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ABSTRACT

We take a look at texture analysis research over the past 25 years, from the persective of the Human Vision
and Electronic Imaging conference. We consider advances in the understanding of human perception of textures
and the development of texture analysis algorithms for practical applications. We cover perceptual models
and algorithms for image halftoning, texture discrimination, texture segmentation, texture analysis/synthesis,
perceptually and structurally lossless compression, content-based retrieval, and sense substitution.
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1. INTRODUCTION

Texture is an important visual attribute that has attracted the attention of both visual scientists and engineers
developing electronic imaging systems. Indeed, there are strong links in the developments in the two disciplines
that have been brought together, over the past 25 years, by the Human Vision and Electronic Imaging (HVEI)
conference. For example, understanding the principles and underlying models for texture segregation have
been closely linked to techniques for texture analysis/synthesis and texture segmentation, the role of texture in
surface material perception has found applications in graphics, and recently, a better understanding of texture
perception has lead to the development of objective metrics for texture similarity for content-based retrieval and
texture-based compression.

Texture can take different forms, from film grain and halftoning noise, to material surface, to patterns on
cloth, tapestry, or rug, to tree foliage, to forest, to a crown viewed from a distance, to terrain in a satellite image.
Figure 1 shows several examples, including synthetic textures, for example, a pair of random-dot stereograms,
a pattern of crossed lines of different orientations, as well as a portrait of Bela Julesz with a variety of textures
(wall pattern, hair, skin, shirt and jacket patterns). Given the variety of visual textures, random or regular,
rough or smooth, directional or nondirectional, glossy or matte, natural or synthetic, with different scales and
color compositions, it is difficult to come up with a precise definition. However, a number of authors (e.g.,
Portilla and Simoncelli1) agree that more or less texture images are spatially homogeneous and typically contain
repeated structures, often with some random variation (e.g., random positions, size, orientations or colors). A
more difficult task, as we will see in the following sections, is to define perceptual or mathematical features for
the characterization of texture. For a concise review on texture perception, we refer the reader to Ref. 2, and
for more detailed reviews to Bergen3 and Landy and Graham.4

Texture provides important information to the human visual system (HVS). It enables it to identify the
surface geometry and material properties of the object; it allows it to localize the boundaries between objects;
and it provides information about object shape. Each of these uses of texture have been studied by vision
scientists and engineers and have been addressed by papers at the HVEI conference. Thus, there were papers
on surface material perception,5–7 texture segregation,8,9 and shape from texture.10–12

Texture is also important for electronic imaging systems, whether they try to preserve it (e.g., in image
rendering and compression), leverage it for image display (e.g., in image halftoning), or utilize it for image analysis
and understanding, as is done by the HVS. Our journey through the past 25 years of the HVEI conference starts
with image halftoning, which received a lot of attention over the first decade of the conference (Section 2).
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Figure 1. Examples of textures

Texture segregation was one of the topics that received the most attention over the 25 years of the conference.
In Section 3, we consider the problem of preattentive texture discrimination, from Bela Julesz’s conjecture that
textures with identical second-order statistics are indistinguishable, to his texton theory, to the multistage FRF
(filter, rectify, filter) models. In the process, we discuss the importance of spatial-frequency-channel decompo-
sitions, which leads to the discussion of models and algorithms for texture analysis/synthesis, in Section 4. In
addition to their utility for synthesizing realistic textures, such techniques provide a framework for investigating
fundamental problems in texture discrimination. Then, in Section 5, we consider the development of objective
texture similarity metrics, followed by a brief discussion of texture segmentation techniques in Section 6. In Sec-
tion 7, we look at applications of texture similarity, including image compression, content-based retrieval, and
sense substitution. Based on the application requirements and the capabilities of human perception, we then
discuss domains for testing similarity metrics (Section 8). Finally, in Section 9, we discuss high-level features for
texture classification, and close with the outlook for the future in Section 10.

