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Abstract— We proposea new approachfor image segmentation
that is based on low-level features for color and texture. It is
aimed at segmentation of natural scenes,in which the color
and texture of each segment does not typically exhibit uni-
form statistical characteristics. The proposedapproachcombines
knowledge of human perception with an understanding of signal
characteristics in order to segment natural scenesinto per-
ceptually/semantically uniform regions.The proposedapproach
is based on two types of spatially adaptive low-level features.
The first describes the local color composition in terms of
spatially adaptive dominant colors, and the seconddescribesthe
spatial characteristics of the grayscalecomponentof the texture.
Together they provide a simple and effective characterization
of texture that the proposed algorithm usesto obtain robust
and, at the same time, accurate and precise segmentations.
The resulting segmentationscorvey semantic information that
can be used for content-basedretrieval. The performance of
the proposed algorithms is demonstrated in the domain of
photographic images, including low resolution, degraded, and
compressedimages.

Index Terms— Content-basedimage retrieval (CBIR), adap-
tive clustering algorithm, optimal color composition distance
(OCCD), steerablefilter decomposition,Gabor transform, local
median energy, human visual system(HVS) models.

EDICS Category: Trans. IP 2-SEGM (Segmentation)

I. INTRODUCTION

HE RAPID accumulationof large collectionsof digital
imageshascreatedthe needfor efficient and intelligent
schemedor imageretrieval. Sincemanualannotationof large
image databases$s both expensve andtime consumingiit is
desirableto basesuch schemesdirectly on image content.
Indeed, the field of Content-Basedmage Retrieval (CBIR)
has madessignificant advancesin recentyears[1], [2]. One
of the mostimportantand challengingcomponentsof mary
CBIR systemss scenesegmentation.
This paperconsidersthe problem of segmentationof nat-
ural imagesbasedon color and texture. Although significant

Manuscriptreceved August 7, 2003; revised August 9, 2004. This work
was supportedby the National Science Foundation (NSF) under Grant
No.CCR-0209006Any opinions, findings and conclusionsor recommenda-
tions expressedn this materialarethoseof the authorsanddo not necessarily
reflectthe views of the NSE The associateeditor coordinatingthe review of
this manuscriptand appraring it for publicationwas Dr. Michael Schmitt.

J. Chenis with Unilever Research,Trumhkull, CT 06611 USA (email:
junging.chen@uniler.com)

T. N. Pappasis with the Departmentof Electrical and ComputerEngi-
neering, NorthwesternUniversity Evanston,IL 60208 USA (e-mail: pap-
pas@ece.northwestern.edu),

A. Mojsilovi¢t andB. E. Rogawitz arewith the IBM T. J. WatsonResearch
Center Yorktovn Heights,NY 10598,USA (e-mail: aleksand@us.ibm.com,
rogonvtz@us.ibm.com)

progresshasbeenmadein texture seggmentation(e.g.,[3—7])
and color sgmentation(e.g., [8-11]) separatelythe areaof
combinedcolor and texture segmentationremainsopen and
active. Someof therecentwork includesJSEG[12], stochastic
model-basedpproache$13-15], watershedechniqueq16],
edgeflow techniqueq17], and normalizedcuts[18].

Another challengingaspectof image segmentationis the
extractionof perceptuallyrelevantinformation. Sincehumans
are the ultimate usersof most CBIR systems,it is impor-
tant to obtain sgmentationsthat can be usedto organize
image contentssemantically accordingto cateyoriesthat are
meaningfulto humans.This requiresthe extraction of low-
level image featuresthat can be correlatedwith high-level
imagesemanticsThisis avery challengingproblem.However,
ratherthantrying to obtaina completeanddetaileddescription
of every objectin the scene,it may be sufficient to isolate
certainregionsof perceptuabignificance(suchas“sky,” “wa-
ter” “mountains; etc.)that can be usedto correctly classify
an image into a given cateyory, such as “natural; “man-
made;, “outdoor” etc. [19]. An importantfirst step towards
accomplishinghis goal,is to developlow-level imagefeatures
and seggmentationtechniquesthat are basedon perceptual
modelsandprinciplesaboutthe processingf colorandtexture
information.

A significant effort has been devoted recently to under
standingperceptualissuesin image analysis. This includes
perceptualgrouping of image contents(e.g., [18], [20], and
[21]), perceptualmodeling of objects (e.g., [22-24]), peFr
ceptual modeling of isolated textures for analysis/synthesis
[25], [26], and perceptuallybasedtexture classification[27].
However, therehasbeenrelatively little work in applyingper
ceptualprinciplesto complex scenesegmentation(e.g., [28]),
which motivatesour work. We focus on a broad domain of
photographidmages:outdoorandindoor scenesjandscapes,
cityscapesplants,animals,people,objects,etc. A challenging
aspectof our work is that we attemptto accomplishboth
feature extraction and segmentationwith relatively low res-
olution (e.g.,200 x 200 or lower) and occasionallydegraded
or compressedmages,just as humansdo. This is especially
important since low resolutionimagesare most frequently
usedwithin WWW documentsin addition, the advantageof
low resolutionimagesis that accessand processingime are
significantlyreduced.

A. Motivation and Justificationfor the ProposedApproach

Therearetwo maingoalsin thiswork. Thefirstis to develop
segmentatioralgorithmsfor imagesof naturalscenesin which
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color and texture typically do not exhibit uniform statistical
characteristicsThe seconds to incorporateknowledgeof hu-
man perceptionin the designof underlyingfeatureextraction
algorithms.

