally lossless).Ex-
isting techniques rely on point-by-point metrics that cannot
account for the stochastic and repetitive nature of textures.
The main idea is to encode selected blocks of textures – as
well as smooth blocks and blocks containing boundaries be-
tween smooth and/or textured regions – by pointing to previ-
ously occurring (already encoded) blocks of similar textures,
blocks that are not encoded in this way, are encoded by a base-
line method, such as JPEG. Experimental results with natural
images demonstrate the advantages of the proposed approach.

Index Terms— structural similarity metric, blending,
side-matching, direct block matching

1. INTRODUCTION

With impressive advances in image and video compression
over the past decades, existing approaches to image compres-
sion are approaching saturation. However, they are still far
from approaching the efficiency of the human brain in stor-
ing visual information. One of the keys to further advances
is a more efficient handling of texture [1]. Current compres-
sion techniques rely on point-by-point similarity metricsthat
cannot account for the stochastic nature of textures, which
can appear virtually identical even though they have substan-
tial (visible when one looks carefully) point-by-point differ-
ences. This paper proposes a new texture-based compression
approach that relies on new similarity metrics for texturedim-
ages [2–4] that overcome limitations of existing metrics.

State of the art techniques rely on (temporal or spatial)
prediction in combination with transform/subband/wavelet-
based compression of the residual, or the original image if
a good prediction cannot be found. Such techniques are quite
efficient in smooth and piecewise smooth image regions, but
are inefficient in regions that contain textures. This is be-
cause limitations of current metrics cause prediction to fail
in textured regions, while the direct encoding of textures re-
quires high bitrates due to the typically high frequency con-
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tent of textured regions. However, because of their stochas-
tic and repetitive nature, textures contain a lot of redundancy.
The main idea of the proposed approach is to encode selected
blocks of textures – as well as smooth blocks and blocks con-
taining boundaries between smooth and/or textured regions–
by pointing to previously occurring (already encoded) blocks
of similar textures. Blocks that are not encoded in this way,
are encoded by a baseline method, such as JPEG. The key to
accomplishing this is the use of a newstructural texture sim-
ilarity metric (STSIM) [2–4], which allows visible point-by-
point variations in textures that are virtually indistinguishable
[due to the stochastic nature of the variations]. Another key
to the success of the proposed approach is the use of texture
blending [5] to eliminate stitching artifacts.

By allowing substantial point-by-point variations in tex-
tured areas the proposed approach deviates from the “gold
standard” ofperceptually lossless compression, whereby the
compressed image is visually indistinguishable from the orig-
inal in a side-by-side comparison. The new goal isstruc-
turally lossless compression [1], whereby the original and
compressed images have the same high visual quality, even
though in a side-by-side comparison there are visible differ-
ences – that do not affect the structure of the image. Such dif-
ferences would be difficult to detect when the reproduction is
viewed by itself, while in a side-by-side comparison, it should
not be obvious which image is the original. Thus, structurally
lossless compression bridges the gap between perceptually
lossless and perceptually lossy compression.

The proposed approach is one way to achieve structurally
lossless compression. Of course, there may be other ways to
do that, e.g., ways that allow smoothly modifying or moving
image edges. The goal of this paper is to show that by allow-
ing visible texture variations that do not affect visual quality,
the proposed scheme can achieve acceptable quality at rates
at which conventional approaches (JPEG) break down.

The signal processing community has identified exploit-
ing texture as a key to increasing compression efficiency (e.g.,
see selected papers in [6, 7]); one approach is “compression-
by-synthesis” whereby the encoder tries to detect pure tex-
ture regions which it then represents with appropriate model
parameters. What distinguishes our approach from those of
other authors is the use of an explicit texture similarity metric
and the idea of structurally lossless compression.



In Section 2 we discuss texture similarity metrics while in
Section 3 we present the new coding approach.