2. MAKING TEXTURE INVISIBLE: DIGITAL HALFTONING

In early applications of imaging systems, texture played an essential role, e.g., manifesting itself as film grain
noise or digital halftoning patterns, which are necessary for image rendering, but must be invisible to the eye
(ignoring artistic effects). In digital halftoning, which was a dominant topic in the first decade of HVEI, the
rendering of gray or color tones depends on generating patterns of pixels with a limited set of colors (two for
black and white printers and eight for CMYK printers) that, when integrated by the eye, create the illusion of
a continuous-tone image.

Figure 2 shows different image halftoning techniques at 100 dots per inch (dpi), including screening13 (classi-
cal, Bayer, blue-noise14), Floyd-Steinberg (FS) error diffusion,13 FS error diffusion with perturbations,13 Jarvis-
Judice-Ninke (JJN) error diffusion,13 and JJN model-based error diffusion with ink-spreading simulation.15,16

Note that at 100 dpi there are virtually no printer distortions, such as ink-spreading, except in Figure 2 (h),
where ink-spreading has been simulated. However, at 300 dpi or higher, printer distortions are significant and
must be taken into account when designing a halftoning technique.15,16

The visibility of the halftoning patterns (artifacts) can be predicted to a large extend by a simple eye model
that consists of a linear filter of Gaussian shape with standard deviation determined by the viewing distance.17–19

This model was based on estimates of the spatial frequency sensitivity of the eye by Mannos and Sakrison,20

but flattened at low spatial frequencies, as the drop in in sensitivity at low frequencies is does not enter in the
design of a halftoning algorithm. The frequency response of this simple eye filter is also very close to the MTF
proposed by Daly.21
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Image halftoning techniques at 100 dpi: (a) Original, (b) classical screening, (c) Bayer screening, (d) blue-noise
screening, (e) FS error diffusion, (f) FS error diffusion with perturbations, (g) JJN error diffusion, (h) JJN model-based
error diffusion with ink-spreading simulation

100 dpi

300 dpi

600 dpi

Figure 3. Visibility of halftone patterns at viewing distance of 30 inches and different printer resolutions

A nice illustration of the usefulness of such eye models is in determining the visibility of halftoning artifacts
at different viewing distances and printer resolutions. Figure 3 shows two halftoning patterns designed to
approximate a constant gray level, 0.125, in a scale of 0 (white) to 1 (black). The pattern on the left is generated
by FS error diffusion, and the pattern on the right by FS error diffusion with perturbations.13 The plot shows
the radial frequency spectrum of the two techniques, (FS in blue and FS with perturbations in green). The eye
filter for different printer resolutions at a fixed viewing distance (30 inches) is also shown in red. Note that that
at relatively high resolutions (300 to 600 dpi), the FS pattern is less visible, while at low resolutions (100 dpi),
the FS pattern is more visible, due to a peak at about 0.35 dots/degree.

3. FROM TEXTURE DISCRIMINATION TO THE FRF MODELS

In his 1989 HVEI paper,22 Bela Julesz presented a brief history and critical discussion of his contributions
to preattentive (effortless) texture discrimination. In contrast to the instant success of the random-dot stere-
ograms,23 which demonstrated that depth perception is possible without any monocular cues, Julesz explained
the difficulties of developing a theory of texture discrimination. His work in the 60s and 70s focused on the
statistical properties of texture that affect preattentive discrimination.24–26 To eliminate familiarity cues, and to
force the subjects to rely on primitive mechanisms, Julesz conducted systematic tests with synthetic textures.24

His initial hypothesis was that textures with identical second-order statistics are preattentively indistinguish-
able.24,25 This is known as the initial Julesz conjecture. However, Julesz himself and his colleagues showed
that the conjecture was wrong.26,27 Setting aside the hypothesis that discrimination can be based on Nth-order
statistics, Julesz emphasized the importance of quasi-local features, which he called “textons.”28 While Julesz’s
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research relied primarily on synthetic textures, Voorhees and Poggio were interested in applying the theory to
natural images, and in Ref. 29 presented an algorithm for detecting and comparing textons in natural images.

