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ABSTRACT

We propose a new direct approach for material recognition under

diverse illumination and viewing conditions based on visual texture.

We apply K-means clustering to feature vectors that consist of steer-

able filter subband statistics and dominant colors of each texture

image in order to obtain a small number of exemplars characteriz-

ing each material. We then use structural texture similarity metrics

and color composition metrics to compare a query texture to the ex-

emplars for material classification. Experimental results using the

CUReT database establish the importance of color and demonstrate

that five exemplars per texture provide performance comparable to

the state of the art.

Index Terms— Texture analysis, subband statistics, dominant

colors, material identification

1. INTRODUCTION

Texture provides valuable information for image analysis for sev-

eral applications, such as image compression and quality, restora-

tion, biomedical image analysis, computer vision, and content-based

retrieval. In particular, texture provides important cues for material

identification and characterization [1]. While there has been a con-

siderable amount of work on texture analysis, it remains an open and

exciting field. The focus of this paper is on robust material recogni-

tion under diverse illumination and viewing conditions. Since mate-

rial appearance can vary dramatically in such cases, it is important

to obtain a compact representation of each material that accounts for

the changing appearance. To accomplish this, we use feature vectors

that consist of steerable filter subband statistics and dominant col-

ors of a texture image, and rely on K-means clustering to obtain a

small number of exemplars that characterize the material under dif-

ferent illumination and viewing conditions. We then rely on texture

similarity metrics for comparing a query texture to the exemplars for

material classification.

The problem of texture classification and material recognition

has been addressed by Leung and Malik [2], Cula and Dana [3],

and Varma and Zisserman [4, 5]. They have proposed elaborate ap-

proaches that account for variations in texture appearance due to

changes in illumination and viewing conditions, and use the CUReT

(Columbia-Utrecht reflectance and texture) dataset [6, 7] for algo-

rithm training and testing. Leung and Malik [2] applied a filter bank

consisting of 48 filters, performed pixel-wise vector quantization of

the filter responses to obtain cluster centers, which they called “tex-

tons,” and constructed histograms of texton distributions, which they

used for image classification. Cula and Dana [3] followed a similar

approach. They introduced the notion of bidirectional texture func-

tion (BTF), which describes the changes in texture appearance as

a function of viewing and illumination directions. They proposed

a texture recognition method that relies on a bidirectional feature

histogram, as well as a method for evaluating the significance of

texture images within the BTF. Varma and Zisserman [4] adopted a

similar framework, and conducted a comprehensive analysis of the

performance of different filter banks, without any priori knowledge

of image viewing and illumination conditions as opposed to Leung

and Malik’s approach. Furthermore, they argued that using filter-

ing is equivalent to linearly transforming raw pixel values into a

lower dimensional space [5]. Varma and Zisserman applied both

approaches [4, 5] to the problem of material classification under a

variety of viewing and illumination conditions using the CUReT

dataset [6, 7], and achieved start-of-the-art performance in terms of

texture classification accuracy.

In this paper we consider a simpler and more direct alternative

to the above elaborate classification approaches [2–5]. In addition,

the proposed approach incorporates chrominance information and

demonstrates its importance. We propose a new problem formu-

lation that combines K-means clustering with grayscale structural

texture similarity metrics (STSIMs) [8,9] and color composition sim-

ilarity metrics (CCSIMs) [8,10]. For each texture image we extract a

feature vector that consists of the STSIM subband statistics [8,9] and

the dominant colors [11] associated with the CCSIMs [8, 10]. We

apply K-means clustering to the feature vectors in order to obtain

a small number of exemplars that encompass the changing material

appearance. We then use STSIMs and CCSIMs to compare a query

texture to the exemplars for material classification.

Our goal is to obtain a better understanding of how the view-

ing and illumination conditions affect the visual appearance of each

material, and to determine the number of exemplars that are suffi-

cient for material discrimination. Our ultimate goal is to be able to

determine the illumination and viewing conditions of the exemplars

without exhaustive sampling (over multiple illumination and view-

ing angles) for each material.

Experimental results using the CUReT database establish the

importance of color and demonstrate that a small number of ex-

emplars (five) per texture provide performance comparable to the

state-of-the art, including the popular deep convolutional neural net-

works AlexNet and VGGM [12]. Traditional techniques for texture

retrieval or segmentation, such as those in [13–18] do not address

differences in material appearance due to illumination and viewing

conditions, and as such are not applicable to the problem addressed

in this paper.