Seggmentationof imagesof natural scenesis particularly
difficult becauseunlike artificial imagesthat are composef
more or lesspuretextures,the texture propertiesare not well
defined. The texture characteristicsof perceptuallydistinct
regionsare not uniform dueto effectsof lighting, perspectie,
scale changes.etc. Fig. 1 shavs two manually segmented
images Eventhoughthe waterandthe sky in bothimagesare
quite distinct sggments,the color varies substantiallywithin
eachseggment.Similarly, the spatialcharacteristicef the city,
forest, and mountain segmentsare also distinct but do not
have well defineduniform characteristicsThe humanvisual
system (HVS) is very good at accountingfor the various
effects mentionedabove in orderto segment natural scenes
into perceptually/semanticallyniform regions.However, it is
extremelydifficult to automaticallysggmentsuchimages.and
existing algorithmshave beenonly partially successfulThe
key to addressingthis problemis in combining perceptual
models and principles of texture and color processingwith
an understandingf imagecharacteristics.

Recently there has been considerableprogressin devel-
oping perceptualmodels for texture characterizatiorin the
areasof texture analysis/synthesiand texture classification.
Several authorshave presentedmodels for texture analysis
andsynthesiausingmultiscalefrequengy decomposition§?6],
[29-34]. The mostrecentandcompleteresultswere presented
by Portilla and Simoncelli [26], who proposeda statistical
model for texture imagesthat is consistentwith humanper
ception. Their model is quite elaborateand capturesa very
wide classof textures.Similarly, therehasbeenconsiderable
actiity in texture classification3-5], [27]. The sggmentation
problem is quite different, however. Most of the work in
texture analysis/synthesiand texture classificationhas been
focused on isolated samplesof well-defined textures with
relatively uniform characteristics(e.g., wavelet coeficients
within each subbandfollow a certain distribution [35]). In
addition, the methodsfor texture analysis,classification,and
synthesisare designedto operatein high-resolutionimages
(e.g.,256 x 256 or 512 x 512 pixels), which allows for the
precise estimation of a relatively large number of texture
parameter¢e.g.,severalhundredn [26]). In contrastwe want
to sggmenttexturesin thumbnailimages,which may contain
several textures with spatially varying characteristicsThus,
by necessity our texture models have to be far simpler so
their parameterganbe robustly estimatedrom a few sample
points. Note that, aswe discussedibove, for sggmentationit
is not necessaryto characterizeavery possibletexture, only
somekey texture featuresthat canhelp discriminatebetween
perceptuallyimportantregions.

B. Outline of ProposedApproach

We presentan image sggmentationalgorithmthat is based
on spatially adaptve texture features As illustratedin Fig. 2,
we develop two types of features,one describesthe local
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Fig. 2. Schematiof ProposedSegmentationAlgorithm.

color composition,andthe otherthe spatialcharacteristic®f
the grayscalecomponentof the texture. Thesefeaturesare
first developedindependentlyandthencombinedto obtainan
overall sggmentation.

Theinitial motivationfor the proposedapproactcamefrom
the adaptve clusteringalgorithm (ACA) proposedby Pappas
[8]. ACA has beenquite successfulfor segmentingimages
with regions of slowly varying intensity but oversgments
imageswith texture. Thus,a new algorithmis necessaryhat
can extract color texturesas uniform regions and provide an
overall stratgy for segmenting natural imagesthat contain
both textured and smoothareas.The proposedapproachuses
ACA asa building block. It separateshe imageinto smooth
and textured areas,and combinesthe color compositionand
spatial texture featuresto consolidatetextured areas into
regions.

The color composition featuresconsist of the dominant
colors and associatedpercentagesn the vicinity of each
pixel. They are basedon the estimationof spatially adaptive
dominant colors. This is an importantnew idea, which on
onehand,reflectsthe factthatthe HVS cannotsimultaneously
perceve a large numberof colors, and on the other, the fact
that region colors are spatially varying. Note that there have
beenprevious approachedasedon the conceptof extracting
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the dominantcolors in the image [27], [36], [37], however,

noneof themaddressetheissueof spatialvariationswhichis

oneof the mostcommoncharacteristicor imagesof natural
scenes.Spatially adaptve dominantcolors can be obtained
using the ACA [8]. As we will seein Sectionll, the local

intensity functionsof the ACA canbe usedas spatially adap-
tive dominantcolors. Finally, we proposea modified Optimal
Color CompositionDistance(OCCD) metricto determinethe
perceptuakimilarity of two color compositionfeaturevectors
[38].

The spatial texture featuresdescribethe spatial character
istics of the grayscalecomponentof the texture, and are
basedon a multiscale frequeny decompositionthat offers
efficient andflexible approximationof early processingn the
HVS. We use the local enegy of the subbandcoeficients
as a simple but effective characterizatiorof spatial texture.
An important novelty of the proposedapproachis that a
medianfilter operationis usedto distinguishthe enegy dueto
region boundariedrom the enegy of the texturesthemseles.
We also shav that, while the proposedapproachdependson
the structureof the frequeny decompositionijt is relatively
independentf the detailedfilter characteristics.

The proposedsegmentationalgorithm combinesthe color
compositionand spatial texture featuresto obtain sggments
of uniform texture. This is donein two steps.The first relies
on a multigrid region growing algorithm to obtain a crude
segmentation.The segmentationis crudedue to the fact that
the estimationof the spatial and color compositiontexture
featuresrequiresa finite window. The secondstep usesan
elaborateborderrefinementprocedureto obtain accurateand
precise border localization by appropriatelycombining the
texture featureswith the underlying ACA segmentation.

The novelty of the proposedapproachs twofold. First, by
using featuresthat adaptto the local image characteristics,
it can accountfor the nonuniformity of the texturesthat are
foundin naturalscenespamelytheintensity color, andtexture
of a perceptuallyuniform region can changegradually (but
significantly) acrossa region. The proposedalgorithm adapts
to suchvariationsby estimatingthe color compositiontexture
parametersver a hierarchyof window sizesthatprogressiely
decreas@sthe algorithmcorvergesto the final sgmentation.
Second,in contrastto texture analysis/synthesisechniques
that use a large number of parameterdo describetexture,
it relies on only a small numberof parameterghat can be
robustly estimated(and easily adapted)basedon the limited
numberof pixels that are availablein eachregion.