While Julesz argued that no linear filter model can account for preattentive texture discrimination,22 Bergen
and Adelson30 showed that adding a nonlinearity after a linear filter, and a second stage of linear filtering after
the nonlinearity, leads to models of texture discrimination that are quite effective. A number of other researchers
proposed similar models, for example, Malik and Perona.31 Such models are collectively known as the LNL
(linear, nonlinear, linear) or FRF (filter, rectify, filter) model.4 An extended discussion of the FRF model can
be found in Landy and Graham.4

The first stage of the FRF/LNL model consists of a multi-scale/multi-orientation frequency decomposition,
like the Gabor32 and steerable33 filters. Such decompositions into spatial frequency channels have been widely
used to model early visual processing.34 Similar approaches have been adopted by the signal processing com-
munity, which relied on subband decompositions (e.g., QMF35,36 and GQMF37 filterbanks and DCTs) for signal
analysis, fidelity, and compression. With their perceptually-tuned subband image coder, Safranek and John-
ston38,39 introduced the idea of perceptually lossless image compression, and associated perceptual image fidelity
models. Similar models were developed by Watson and colleagues for DCTs40,41 and wavelets,42 while Lubin43,44

and Daly45 proposed fidelity metrics that were based on the more elaborate steerable filter decomposition. Note,
however, that with a few notable exceptions,46 the image fidelity and compression work of the 80s and 90s did
not use any models of texture, nor did it make any explicit references to texture other than masking.

In the next two sections, we discuss the application of spatial frequency channel decompositions and the FRF
model to texture analysis/synthesis and texture similarity metrics. As we will see, both of these developments
had important implications for image compression.

4. TEXTURE ANALYSIS/SYNTHESIS

As we mentioned in the introduction, texture analysis/synthesis provides a good example of the tight linking
between understanding human perception and developing image processing algorithms. Our interest is on texture
analysis/synthesis algorithms that are based on spatial frequency channel decompositions.1,32,46–51 There are a
number of other approaches for texture analysis/synthesis that are based on completely different principles. For
example, Efros and Freeman52 proposed a technique for generating a texture based on a small sample. This is
done by stitching together patches from the sample. The key to their approach is ensuring continuity between
block boundaries. An extended discussion of such techniques is beyond the scope of this paper.

Safranek and Johnston38,39 demonstrated that when simple, well-established, but limited techniques are ap-
plied in the appropriate domain, they can lead to significant advances. Their perceptually-tuned subband image
coder38,39 applied standard quantization techniques (PCM, DPCM53) in the subband domain, which allows the
incorporation of a perceptual model (subband sensitivities, contrast masking, etc.). In similar fashion, Heeger
and Bergen48 applied simple histogram matching in the subband (steerable filter) domain, and demonstrated
impressive texture synthesis results. However, their analysis/synthesis technique is limited to stochastic ho-
mogeneous textures. Portilla and Simoncelli1 relied on the steerable filter decomposition to develop a more
elaborate statistical model for synthesizing a much broader set of textures. Their model incorporates a wide
variety of subband statistics, including the range, mean, variance, skewness, and kurtosis of each subband, as
well as subband auto-correlations and cross-correlations between subbands. This results in a fairly large set of
over 800 parameters. Examples are shown in Fig. 4. Note that the texture reconstructions are quite similar
to the original texture, even for regular textures like the one in Fig. 4 (e). The only problems arise when the
repeating elements become more complicated, as in Fig. 4 (f) and (g). Of course, as the authors demonstrate in
Ref. 1, the technique breaks down when the images do not meet the definition of texture.

More importantly, Portilla and Simoncelli1 used the analysis/synthesis framework to investigate the funda-
mental underlying principles for texture discrimination. Their goal was to obtain a universal statistical model
that parametrizes the space of visual textures. They thus formulated a more elaborate version of the Julesz
conjecture, which stipulates that it is possible to find a set of statistics that provide necessary and sufficient
conditions for the perceptual equivalence of the textures that obey these statistics. For example, the original
and synthesized textures must obey the same statistics.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4. Texture analysis/synthesis of Portilla and Simoncelli:1 Original above, synthesized below

(a) (b)

Figure 5. (a) Steerable filter decomposition; (b) Crossband correlations of blue band with each of the cyan bands

Among the papers that paved the way for the work of Portilla and Simoncelli, we should mention the HVEI
papers by Navarro and Portilla54 and by Zhu, Wu, and Mumford.50 The Portilla-Simoncelli work, which was
highlighted in Simoncelli’s 2002 keynote address at HVEI, had a major impact on subsequent texture perception
research. Balas55 further explored the importance of each of the Portilla-Simoncelli statistics for natural textures,
while Balas and Rosenholtz56–58 and Freeman and Simoncelli59 have used the model to explore the importance
of texture perception in peripheral vision. In addition, the structural similarity metrics we discuss in the next
section have been inspired by this work.