While several state-of-the-art approaches rely on Convolutional

Neural Networks (CNN) to gain a marginal performance improve-

ment over the techniques we discussed above, we show that the pro-

posed technique can achieve comparable results with a lot less com-

putation. The proposed technique requires 14 convolution operations

per pixel on the grayscale component of the image, CNN-based tech-

niques typically consist of hundreds of layers, each of which applies

hundreds of convolutions on tensors with hundreds of channels. We

believe that the proposed technique achieves a reasonable balance

between performance and speed, and it is preferred for applications

for which a GPU is not available.

4424



Fig. 1. Steerable filter decomposition with 3 scales, 4 orientations

This paper is organized as follows: In Section 2, we review

STSIMs. Section 3 discusses our proposed approach. Experimental

results are presented in Section 4 and the conclusions are summa-

rized in Section 5.

2. REVIEW OF TEXTURE SIMILARITY METRICS

In this section we review texture similarity metrics proposed by Zu-

jovic et al. [8–10]. These metrics account for the stochastic nature of

textures and human perception. The key idea is to replace point-by-

point comparisons with comparisons of region statistics computed

within each texture. Zujovic et al. [8, 10] argued that developing

separate metrics for the grayscale component of a texture and its

color composition leads to more effective metrics. A comprehensive

review of other texture similarity metrics can be found in [9].

2.1. Grayscale Structural Texture Similarity Metrics

The grayscale STSIM metrics [9] consist of a Steerable Filter De-

composition (SFD) [19], a set of subband statistics, formulas for

comparing such statistics, and pooling across space and frequency

to obtain an objective measure of the similarity of a pair of textures.

In the experiments of Section 4 we will assume that the SFD con-

sists of three scales and four orientations for a total of 14 subbands

(4× 3 + LP+HP), as shown in Figure 1. The STSIM-2 metric [9]

uses the following statistics, which we will adopt for the clustering

we present in Section 3:

means : µm
x

= E{xm(i, j)}
(1)

variances : (σm
x
)2 = E{[xm(i, j)− µ

m
x
]2}

(2)

horizontal and vertical autocorrelation coefficients:

ρ
m
x
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E{[xm(i, j)− µm
x
][xm(i, j + 1)− µm

x
]}

(σm
x )2

(3)

ρ
m
x
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x
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x
]}

(σm
x )2

(4)

crossband correlation coefficients:

ρ
m,n
x
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x
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x
]}

σm
x σn

x

(5)

where x denotes a specific texture image, xm and x
n are its mth and

nth subbands, and E {xm(i, j)} is the empirical average of xm over

all spatial locations (i, j). The crossband statistics only include cor-

relation coefficients between subbands at adjacent scales (excluding

the lowpass and highpass bands) for a given orientation, and between

orientations at a given scale, for a total of 26 crossband correlations.

Overall, the feature vector for each texture includes 82 parameters:

14 subbands × 4 (mean, variance, horizontal and vertical autocorre-

lation coefficients) + 26 crossband correlations. In our experiments

all of the statistics are computed over the entire texture, i.e., no need

for spatial pooling.

Fig. 2. Original texture and its color composition by ACA

For statistics comparisons and pooling, Zujovic et al. [9] pro-

posed two main variations, STSIM-2 and STSIM-M, while another

earlier version, STSIM-1, was proposed by Zhao et al. [20]. STSIM-

1 and STSIM-2 compare statistics in a manner similar to CW-SSIM.

The details can be found in [9]. Zujovic et al. [9, 21] conducted sys-

tematic tests in different application domains and demonstrated the

advantage of STSIMs over existing techniques.

An alternative approach is to calculate the dissimilarity between

two textures as the Mahalanobis distance between the feature vectors

fx and fy corresponding to the two images

Q = (fx − fy)
T
M (fx − fy) (6)

where M is a symmetric positive semi-definite matrix and f is an 82-

dimensional vector containing all the image statistics. In STSIM-M,

the matrix M is diagonal with the variance of each statistic on the

diagonal. Maggioni et al. [22] proposed using the intra-class stan-

dard deviation instead. Finally, a full matrix can also be estimated

using machine learning techniques [23].

2.2. Color Composition Similarity Metrics

The color composition similarity metrics (CCSIMs) [8,10] are based

on a texture representation in terms of spatially adaptive dominant

colors (dominant colors in short) and the associated percentages.

The dominant colors are obtained with the adaptive clustering algo-

rithm (ACA) [24]. The optimal color composition distance (OCCD)

is then used to compare the color composition of two texture patches.

OCCD breaks the histogram of dominant colors into fixed percent-

age units, finds the optimal mapping between these units, and com-

putes the average distance between them in the CIE L*a*b* color

space [25]. Examples of dominant colors obtained with ACA are

shown in Figure 2.