The paper is organized as follows. Section Il presents
the color compositiontexture features.The extraction of the
spatialtexture featuresis presentedn Sectionlll. SectionlV
discusseghe proposedalgorithm for combining the spatial
texture and color compositionfeaturesto obtain an overall
segmentation.Segmentationresultsand comparisongo other
approachesire presentedn SectionlV. The conclusionsare
summarizedn SectionV.

Il. COLOR COMPOSITION TEXTURE FEATURES

Color hasbeenusedextensiely as a low-level featurefor
imageretrieval [1], [39-41]. In this section,we discussnewn

color compositiontexture featuresthat take into accountboth
image characteristicand humancolor perception.

A. Motivation and Prior Work

An important characteristicof human color perceptionis
that the human eye cannotsimultaneouslyperceve a large
numberof colors [27], even thoughunderappropriateadap-
tation, it can distinguishmore than two million colors [42].
In addition, the number of colors that can be internally
representedndidentifiedin cognitive spaceis about30 [43].
A small setof color cateyoriesprovidesa very efficient rep-
resentationand more importantly malesit easierto capture
invariantpropertiesin objectappearanc4].

The ideaof using a compactcolor representatiorin terms
of dominantcolorsfor imageanalysiswasintroducedby Ma
et al. [36]. The representatiorthey proposedconsistsof the
dominantcolors along with the percentageof occurrenceof
eachcolor.

fC:{(Ciapi)Jizla"' 7N7pi€[071]} (1)

whereeachof the dominantcolors,¢;, is a three-dimensional
(3-D) vector in RGB space,and p; are the corresponding
percentagesMojsilovit et al. [27] adoptecthis representation
using an (approximately)perceptuallyuniform color space
(Lab). It hasbeenshaowvn that the quality of imageretrieval
algorithmscan be substantiallyimproved by using suchcolor
spaced45].

As implied by (1), the dominantcolorsin [27], [36], [37]
are fixed over animageor a collectionof images.Thereare
a numberof approachedor extracting the dominantcolors
[27], [36], [38], [46]. A relatively simple and quite effective
algorithmthat can be usedfor obtainingthe dominantcolors
of animageis the color sggmentationalgorithm proposecby
ComaniciuandMeer[10], which is basedon the “mean-shift”
algorithmfor estimatingdensitygradientsandis, thus,known
asthe mean-shiftalgorithmin the literature.However, it does
not take into consideratiorspatialvariationsin the dominant
colors of a (natural)image. Another approachthat assumes
constantdominantcolors, but takes into accountthe spatial
distribution of the original imagecolors,is presentedn [47].
It recognizesthe fact that humanvisual perceptionis more
sensitve to changesn smoothregionsandquantizeghe colors
more coarselyin detailedregions.

The abose dominantcolor extractiontechniquesely on the
assumptiorthat the characteristicolorsof animage(or class
of images)arerelatively constantj.e., they do not changedue
to variationsin illumination, perspectie, etc. This is true for
imagesof fabrics,carpets,interior designpatterns,and other
pure textures. The classof imagesthat we are considering,
however, is more generaland includesindoor and outdoor
scenessuchaslandscapeg;ityscapesplants,animals people,
and man-madeobjects. To handle such images,one has to
accountfor color and lighting variationsin the scene.Thus,
while the aborve approachesan provide colorsthat are quite
useful in characterizingthe image as a whole, the resulting
color classification(segmentation)could be quite inadequate
dueto lack of spatialadaptatiorand spatialconstraintq8].
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In addition to the spatially varying image characteristics,
one hasto take into consideratiorthe adaptve natureof the
HVS [48]. For example,we perceve regions with spatially
varying color asa single color.

B. ProposedColor CompositionFeatuies

In order to accountfor the spatially varying image char
acteristicsand the adaptve natureof the HVS, we introduce
the ideaof spatially adaptive dominant colors. The proposed
color compositionfeaturerepresentatiorconsistsof a limited
number of locally adapteddominantcolors and the corre-
sponding percentageof occurrenceof each color within a
certainneighborhood:

fC(xayan,y) = {(Ciapi)ai = 15' .. JMapi S [051]} (2)

whereeachof the dominantcolors,¢;, is a 3-D vectorin Lab

spaceandp; arethe correspondingercentagesy, , denotes
the neighborhoodaroundthe pixel at location (z,y) and M

is the total numberof colorsin the neighborhoodA typical

valueis M = 4. As we will seebelow, this numbercanvary

in differentpartsof the image.

One approachfor obtaining spatially adaptve dominant
colorsis the ACA proposedn [8] andextendedo colorin [9].
The ACA is an iterative algorithm that can be regardedas a
generalizatiorof the K-meansclusteringalgorithm[46], [49]
in two respectsit is adaptve andincludesspatialconstraints.
It sggmentsthe imageinto K classesEachclassis charac-
terizedby a spatially varying characteristidunction p* (z, y)
thatreplaceghe spatiallyfixed clustercenterof the K-means
algorithm.Giventhesecharacteristidunctions,the ACA finds
the segmentationthat maximizesthe a posteriori probability
density function for the distribution of regions given the
obsenedimage. The algorithm alternateshetweenestimating
thecharacteristiéunctionsandupdatingthe segmentationThe
initial estimateis obtainedby the K-meansalgorithm (and,
in particular the implementationdescribedin [50]), which
estimatesthe cluster centers(i.e., the dominant colors) by
averagingthe colorsof the pixelsin eachclassover the whole
image.The key to adaptingto the local image characteristics
is thatthe ACA estimateghe characteristidunctionsu* (z, y)
by averagingover a sliding window whosesize progressiely
decreasesl hus,the algorithmstartswith global estimatesand
slowly adaptsto the local characteristicof eachregion. As
we will seebelaw, it is thesecharacteristidunctionsy” (z, y)
that are usedasthe spatially adaptve dominantcolors.