5. STRUCTURAL TEXTURE SIMILARITY METRICS

Traditional image fidelity metrics that compare two images on a point-by-point basis, like the peak signal-to-
noise ratio (PSNR) and some of the metrics that incorporate a perceptual model in the subband/wavelet or DCT
domain,38,39,41,42,44,45 are not well-suited for the objective evaluation of texture similarity. This is because the
repetitive, stochastic nature of typically encountered textures allows substantial point-by-point variations that
do not have a significant effect on overall texture perception. Thus, it is necessary to adopt a statistical approach
for the development of texture similarity metrics.

The development of structural texture similarity metrics (STSIMs)60–62 was inspired by structural similarity
metrics (SSIMs)63,64 and texture analysis/synthesis.1 SSIMs introduced the idea of comparing region statistics
instead of point-by-point comparisons. Wang et al. proposed metrics in both the space domain63 and the wavelet
domain.64 However, the cross-correlations in the “structure” term are point-by-point comparisons, which result
in low similarity scores for textures that are perceptually similar. On the other hand, STSIMs depend entirely
on region statistics. The key elements of a STSIM are the following:

A subband decomposition: This is typically a steerable filter decomposition, as in Ref. 1, with 3 scales and
4 orientations, plus a lowpass and a highpass subband, for a total of 14 subbands, as shown in Fig. 5 (a).

A set of statistics: Each of the statistics corresponds to one image, one subband or pair of subbands, and one
window in that subband. The window can be local or global (the entire subband). The statistics are typically the
mean, variance, horizontal and vertical autocorrelation. Crossband correlations between subbands at adjacent
scales for a given orientation and between all orientations for a given scale are also included; these are illustrated
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(a) (b) (c) (a) (b) (c)

Figure 6. Texture Segmentation: (a) Original, (b) Chen et al.,67 (c) He69

in Fig. 5 (b). The statistics are computed on the complex values or the magnitudes of the coefficients, depending
on the particular statistic, and the particular metric implementation.62

Formulas for comparing statistics: These take different forms depending on the values that the particular
statistics take and the particular metric implementation. The result is a non-negative value that represents the
similarity or dissimilarity (depending on the particular metric implementation) score for the particular statistic.

A pooling strategy for combining similarity or dissimilarity scores across statistics, subbands, and window
positions in order to obtain an overall STSIM value.

Zujovic et al. proposed two different STSIM implementations, STSIM-2 and STSIM-M.62 The STSIMs are
consistent with the FRF model. The three FRF stages correspond to the subband decomposition (linear), the
statistic comparisons (nonlinear), and the pooling (linear).

The STSIMs we described above, are applied to grayscale images or to the grayscale component of a color
image. For color images, Zujovic et al. combine the grayscale metric value with a metric that compares the color
compositions of two image regions.61,65,66 They thus separate the color composition of a texture from the spatial
structure, which to a large extend is reflected in the grayscale component. Note that this does not account for
any pure chrominance structure, which is not typical for most natural textures.65

6. TEXTURE SEGMENTATION

Our interest is in image segmentation techniques that can partition an image into perceptually uniform regions
based on low-level features, not relying on any semantics. In this respect, they correspond to preattentive
texture discrimination (and the resulting segregation) discussed in Section 3. In principle, the texture similarity
metrics we discussed in the previous section could be used for texture segmentation. However, in natural scenes,
perceptually uniform regions have spatially varying statistical characteristics. Thus, segmentation must be based
on simple texture models and similarity metrics that can adapt to local variations.

We consider two color-texture segmentation algorithms that rely on simple features inspired by human per-
ception. Chen et al.67 used spatially adaptive dominant colors and the associated percentages to represent the
color composition of the texture in the vicinity of each pixel, and dominant orientations (based on a steerable
filter decomposition) to represent the texture structure in the vicinity of each pixel. The color composition
comparisons were based on the optimal color composition distance (OCCD).68 This algorithm provides good
segmentation performance, albeit at a high computational cost.