3. PROPOSED APPROACH

The material recognition problem can be formulated as a texture re-

trieval problem. If we pick a number of exemplars that are represen-

tative of the appearance of each material under different illumination

and viewing conditions and form a codebook of all exemplars for

all materials, then, given a query texture, we can find the exemplar

that is most similar to the query in order to determine the material

the query belongs to. Thus, the proposed approach consists of two

stages, selecting a set of exemplars for each material (learning), and

finding the exemplar that is closest to a query (retrieval).

The difference with the texton-based approaches [2–5] is that we

use the STSIM subband statistics as feature vectors and K-means

clustering for obtaining exemplars for each texture. We then rely on

STSIM metrics for retrieval. We thus bypass the intermediate step of

obtaining textons by clustering the raw subband filter responses and

forming texton histograms characteristic of each texture, which are

then compared to a query using the χ2 statistic. Also, in contrast to

the texton-based approaches, we make use of the color information.
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3.1. Learning Stage

The grayscale feature vector for each texture patch consists of the

STSIM statistics in (1) to (5). In the learning stage, we divide the

training textures into groups according to material and apply K-

means clustering to the feature vectors in each group. We thus ob-

tain KM exemplars, where M is the number of materials. Since

the cluster centers do not necessarily correspond to actual textures,

and since texture synthesis is not well-defined by the STSIM param-

eters, we use the nearest neighbor of the cluster center to visualize

each examplar.

Since the feature vectors contain a variety of statistics with

different ranges of values, we tried three different normalization

schemes: the L2-norm (no normalization); the Z-norm, whereby

the feature vectors normalized by the standard deviation of each

component, as in STSIM-M; and the I-norm, whereby the feature

vectors are normalized by the intra-class standard deviation, as in

STSIM-I. For the Z-norm and the I-norm, the normalization is

based only on the training set, which we discuss in the next section.

If we follow a similar approach for the color information, we

should use a feature vector that contains the STSIM color compo-

sition statistics, that is, the dominant colors and the associated per-

centages. The OCCD metric could then be used as the distance be-

tween two feature vectors. However, Pappas et al. [26] found that,

for natural images, the majority of segments containing perceptually

uniform textures can be characterized by just the first two dominant

colors (no percentages) for effective texture classification. Similarly,

He and Pappas [27, 28] based their segmentation algorithm on the

fact that natural textures consist of intensity variations of a single

hue [29]. Hence, the two dominant shades (colors) of that hue should

be sufficient to characterize the texture. Thus, a simpler approach is

to simply concatenate the two most dominant colors to the vector

of grayscale features. In our experiments, described in Section 4,

we found that using all four dominant colors without the associated

percentages works slightly better than using the two most dominant

colors. We used the L∗a∗b∗ space for the color features, ordered the

colors according to percentage, and normalized all the components

by 128 (based on the range of colors in the L ∗ a ∗ b∗ space).

3.2. Retrieval Stage

Given the codebook of exemplars and the metric parameters (for

the Z-norm and the I-norm) from the training stage, we use the

STSIM/CCSIM metrics to compare the query texture to all of the

exemplars in the codebook in order to find the closest one (most sim-

ilar). For the exemplars obtained with the L2-norm, we use STSIM-

1 and STSIM-2 for measuring the similarity between the query and

the exemplars. In all cases, the OCCD distance of the color features

is computed separately, and combined with the grayscale distance in

a multiplicative fashion, that is, STSIM*OCCD for STSIM-M and

STSIM-I, and (1-STSIM)*OCCD for STSIM-1 and STSIM-2.

4. EXPERIMENTAL RESULTS

In our experiments we used textures from the CUReT database,

which contains images of 61 samples of materials photographed

under different illumination and viewing conditions, at a distance

of two meters from the sample [6, 7]. We used the same subset of

CUReT textures under 92 conditions that Varma and Zisserman [4,5]

used. However, following the work of Nguyen [30], we eliminated

the samples of three materials, “peacock” (57), “orange peel” (55),

and “leaf” (23), because they were clearly not textures. We also

restored the textures of three materials (33, 44, 46) that had alias-

ing in the chrominance component, and eliminated several severely
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Fig. 3. Performance statistics

aliased samples of one material (05) as well as isolated samples

of a few other materials that could not be restored. Finally, the

texture samples of materials 02, 06, and 29 appear to be aliased but

look natural, so we included them in our experiments. In addition,

following [4, 31], we found that applying a normalization based on

Weber’s law to the pixel values yields slightly better performance,

even though Weber’s law has been already accounted for in the

gamma-corrected image values.

To assess the performance of the proposed techniques, we used

five-fold cross validation, whereby the samples for each material

were partitioned into a training set (80%) and a testing set (20%).