2. STRUCTURAL TEXTURE SIMILARITY
METRICS

One of the keys for the proposed approach is the use of SSIM-
type metrics for comparing textured patches [8,9]. The guid-
ing spirit of SSIM metrics is to replace traditional point-by-
point similarity measurements with measurements based on
the similarities of local statistics computed separately for all
positions of a sliding window. SSIMs can be implemented
in the spatial or subband domain. However, close inspection
of SSIMs reveals that they include point-by-point terms. In
order to overcome such limitations, Zhaoet al. [2] proposed
a structural texture similarity metric (STSIM) that relies en-
tirely on local image statistics, and is thus completely decou-
pled from point-by-point comparisons. Zujovicet al. further
developed this idea in [3].

When using a similarity metric, it is important to realize
that different applications impose different requirements on
metric performance. While in image retrieval it may be suffi-
cient to distinguish between similar and dissimilar textures, in
image compression it is important to ensure a monotonic re-
lationship between measured and perceived distortion. In [4],
Zujovic et al. conducted subjective experiments with synthe-
sized texture distortions that model natural texture variations
in order to evaluate the performance of different metrics, in-
cluding PSNR, SSIM, and STSIM. They used different orig-
inal texture images and different types and degrees of distor-
tions. They found that STSIM metrics provide the best perfor-
mance. In the following, we use the STSIM metric proposed
in [3], which exhibits an approximately monotonic relation-
ship between measured and perceived distortion for natural
textures. In smooth regions and near region boundaries, the
metric behavior is still approximately monotonic, but the met-
ric values are not consistent among smooth, pure texture, and
boundary regions, and thus an absolute performance threshold
cannot be established. Metric limitations also include thein-
ability to distinguish small but perceptible changes in texture
orientation and inconsistencies when applied with different
sliding window sizes. However, as we will see in Section 3,
when used in combination with MSE for “side-matching,” the
metric behavior improves considerably.

3. MATCHED-TEXTURE CODING (MTC)

In this section we describe a new approach to image com-
pression that we callMatched Texture Coding (MTC), which
relies on STSIM with the goal of dramatically decreasing the
number of bits required to encode textured regions of images.

The principal idea is to choose a baseline coding method,
such as JPEG, and then to encode each block of the image
either by the baseline method or by indicating to the decoder
that the block is well approximated by the decoded reproduc-
tion of some block in the previously encoded section of the
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Fig. 1. Algorithm

image. In the latter case, the encoding rate for the block be-
comes very small.

Aside from the baseline coding method, the principal
components of this approach are a similarity metric with
which to compare the current block, which we will call the
target block, to the reproductions of various blocks in the
previously encoded region, from now on calledcandidates, a
mechanism for identifying which candidates are to be tested,
a threshold to determine if the most similar candidate found
is sufficiently similar, a mechanism for identifying the cho-
sen candidate to the decoder, and a method for blending the
chosen candidates with the reproductions that surround them.

There are two basic versions,Side Matching (SM) andDi-
rect Block Matching (DBM), as well as combinations. In both
versions, the method operates on successive nonoverlapping
N × N blocks; we foundN = 32 to be a good choice. As il-
lustrated in Fig. 1, given theN ×N block to be encoded next
(target), it first seeks anN × N candidate that sufficiently
matches the target in the sense that the STSIM value between
the target and candidate is above a specified threshold. (If sev-
eral candidates meet the threshold, then the best is chosen.) If
it finds one, it must indicate to the decoder what candidate has
been chosen. If it does not find one, it divides the target into
four N
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subblocks and repeats the process, until the block

size is equal to8× 8, in which case the block is encoded with
the baseline coder, e.g., JPEG. The search for candidates is
not extended to smaller blocks because the potential coding
gains and computational complexity and reliability of find-
ing a good match are not worth it. The rate-quality tradeoff
of both versions can be controlled via the JPEG rate and the
quality metric thresholds.