He69 proposed a more efficient approach that relies on the fact that perceptually uniform natural textures are
typically characterized by one or two dominant colors to obtain a much simpler texture model. This considerably
simplifies the OCCD metric. He then used a feature-aligned clustering approach to segment the image into
perceptually uniform regions. The algorithm is computationally efficient without any performance sacrifices
relative to Ref. 67. Examples of the two algorithms are shown in Fig. 6.

7. APPLICATIONS OF TEXTURE SIMILARITY

7.1 Structurally Lossless Image Compression

The goal of traditional, mathematically lossy, image compression techniques is to exploit image redundancy
without significant sacrifices in perceived image quality. To accomplish this, they rely on transform-based
techniques (DCTs, subband/wavelet decompositions) and point-by-point image fidelity metrics, both of which
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are not well-suited for exploiting redundancies in texture areas. Transform-based techniques are quite inefficient
in textured areas, while, as we saw, traditional fidelity metrics are not well-suited for predicting perceptual texture
similarity. The gold standard is perceptually lossless compression (see also Section 3), whereby the original and
compressed image are indistinguishable in a side-by-side comparison. Instead of transform-based compression,
the key to making gains in texture compression is exploiting texture self-similarity. This requires STSIM metrics
that allow substantial point-by-point differences in textured regions that are perceptually similar. However,
this necessitates replacing the goal of perceptually lossless compression with structurally lossless compression,
whereby there may be visible differences between the original and the compressed image, even though neither
of the images appears distorted, and both could be considered as original images.70 Similar ideas have been
explored in graphics; for example, Ferwerda et al.71 introduced the notion of visual equivalence, whereby two
“images convey the same impressions of scene appearance, even if they are visibly different.”

Based on the above ideas, Jin et al. proposed a new structurally lossless compression technique, which
they call matched-texture coding (MTC).72 The main idea is that MTC encodes textured image patches by
pointing to previously encoded perceptually similar patches, while the rest of the image (non-textured regions) is
encoded with a baseline method, such as JPEG. A number of other approaches have been proposed for exploiting
texture in image compression. The most common approach is to replace textured image regions with synthesized
texture. One of the earliest such techniques was proposed by Popat and Picard.46 Another technique, utilizing
the Heeger and Bergen model for texture synthesis,48 was presented a few years later at HVEI by Yoon and
Adelson,73 while Haenselmann and Effelsberg, also at HVEI,74 presented a texture resynthesis approach based
on principle component analysis. At the 2008 HVEI conference, Kramm presented a texture analysis/synthesis
based compression technique that exploits redundancies in groups of images containing textures.75 Recently, the
topic of compression-by-synthesis has seen a lot of activity, e.g., in Refs. 76–80.

7.2 Content-Based Retrieval

In his 2001 keynote presentation at HVEI, Adelson emphasized the importance of texture in material perception,
and contrasted it to the focus of the computer vision community on object extraction, as opposed to material
perception.5 When we combine this with Koenderink’s suggestion, in his 2011 keynote presentation, that the
human visual system searches for “clues” for content extraction,81 we realize that an important clue is provided
by texture. Another way to think about this is that the human visual system can recognize an object or scene
from its visible parts and their spatial relations;82,83 each part and spatial relation provides a clue. Now, in order
to implement this idea, we need to segment the objects in a scene into regions of perceptually uniform textures,
using one of the algorithms we reviewed in Section 6. The material clues can then be obtained by semantic
analysis of the texture segments, or by direct comparison with reference textures using a texture similarity
metric. There are two problems of interest.