For each of the five runs of the training stage we used K-means to

obtain K exemplars for each material. We then evaluated the re-

trieval performance of the different techniques on the testing set, us-

ing precision at one (P@1), the percentage of correct first matches,

and mean reciprocal rank (MRR), the average inverse rank of the

first correct match [9]. Note that it does not make sense to use mean

average precision (MAP) [9,32] because the exemplars span a broad

range of appearances and all we need to do is find the closest one.

For each technique, the P@1 and MRR were averaged over the five

runs. The results are plotted in Figure 3 for different number of

exemplars K for the following techniques:

• L2-norm for clustering and STSIM-1 for classification

• L2-norm for clustering and STSIM-2 for classification

• Z-norm for clustering and classification (STSIM-M)

• I-norm for clustering and classification (STSIM-I)

Moreover, each technique was tested with and without color. As

we discussed in Section 3, the addition of color was done by con-

catenating four dominant colors to the feature vector for clustering,

and OCCD in multiplicative combination with the grayscale metric

for classification. Note that performance initially increases sharply
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Fig. 4. Viewing and illumination polar angles for Concrete (50), Rug a (18), and Quarry Tile (25). Exemplars using I-norm encircled with red

K=5 K=29 VZ K=5 VZ, K≈70 AlexNet VGGM

92.1 97.6 80.7 97.2 98.5 98.7

Table 1. Classification accuracy comparison (proposed approach in

first two columns)

with K and then plateaus after K = 5. The best overall perfor-

mance is provided by STSIM-I, followed by STSIM-M, STSIM-2,

and STSIM-1. Thus, accounting for variance within class (STSIM-I)

outperforms accounting for variance across all textures (STSIM-M).

As expected, introducing color information gives rise to a significant

boost in retrieval performance for all of the techniques.

Table 1 compares our best result, using STSIM-I, with our im-

plementation of the Varma-Zisserman [4] algorithm for K = 5 ex-

emplars per class. The table also compares our results with the pop-

ular deep convolutional neural networks AlexNet and VGGM [12],

which were fine-tuned by the authors. For a fair comparison, we

used K = 29 for our approach and all the training data (K ≈ 70)

for Varma-Zisserman. While K = 29 provides the best results, it is

significant and important that high performance is obtained for much

lower K = 5. We conclude that the performance of the proposed ap-

proach is comparable to or better than state-of-the-art methods, while

maintaining relatively low computational cost. The performance of

the proposed approach is also comparable to more recent results re-

ported in [33, 34].

Finally, we should also mention that the performance of tradi-

tional texture retrieval techniques, such as the one in [13], is not

competitive in the context of the CUReT database: even when the

nearest neighbor, leave-one-out decision rule is used (very large K),

the classification accuracy is 52%, most probably due to the simplic-

ity of the texture features.

4.1. Codebook Visualization

Visualizing the exemplars is important for understanding how they

capture the material appearance under different viewing and illumi-

nation conditions. As we discussed, since the cluster centers do not

necessarily correspond to actual textures, we use the nearest neigh-

bor of the cluster center to visualize each examplar. Figure 5 shows

K = 5 exemplars for three materials, “concrete” (50), “rug a” (18)

and “quarry tile” (25). Note that for materials with a strong 3-D

structure, the appearance changes in both color and pattern. The

changes in the perceived flatness of the materials are particularly in-

teresting. In contrast, for materials with weaker 3-D structure the

variations are primarily in darkness.

Figure 4 shows the placement of the exemplars as a function of

polar illumination and viewing angles. The samples nearest each

Fig. 5. Exemplars for Concrete (50); Rug a (18); Quarry Tile (25)

cluster center are enclosed in red circles. Observe that the exem-

plars are well separated in the viewing and illumination angle space.

No other particular trends were observed in the exemplar placement.

Note that including the azimuthal angles would require 4-D plots;

however, most materials in the database have no clear directionality,

and as a result, the azimuthal angle does not have a significant effect

on the appearance. However, for completeness, we also plotted the

exemplar placement as a function of the difference of illumination

and viewing angles in the polar and azimuthal directions, and found

no particular trends, either.

5. CONCLUSIONS

We presented a new direct approach for material recognition based

on visual texture. We used a steerable filter decomposition and relied

on subband statistics and dominant colors for the characterization of

each texture. We then applied K-means clustering to obtain a small

number of exemplars that represent each material under different il-

lumination and viewing conditions. To recognize the material that

corresponds to a given texture, we used grayscale structural texture

similarity metrics and color composition similarity metrics to com-

pare it to the exemplars. We conducted comprehensive experiments

with the CUReT database, and showed that five exemplars per tex-

ture provide performance that is comparable to the state-of-the art.

We also demonstrated the importance of color. In future work we

will consider machine learning techniques to further reduce the num-

ber of exemplars. Our ultimate goal is to obtain a better understand-

ing of how the viewing and illumination conditions affect the visual

appearance of each material.
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