Fig. 3 comparesthe adaptve dominant colors obtained
by the ACA [8] to the constantdominant colors obtained
by the mean-shiftalgorithm [10]. The image resolutionis
250 x 214 pixels. The examplesfor the mean-shiftalgorithm
weregeneratedisingthe “oversgmentation”setting.Note the
falsecontoursin the mean-shiftalgorithmin the waterandthe
sky. Also, while therearecolor variationsin the forestregion,
thesggmentboundarieslo notappeato correspondo ary true
color boundariesThe ACA on the otherhand,smoothever
thewater sky, andforestregions,while capturingthedominant
edgesof the scene.Note that the ACA was developed for
imagesof objectswith smoothsurfacesandno texture. Thus,

in mary textured regions, like the mountainarea,the ACA
overs@mentsthe image, but the segmentsdo correspondo
actual texture details. Thus, it preseres the essentialcolor
characteristicsof the texture. In other textured areas,like
the forest,the ACA consolidatesverythinginto one region.
In such cases.the color variationsin the texture are not as
significantand can be representedby their local average.

In contrastto the other approachesthe ACA is quite
robust to the numberof classesThis is becausehe gradual
color adaptationmakes it possibleto use one color class
to representa wide range of similar colors, provided that
they vary graduallyover the image.In addition,aswe move
to anotherpart of the image, the samecolor class can be
usedto representan entirely different color. Thus, one of
the advantagesf usingthe ACA to obtain spatially adaptve
dominantcolorsis thatwe only needto specifythe parameter
K, which thendetermineghe maximumnumberof dominant
colors(M < K) in ary given region of the image.We found
thata small number(e.g., K = 4) is quite adequate.

The ACA sggmentgtheimageinto colorclassesasshovnin
Fig. 3 (d). At everypixelin theimage,eachclassis represented
by the characteristicfunction p*(z,y), i.e., a color that is
equalto the averagecolor of the pixels in its neighborhood
thatbelongto that class[8]. In the exampleof Fig. 3(c), each
pixel is paintedwith the representatie color of the classthatit
belonggo. Sincethe characteristiéunctions(dominantcolors)
areslowly varying,we canassumehatthey areapproximately
constantin the immediatevicinity of a pixel. Thus,the color
compositionfeature representatiorof the form (2) at each
point in the image consistsof the (up to) K characteristic
colors of eachclassand the associatedercentageof pixels
within a givenwindow. Notethat,givenan ACA sggmentation,
the color featurevectorscan be computedusing a different
window size, by averagingthe colors of eachclassin the
window andcomputingthe percentagef pixelsin eachclass.

C. Color CompositionSimilarity Metric

We now define a metric that measuresthe perceptual
similarity betweentwo color composition feature vectors.
Basedon human perception,the color compositionof two
images (or image segments) will be similar if the colors
are similar and the total areasthat eachcolor occupiesare
similar [27], [38]. The definition of a metric that takes into
accountboth the color and areadifferencesdependson the
mappingbetweerthe dominantcolorsof thetwo images[38].
Various suboptimalsolutionshave beenproposed[27], [36].
Mojsilovic et al. [38] proposedthe OCCD, which finds the
optimal mappingbetweenthe dominantcolors of two images
and, thus, provides a better similarity measureThe OCCD,
which is closely relatedto the earth mover’s distance[51],*
overcomeghe (significant)problemsof the othermetrics,but
in general requiresmore computationHowever, sincewe are
primarily interestedn comparingmagesegmentsthatcontain
only a few colors (at most four), the additional overhead
for the OCCD is reasonableMoreover, we introduce an
efficientimplementatiorof OCCDfor theproblemat handthat

1For a comparisorof the two metrics,see[38].
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(b)

Fig. 3. Color Image Segmentation(a,b,cshavn in color). (a) Original Color Image.(b) Mean Shift Algorithm. (c) ACA. (d) ACA Color Classes.

(a)

producesa close approximationof the optimal solution. The
stepsof the proposedOCCD implementatiorare as follows:

1) Given two color composition feature vectors f! and
2, createa stackof tokens(colors and corresponding
percentagedpr eachfeaturevector asshavn in Fig. 4.
Createan empty destinationstackfor eachvector
Selectapair of tokens(c,, p,) and(cy, pp) With nonzero
percentagesynefrom eachfeaturevector whosecolors
areclosest.
Move the token with the lowest percentage(e.qg.,
(ca>Dpa)) to the destinationstack. Split the other token
into (¢p, pa) and(cy, pp — pa), andmove the first to the
correspondinglestinationstack.
Repeatabove stepswith the remainingcolors, until the
initial stacksare empty

An illustrative exampleis shavn in Fig. 4. Note that even
though this implementationis not guaranteedto result in
the optimal mapping,in practice,given the small numberof
classes,t producesexcellent results.On the other hand, it
avoidsthe quantizatiorerrorintroducedby theoriginal OCCD,
andthus, can be even more accuratethan the original imple-
mentationOncethe color correspondenceseestablishedthe
OCCD distanceis calculatedasfollows:

Zd CiH G *pz

wherec}, c¢?, andp; arethe matcheccolorsandcorresponding
percentagafter the color matchingprocessdescribedabove,
and d(-) is the distancein some color space.We use the

Euclideandistancein Lab space.

2)

3)

4)

®3)

As we discussedn the introduction,the color composition
and spatialtexture featuresare developedindependentlyWe
use only the grayscalecomponert of the image to derive
the spatial texture features,which are then combinedwith
the color compositionfeaturesto obtainanintermediatecrude
segmentation. This is in contrastto the approacheslescribed

SPATIAL TEXTURE FEATURES

2The grayscalecomponenis obtainedas a standardinear combinationof
gammacorrectedRGB values.