3.1. Side Matching (SM)

In Side Matching the encoder searches for theK candidates
(4 to 16 is typical) in the already coded region whose left
and upper borders regions, called theircontexts, most closely
match the corresponding context of the current block, where
the matching metric is the sum of squared pixel differences.
As illustrated in Fig. 2, for anN×N current block (target “T”
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Fig. 2. Side Matching

shown in green), the context (shown in purple) is typically
taken to be L-shaped with arms of widthN/4. The candidates
(“C” shown in green) corresponding to theK best contexts
(shown purple above and to the left of “C”) are then tested for
similarity to the current block using STSIM. The candidate
with the highest STSIM value then becomes the candidate for
the test in Fig. 1. The idea is that if the context of a candidate
matches that of the current block, then the candidate itself
is likely to match the current block. One advantage of SM
is that only log

2
K bits are needed to indicate the selected

candidate, since the decoder can itself find theK best con-
texts. For anN = 32 andK = 16, this requires 0.004 bpp,
which is a striking reduction over the 0.5–2.0 bpp typically
required by JPEG. Such reductions are all the more striking
because they usually happen for textured current blocks, for
which JPEG is likely to generate more than its average rate
in bits/pixel. Since onlyK STSIM computations are required
per block, the main effort in this method is computing the
context matches.

A key element of SM isblending [5]. Even when a can-
didate is very, very similar to the candidate it replaces, there
will often be a noticeable discontinuities between the block
and surrounding pixels. For this reason, we use blending to
reduce or eliminate the appearance of such discontinuities.
Context matching is an essential part of blending [5], thus
serving a dual purpose, helping identify suitable candidates
for target encoding, and ensuring smooth blending.

Note that the above approach does not have to be lim-
ited to blocks with uniform textures. It can also be used for
blocks containing region boundaries (between smooth and/or
textured regions). While such blocks are not as common,
there are nevertheless gains to be made, provided the similar-
ity metric (STSIM) can accurately predict the perceived sim-
ilarity of the target block in such cases. In practice, a good
match is secured by a combination of side-matching (MSE)
and STSIM. As we will discuss below, by eliminating unsuit-
able candidates, side-matching, not only reduces the number
of STSIM computations, but also helps obtain better target
matches than those that could be obtained by STSIM alone.
(This is because STSIM is not yet perfect!) This is true for
both uniform blocks and blocks that contain region bound-
aries.

3.2. Direct Block Matching (DBM)

In Direct Block Matching the goal is to find the best candidate
for the current block among all possible candidates in the pre-

viously encoded region of the image. Then, if the STSIM
similarity of this candidate to the current block is above a
specified threshold, its location is encoded for the decoder,
and the candidate itself becomes the decoded reproduction of
the current block.

For anN×N image, encoding the location of a successful
candidate requires at most2 log

2
N bits. For example, for a

32×32 block of a512×512 image, this is at most18/1024 =

0.018 bits/pixel, which is still a marked reduction over the
typical 0.5–2.0 bpp typically required by JPEG.

Since computing STSIM for every candidate location is
computationally expensive, DBM uses progressive location
search and progressive metric calculation. The former is simi-
lar to hierarchical motion search in video coding, in that a sub-
set of locations, e.g., a coarse lattice, are tested first, and then
further tests are performed in the vicinity of the best found
locations. The latter exploits the fact that most locationspro-
duce poor candidates, many of which can be ruled out based
on a very simple metric, leaving only a small number of can-
didates for the full STSIM. For example, a simple first metric
is the percentage difference between the variance of the cur-
rent block and that of the candidate:
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3.3. Additional MTC Issues

STSIM Details: We used a complex steerable filter imple-
mentation that decomposes each image into three scales and
four orientations as in [3]. To limit the amount of computa-
tion, we used a16 × 16 sliding window with no overlap. We
also found that, in order to meet quality targets across each
block, the most effective spatial pooling strategy is to usethe
minimum value across the windows instead of the average.
Decision Bits: These are bits that are necessary for the en-
coder to describe the split or not decisions. A simple method
requires at most 5 bits for each32 × 32 block of the image,
i.e., 0.005 bpp per block.

Low Frequency Coding (LFC) of Background Gray
Level: In preliminary tests, we found that candidates are
sometimes rejected due to a mismatch of overall gray level,
even though the textures are otherwise well-matched. To
increase the number of viable candidates, we have found
it best to first encode the very low frequency components
of the image and then apply MTC to the residual. Several
techniques have been tried and the best performance is at-
tained with a form of QPC [10], which typically encodes with
approximately 0.05 bpp.

Blending for JPEG-encoded Blocks: For JPEG encoded
blocks, blending with the previously encoded MTC-coded
blocks (above and to the left) must be done inside the JPEG
block. To be able to do this smoothly target matching must
include the context below and to the right of the block. Thus,
target matching includes a border all around the target block;
with typical width equal to 1/4 of the block dimension. While
this may slightly reduce the number of acceptable candidates,
it does have a significant effect on continuity.



Fig. 3. Coding of “woman” at 0.34 bpp. (a) MTC, (b) JPEG

Fig. 4. Coding of “house” at 0.34 bpp. (a) MTC, (b) JPEG

3.4. Discussion and Experimental Results

Our initial thinking was that DBM would yield better quality
candidates than SM at the expense of higher computational
complexity. The higher quality candidates would offset the
small additional bit rate resulting in similar or slightly better
rate vs. distortion performance. However, we discovered that
SM worked significantly better, A closer look revealed that
SM, not only minimizes block boundary discontinuities by
facilitating blending, but most interestingly, also has the ef-
fect of finding candidates whose texture patterns more closely
matched those of the current block. In particular, the fact
that candidates were being chosen based on a point-by-point
context match tended to increase the likelihood that candi-
date itself contained texture with features similar to those of
the current block, e.g., its basic elements would be of similar
size, shape and orientation. This, of course, points to a limita-
tion of STSIM. When side-matching was added as a filter for
eliminating bad candidates, there was a substantial improve-
ment in performance. Overall, an intertwining of progressive
location search, side-matching, and progressive metric evalu-
ation leads to an effective, computationally efficient method
of finding candidates for the current block.

Taking into account compression, reproduced image qual-
ity, and computational complexity, the best results so far have
been attained with a combination of SM and DBM. Space
does not permit a description of how they were combined, but
representative results are shown in Figs. 3 and 4, which show
the results of two images encoded by MTC and JPEG at the
same rate, 0.34 bpp for both figures. By magnifying the file,
you may note that in Fig. 3, JPEG does a little better job en-
coding the texture in the sweater, but this causes it to run out

32×32 MTC 16×16 MTC 8×8 JPEG LFC Overall
image coded 21.3% 22.5% 56.2% 100%
coding rate 0.02 bpp 0.09 bpp 0.48 bpp
contribution 0.005 bpp 0.02 bpp 0.27 bpp 0.04 bpp 0.34 bpp

Table 1. Statistics for MTC coding of “woman” (Fig. 3).

32×32 MTC 16×16 MTC 8×8 JPEG LFC Overall
image coded 25.7% 8.26% 66.1% 100%
coding rate 0.02 bpp 0.09 bpp 0.43 bpp
contribution 0.006 bpp 0.008 bpp 0.28 bpp 0.04 bpp 0.34 bpp

Table 2. Statistics for MTC coding of “house” (Fig. 4).

of bits, thus resulting in false contours in the neck and the hair
areas. While the MTC-coded texture is different, there are no
apparent artifacts, just increased roughness. In Fig. 4, MTC
does a better job in the roof and grass areas. A careful exam-
ination of the windows reveals some artifacts. JPEG on the
other hand, spends a lot of bits in the windows at the expense
of false contours in the roof and grass areas.

Table 1 shows that for 44% of the image, JPEG is replaced
by MTC. On the portions where JPEG is used, it encodes at
0.48 bpp, whereas where MTC is used, only 0.02 bpp and
0.09 bpp are needed for32 × 32 and16 × 16 blocks, respec-
tively. Moreover, the savings in the MTC areas enable the
use of a higher JPEG quality in the rest of the image than
would be used if JPEG needed to average to 0.34 bpp. This
improves the quality of the candidates available for the 44%
where MTC is used.
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