(©)

Source Stack Destination Stack
fL:(m,30)(@,30) (M,20) (M,20)
£2:(m,40)(m,30) (W,30)
fL:(m,30) (m,20) (W,20) (m,30)
f2:(m,10)(m,30) (M,30) (m,30)
J&+(m,20)(m,20) (m,30)(3,30)
2 (H,10) (,30) (m,30) (m,30)
< :(m,20) (m,30) (19,30) (M,20)
2:(m,10) (W,10) (m,30) (m,30) (M,20)
(Im,30)(=@,30)(M,20)(Mm,10) (M,10)
(Im,30) (,30) (M,20) (M,10) (W,10)

Fig. 4. Exampleof Simplified Versionof OCCD (shawn in color).

in [12], [27], where the color quantization/sgmentationis
usedto obtainan achromaticpatternmap which becomeshe
basisfor texture featureextraction.

A. Motivation and Prior Work

Likemary of theexisting algorithmsfor textureanalysisand
synthesigqe.qg.,[5], [6], [26], [29-34], [52-57]), our approach
is basedon a multiscalefrequeny decompositionExamples
of such decompositionsare the Cortex transform[58], the
Gabor transform [30], [59], the steerablepyramid decom-
position [60-62], and the discretewavelet transform(DWT)
[63], [64], which can be regardedas a crude approximation
of the cortex transform.We baseour spatial texture feature
extraction on one of the more accurateapproximationsof
the visual cortex, the steerablgoyramid decompositionyhich
canbe designedo produceary numberof orientationbands.
The proposednethodologyhowever, canmake useof ary of
the decompositiongnentionedabove. Fig. 5 shovs examples
of frequeny decompositionghat can be obtainedwith the
steerablepyramid.

Oneof themostcommonlyusedfeaturedor textureanalysis
in the context of multiscale frequeny decompositionsis
the enegy of the subbandcoeficients [3—7], [65]. Various
nonlinearoperationshave beenusedto boostup the sparse
subbandcoeficients [3], [36], [57], [65]. Our approachis
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Fig. 5. Steerabldilter decomposition(a) Ideal two-level decomposition(b) Ideal one-leel decompositior(Horizontalbandsshavn in gray). (c) Circular

crosssectionof real steerabldilter frequeng response.

basedon thelocal medianenegy of the subbandcoeficients,
wherethe enengy is definedasthe squareof the coeficients.As
we saw in theintroduction theadwantageof the mediarfilter is
thatit suppressetexturesassociatedvith transitionsbetween
regions, while it respondgo texture within uniform regions.
The useof medianlocal enegy asa nonlinearoperationalso
agreeswith Graham[66] and Grahamand Sutter[67], [68],
who concludethat a nonlinearoperatorin texture segregation
must have acceleratinghgpansve nature.

B. ProposedSpatial Texture Featues

We usea steerabldilter decompositiorwith four orientation
subbandghorizontal,vertical, +45, -45)) asshavn in Fig. 5.
Most researchersiave usedfour to six orientationbandsto
approximatethe orientationselectvity of the HVS (e.g.,[58],
[69]). Sincethe imagesarefairly small, we foundthata one-
level decompositiorflowpasshand four orientationbandsand
highpassresidue,as shovn in Fig. 5(b)) is adequateOut of
those we use only the four orientation bands.Our goal is
to identify regions with a dominantorientation (horizontal,
vertical, +45°, -45); all other regions will be classifiedas
smooth(not enoughenegy in ary orientation)or comple (no
dominantorientation).

Fig. 5(c) shavs a circular cross section of the steerable
filter responsesNote that thereis a large overlap between
neighboringfilters. Thus, even when there is a dominant
orientation theresponsef the neighborindfilters will be quite
significant, especiallywhen the texture orientationfalls be-
tweenthe main orientationsof the steerabldilters. Therefore,
it is the maximumof the four coeficientsthat determineghe
orientationat a given pixel location?

The spatialtexture featureextraction consistsof two steps.
First,we classifypixelsinto smoothandnonsmoottcateyories.
Then we further classify nonsmoothpixels into the remain-
ing categories.Let so(z,y), s1(z,y), s2(z,y), and s3(x,y)

3In [70], we usedthe closenesf the 1st and 2nd maximaof the four
subbandcoeficients as an indication of a comple region. However, sucha
criterionmisclassifiesascomple, textureswith orientationghatfall between
the main orientationsof the steerabldilters, for which the response®f the
two filters are close.Using sharperorientationfilters will narrav the range
of misclassifiedorientationsbut will not entirely eliminatethe problem.

representhe steerablesubbandcoeficient at location (z, y)
that correspondso the horizontal(0%), diagonalwith positive
slope(+45), vertical (90°), anddiagonalwith negative slope(-
45)) directions,respectiely. We will usesmax(z,y) to denote
the maximum (in absolutevalue) of the four coeficients at
location (z,y), and s;(z,y) to denotethe subbandndex that
correspondso that maximum.

A pixel will beclassifiedassmoothif thereis no substantial
enegy in ary of the four orientationbands.As we discussed
abose, a median operation is necessaryfor boosting the
responséo texturewithin uniform regionsandsuppressinghe
responsedue to textures associatedvith transitionsbetween
regions.A pixel (z,y) is classifiedassmoothif the medianof
Smax(',y") overaneighborhoodf (z,y) is below athreshold
T, This thresholdis determinedusing a two-level K-means
algorithmthatseggmentstheimageinto smoothandnonsmooth
regions. A clustervalidationstepis necessaryt this point. If
the clustersare too close,then the image may contain only
smoothor nonsmoothregions, dependingon the actualvalue
of the clustercenter

The next stepis to classify the pixels in the nonsmooth
regions.As we mentionedabove, it is themaximumof thefour
subbandcoeficients, s;(z, y), that determineghe orientation
of the texture at eachimagepoint. The texture classifications
basedon thelocal histogramof theseindices.Again, a median
type of operationis necessaryfor boostingthe responseto
texture within uniform regions and suppressinghe response
due to textures associatedvith transitionsbetweenregions.
This is doneasfollows. We computethe percentagdor each
value (orientation)of theindex s;(z',y') in the neighborhood
of (z,y). Only the nonsmootlpixels within the neighborhood
are consideredIf the maximumof the percentagess higher
than a thresholdT; (e.g., 36%) and the differencebetween
the first and second maxima is greater than a threshold
T> (e.g., 15%), then there is a dominantorientationin the
window and the pixel is classifiedaccordingly Otherwise,
thereis no dominantorientation,and the pixel is classified
as comple. The first thresholdensuresthe existenceof a
dominantorientationand the secondensurests uniqueness.
An exampleis presentedn Fig. 6. The grayscalecomponent
of the original colorimageis shawvn in Fig. 6(a). In Fig. 6(b),
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(b)

o

1
. Mla

-

(c) (d)

Fig. 6. Texture Map Extraction.(a) GrayscaleComponenbf Original Image.(b) Smooth(black) and Nonsmooth(different shadeof gray) Regions Using
SteerabléFilter Decomposition(c) Texture ClassedJsing SteerableFilter Decomposition(d) Texture ClassedJsing GaborDecompositionTexture window

size= 23 x 23.

the smoothregions are shavn in black, and the nonsmooth

We have also experimentedwith alternatve waysto obtain

regions are shovn in different shadesof gray representing thesmoothvs. nonsmoottelassificationFor example,we tried

the indices s; of the subbandcoeficients with maximum
enegy. Fig. 6(c) shavs the resulting texture classeswhere
black denotessmooth,white denotescomple, andlight gray
denoteshorizontal textures. (There are no diagonaltextures
in this example.) The window for the medianoperationwas
23 x 23.

C. Spatial Texture Similarity Metric

To measurehe similarity betweentwo spatialtexture fea-
tures f! and f2, we definethe following distance:

0 if fi =f}

if fi=i#fi=J
wheret; ; is a thresholdthat will, in general,dependon the

combinationof texture classes(smooth, horizontal, vertical,

+45, -45, and compl); in the following, we will assume
two differentvaluesfor ¢; ;, onefor within nonsmoottexture

classes(e.g,, t;; = 2.5) and the other for betweensmooth
and nonsmoothclasses(e.g.,t;; = 5). This metric will be

usedin combinationwith the color metric to determinethe

overall similarity betweentwo texture (color compositionand
spatialtexture) featurevectors.Thevalueof ¢; ; representshe

penaltyfor inconsistentcolor compositionand spatialtexture

classificationTheideais that, if the spatialtexture classesare
the same thenwe allow for more color variation.If they are
not the same the colors have to be more similar in orderfor

pixelsto belongto the sameclass.

D1, £2) = { (@

tij

D. ImplementatiorDetails and Other Consideations

In the texture classextraction procedurewe found that the
window size for medianoperatoris of critical importance.lt
mustbe large enoughto capturethe local texture characteris-
tics, but not too largeto avoid bordereffects.Our experiments
indicatethat window sizesin therangeof 17 x 17 to 25 x 25
pixels are suitable for the steerablefilter decomposition A
more careful determinationof the window size should be
basedon subjectve experiments.Note also, that the window
size dependsn the specificdecompositionFor example,we
foundthatthe DWT requiressmallerwindow sizes[71]. That
is becausen the DWT the subbandsare downsampledwhile
in the steerabledecompositiorthat we usethey are not. The
window sizealsodependsn the extent of the analysisfilters.

an approachsimilar to the onedescribedn [71], wherebythe
local medianenegy of eachsubbandcoeficient is computed
first, followed by a two-level K-meansA pixel is thenclassi-
fied assmoothif all subbanddelongto the low enegy class.
This leadsto similar resultsbut involves more computation.
Another approachis to apply K-meansto the vector of the
local medianenepies of the four subbandcoeficients. We
found that the proposedalgorithm hasthe bestperformance
in termsof accuray androbustnessaswell ascomputational
efficiency.

We alsoconsideredh numberof alternatve decompositions.
In [70], [71] we comparedthe performanceof the DWT and
the steerabldfilter decompositiorusing similar classification
proceduresand found that the steerabldilter decomposition
producessuperior results. As we discussedaborve, this is
mainly due to the fact that the DWT doesnot separatethe
two diagonaldirections.A numberof other filter banksthat
generateomplete/@er-completeorientationaldecompositions
can be used instead of the steerablefilters. For example,
we tried a one-level, four-orientation Gabor decompositiofi
with the rest of the procedureunchangedand found that
its performancds comparablgo that of the steerabldfilters.
Fig. 6(d) shavs the resulting texture class map. Note that
becaus®f the “max” operatoyusingsharpeiorientationfilters
will notleadto bettertexture classification.

IV. SEGMENTATION ALGORITHM

In this section,we presentan algorithm that combinesthe
color compositionand spatial texture featuresto obtain the
overall image segmentation.

The smoothand nonsmoothregions are consideredsepa-
rately As we discussedn Sectionll, the ACA wasdeveloped
for imageswith smoothregions.Thus,in thoseregions,we can
rely on the ACA for the final segmentation.However, some
region meging maybe necessaryr hus,in the smoothregions,
we considerall pairsof connectecheighboringsegments,and
mergethemif the averagecolor differenceacrosgshe common
borderis below a giventhreshold.The color differenceat each
point alongthe borderis basedon the spatiallyadaptve dom-
inant colors provided by ACA, which thus providesa natural
and robust region memjing criterion. Finally, ary remaining

4The Gaborfilters we usedare of size 9x9 pixels and we usedthe same
filter designand parameterssthatin [57].
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smallcolor segments thatareconnectedo nonsmoothexture
regions are consideredogetherwith the nonsmoothregions,
and are assumedo have the samelabel as ary nonsmooth
regionthey areconnectedo. Fig. 7 shows thedifferentstages
of the algorithm;(a) shavs anoriginal colorimage,(b) shavs
the ACA segmentation(dominantcolors),(c) shavsthetexture
classesand(d) and(e) shav the color sggmentsin the smooth
regionsbeforeandafterthe memging operationThenonsmooth
regions are shavn in white, while the smoothregions have
beenpaintedby the averagecolor of eachconnectedsegment.
We now considerthe nonsmoothregions, which have been
further classified into horizontal, vertical, +45, -45, and
comple categyories. Thesecatgyoriesmust be combinedwith
the color compositionfeaturesto obtain sggmentsof uniform
texture.We obtainthefinal sgmentationin two steps.Thefirst
combineghe color compositionandspatialtexture featureso
obtain a crude sggmentation,and the secondusesan elabo-
rate border refinementprocedure,which relies on the color
informationto obtainaccurateandpreciseborderlocalization.

A. Crude S@mentation

The crudesegmentationis obtainedwith a multigrid region
growing algorithm. We start with pixels locatedon a coarse
grid in nonsmoothregions,andcomputethe color composition
featuresusinga window size equalto twice the grid spacing,
i.e., with 50% overlap with adjacenthorizontal or vertical
windows. Only pixelsin nonsmoothregionsandsmoothpixels

that are neighborswith nonsmoothpixels are considered.

Note that the color compositionfeaturesare computedat
the full resolution;it is the meming only thatis carried out
on different grids. The merging criterion, which we discuss
belon, combinesthe color compositionand spatial texture
information.

Ideally, a pair of pixels belongto the sameregion, if their
color composition featuresare similar and they belong to
the same spatial texture categyory. Thus, to determineif a
pair of pixels belongto the sameregion, we computethe
distance betweentheir feature vectors f1 = (f!, f}) and
2 = (f2, f?), which include both the color compositionand
spatialtexture features:

D(f*, 1%) = De(f2, £2) + Du(f}, 17) (5)

whereD.(-) andD;(-) weredefinedin the previous sections.

In addition, we incorporatespatial constraintsin the form
of Markov randomfields (MRFs).Usingan MAP formulation
similar to that of [8], wherebythe conditionaldensityof the
obsenation is Gaussiarandthe a priori densityof the class
assignmentds MRF, a pixel is assignedto the class that
minimizesthe following function:

D(f° f*) + B(M' — N') (6)

where fO is the featurevector of the currentpixel, f* is the
feature vector of its ith neighbor N (M%) is the number
of nonsmoothneighborsthat belong to the same(different)
classasthe ith neighbor and 8 representshe strengthof the

all ¢

5For example,we useda thresholdequalto the areaof a one pixel wide
narraw strip, whoselengthis equalto a half of themaximumimagedimension.

spatialconstraint.Thus, a pixel is morelikely to belongto a
classwhen mary of its neighborsbelongto the sameclass.
In orderto allow new classedo be createdwe arbitrarily set
the featuredistancebetweenthe currentpixel and a pixel in
a new classequalto a thresholdt,. Note that becauseof the
MRF constraint,the likelihood of appearancef a new class
decreasessf increases.

Sincethe MRF constraintis symmetric,it is hecessaryo
iteratea few timesfor a given grid spacing.The grid spacing
and window size are then reducedby a factor of two, and
the procedureis repeateduntil the spacingis equalto one
pixel. Fig. 7 (f) shovs an example of the resulting crude
segmentation.Fig. 8 shavs examplesof crude segmentations
obtainedwith differentvaluesof the parameter3. Note that
in Fig. 7 (d), (e), (f), (9), andin Fig. 8 the differentsegments
have beenpaintedby the averagecolor of the region, while in
Fig. 7 (d) and(e) white representsionsmoottregions.

B. Border Refinementsing AdaptiveClustering

Once the crude segmentationis obtained,we refineit by
adaptvely adjustingthe bordersusing the color composition
texturefeaturesTheapproachs similarto thatof the ACA [8],
andis illustratedin Fig. 9. Thedottedline representtheactual
boundaryand the solid line denoteshe boundarylocationin
the currentiteration. For eachpixel in the image,we usea
smallwindow to estimatethe pixel texture characteristics,e.,
a color compositiorfeaturevectorof theform (2), andalarger
window to obtainalocalizedestimateof theregion characteris-
tics. For eachtexture segmentthatthe largerwindow overlaps,
we obtain a separatecolor compositionfeature vector that
is, we find the averagecolor and percentagdor eachof the
dominantcolors.We thenusethe OCCDocriterionto determine
which sgmenthasa featurevectorthatis closesto thefeature
vectorof the smallwindow, andclassifythe pixel accordingly
An MRF constraintsimilar to the onein (6) is addedto insure
region smoothnessThe above procedurecould be repeated
for eachpixel in arasterscan.To save computationhowever,
we only considerpixels on the border betweennonsmooth
segmentsor betweensmoothand nonsmoothsegments.(The
bordersbetweensmoothsegmentshave alreadybeenfixed.)
A few iterationsare necessaryor corvergence.The iterations
convergewhenthe numberof pixelsthatchangeclassis belov
a given threshold(e.g., equalto the averageof the widths of
thetwo windows). We thenreducethewindow sizesandrepeat
the procedure For example,we usea seriesof window pairs
startingfrom 35/5 andendingwith 11/3.(The window sizeis
odd so that they are symmetric.)

Oneof the importantdetailsin the above procedurds that
eachof the candidateregionsin the larger window mustbe
large enoughin order to obtain a reliable estimateof its
texture attributes. If the areaof a sgmentthat overlapsthe
larger window is not large enough,then the region is not a
valid candidate A reasonable&hoicefor the thresholdfor the
overlappingareais to usethe product of the window sizes
divided by 2.

As we mentionedabove, therefinemenproceduras applied
to the whole image exceptthe smoothregions, whereas we
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saw, the ACA provides accuratesegmentationand no refine-
mentis necessaryMoreover, it is easyand interestingto ex-
plain why the borderrefinemeniprocedurewhich is designed
for nonsmoothtextures,will not work in the smoothregions.
Let us assumeve have a borderbetweentwo smoothregions
asshavn in Fig. 9. Let the local featurebe f.(z,y, N, ) =
{(e1,p1), (c2,p2)} and the featuresof the two segmentshe
fca(wa Y, Nw,y) = {(Ca, 1)} and fg(xv Y, Nw,y) = {(cb7 1)}
Note that theseare smoothsggments,and thus, eachis char
acterizedby onecolor. Sincethe colorsareslowly varying,we
have ¢; ~ ¢, andcy = ¢. Thus,the OCCD featuredistances
betweerthelocal featureandthetwo segmentfeatureshecome

De(fe, f&) = d(e1,¢q) xp1 + d(c2, ¢) * p2 = d(cp, ca) * P2

De(fer f) = d(c1,¢p) ¥ p1 + d(ca, cp) * p2 = d(ca,ch) * P1

where d(-) representsthe distance betweenthe dominant
colorsin agivencolorspaceaswe saw in (3). Thus,the OCCD
featuredistancesreactuallydeterminedy the percentagesf
the colors, and, hence the refinementwill leadto the wrong
results.

The final sggmentationresultsare shovn in Fig. 7(g) and
(h). Additional sgmentationresultsare shovn in Fig. 10; the
resolutionof the imagesvariesfrom 180 x 149 to 214 x 250
pixels. Most of the imagesshavn werefound in the Internet;
example (e) comesfrom the Berkeley image databasg72].
Fig. 11 showvs the sggmentationresults obtainedby JSEG
[12], a segmentationalgorithm that is also basedon texture
and color. We chosethe “no merge” option for the JSEG
examplesshavn. Thus,in comparingwith the resultsof the
proposedalgorithmin Fig. 10, one shouldkeepin mind that
the JSEG images are overs@gmented.It is fair to assume
that a reasonable@egion meiging stepcould be applied,even
thoughthe JISEGmeming criterion doesnot work that well.
Thus,for example thereareno significantdifferencedetween
the two algorithmsin the forest areaof example (b) or the
flower area of example (c). On the other hand, there are

(h)

Fig. 7. Color and Texture Image Segmentation(a,b,d,e,f,g,/shavn in color). (a) Original Color Image.(b) Color Segmentation(ACA). (c) Texture Classes.
(d) SmoothRegions Before Merging (e) SmoothRegions After Merging (f) Crude Segmentation(g) Final Segmentation(h) Final Segmentation(on original
image). Texture window size= 23 x 23 and 8 = 0.8. White regionsin (c) denotecomple regions. White regionsin (d) and (e) denotenonsmoottregions.

(2)

Bad b 4
e
W

Fig. 8. lllustrating the effects of spatialconstraintgimagesshavn in color).
Left row shavs crudesegmentationsandright row shavs final sggmentations.
Fromtop to bottomg = 0.0, 0.5, 1.0. Texture window size= 23 x 23.

/

Region 1

Region 2

Fig. 9. lllustration of Border Refinement.
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significant differencesin (g) that cannotbe eliminatedwith

region memging, e.g.,aroundthe boator the boundarybetween
the city andtheforestat the top of the picture.Similarly, there
are significant differencesin example (i), where the tower

behindthe train is segmentedwell by our algorithm, but is

merged with one of the sky segmentsby JSEG.Note thatin

example (h), the color of the sky is too closeto the color

of the mountains,and thus, both algorithms memge part of

the mountainswith the sky. Note that the proposedalgorithm
occasionallyalso oversggmentssometextured regions, e.g.,
in the lower left cornerof example(a) andthe forestareaof

example(b). For suchcasesa region memging criterion similar
to the onewe describedor the smoothregionscanbe applied
to the textured regions. Fig. 11 (a), (b), (i), (h), and (j) also
demonstratehatthe proposedalgorithmcanhandlecolor and
texture gradients.

V. CONCLUSION

We presentedch new approachfor image segmentationthat
is basedon low-level featuredor color andtexture.lt is aimed
at sgmentationof natural scenes,in which the color and
texture of eachsegment doesnot typically exhibit uniform
statistical characteristicsThe proposedapproachcombines
knowledge of human perceptionwith an understandingof
signal characteristicsn orderto segmentnaturalscenesnto
perceptually/semanticallyniform regions.

The proposedapproachis basedon two typesof spatially
adaptve low-level featuresThe first describeghe local color
compositionin terms of spatially adaptve dominantcolors,
and the seconddescribesthe spatial characteristicsof the
grayscalecomponentof the texture. Togetherthey provide a
simple and effective characterizatiorof texture that can be
usedto obtain robust, and at the sametime, accurateand
precisesggmentationsThe performancef the proposedalgo-
rithms hasbeendemonstratedh the domainof photographic
images,including low resolution,degraded,and compressed
images. As we have shown, one of the strengthsof the
algorithm is that it can handle color and texture gradients,
which are commonly found in perceptuallyuniform regions
of naturalscenes.

The image segmentationresults can be used to derive
region-specificcolor and texture features. Thesecan be com-
binedwith othersegmentinformation,suchaslocation,bound-
ary shapeandsize,in orderto extract semanticinformation.
Such semanticinformation may be adequateto classify an
imagecorrectly eventhoughour sggmentatiorresultsmay not
alwaysnecessarilgorrespondo semanticobjectsasperceved
by humanobseners.
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