The first is the retrieval of identical textures,62 whereby the goal is finding samples from the same, perceptually
uniform, texture. An example of identical textures is shown in Fig. 7(f). This is important for retrieving textures
from a database of fabrics, rugs, marble tiles, as well as any other patterns of interest. It is also important when
searching for images that correspond to a particular scene (for which the component textures are known) or
images of scenes that contain characteristic textures (a brick wall, granite tiles, concrete floor, etc.). To get a
database for this problem, all that is necessary is to cut patches from perceptually uniform textures. Then, all
the patches that come from the same perceptually uniform texture form a class of identical textures.62 Thus, the
ground truth follows from database construction. This obviates the need for subjective tests and allows testing
on a large number of images. All that is needed is to make sure that we start with a set of perceptually uniform
textures, and to make sure that they are distinct from each other.

The second problem is the retrieval of similar textures.65,66 This is a difficult problem, because texture
similarity can be defined on the basis of several attributes: directionality, scale, regularity, color, shape of
generating elements, etc. Thus, when two texture pairs are dissimilar, for example the pairs in Fig. 7 (a) and
(b), it is difficult for subjects to make consistent judgments about their relative similarity. A similar problem
arises when textures are similar on the basis of one attribute and different on the basis of another. For example,
the textures in Fig. 7(c) have similar structure (scale, shape of structuring element) but different colors, while
the textures in Fig. 7(d) have similar colors but different structure. In such cases, one subject may consider
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(a) (b) (c) (d) (e) (f)

Figure 7. Examples of texture pairs (a),(b) dissimilar textures; (c) similar structure, different color; (d) similar color,
different structure; (e) similar in all perceptual dimensions; (f) “identical”

the pair similar and another dissimilar, depending on the attribute they focus on. It is only when textures are
similar along all perceptual dimensions, as in the textures in Fig. 7(e), that subjects consistently classify them as
similar. As we will see in Section 8, a reasonable question to ask is whether two textures are similar or dissimilar.
If they are dissimilar, it is difficult, if not impossible to further quantify similarity.

7.3 Visual to tactile and auditory mapping

The limited spatial resolution of the touch necessitates a segmentation-based approach for transforming visual
to tactile information. The idea is illustrated in Figure 8. In order to transform an array of image intensities
into a pattern of bumps to be displayed on a tactile device, we first segment the image into perceptually uniform
segments, and then we map each segment into a distinct tactile pattern.84 Each black dot in Fig. 8 (c) represents
a bump, typically with a fixed radius and height. The mapping of the visual textures of the segments into tactile
textures can be arbitrary, or can be based on some intuitive mapping between the two modalities (e.g., on the
basis of the roughness, directionality, or regularity of the patterns). In many cases the visual information is
already available in segmented form, for example, in maps, pie charts, and other graphics; in such cases, the
segmentation step is not needed. Finally, if the system is to work, the brain must be able to integrate all the
information into a mental picture, which necessitates an understanding of haptic space perception.

8. DOMAINS FOR TESTING TEXTURE SIMILARITY METRICS

In Section 7.2 we saw that it does not make sense to quantify similarity when textures are dissimilar. Indeed,
Zujovic et al.65,66 found that, apart from a relatively narrow range at the top of the similarity scale, where
images exhibit similarity in every texture attribute, subjects do not make consistent judgments about the relative
similarity of texture pairs, except for distinguishing similar from dissimilar pairs. Since our goal is to design
metrics that mimic human perception, we should not expect metrics to do what humans cannot do.

Now, we look at the application requirements. In image compression, it is desirable to have a monotonic
relationship between measured and perceived similarity. However, this is important only when the images are
fairly similar; when they are dissimilar, it should be sufficient that the metric value be low. Another important
requirement is that the metric provide consistent values for different image content, so that a uniform quality

(a) (b) (c)

Figure 8. Visual to tactile mapping. (a) Original color image (b) Segmentation (c) Tactile display
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Figure 9. Desirable metric behavior (metric values vs. subjective similarity scores)

criterion can be established. In CBR, as we discussed in Section 7.2, it is important to distinguish between
similar and dissimilar pairs. Ordering images according their similarity to a query image may also be desired,
but again, this is important only at the high end of the scale, i.e., for the most similar images. For the remainder
of the images, it is sufficient to reject them as dissimilar. As in the compression case, there may also be a need
for thresholds that establish whether two textures are sufficiently similar. Thus, in both applications, similarity
needs to be quantified only over a small range at the top of the similarity scale, while for the rest of the range,
it is sufficient to declare that texture pairs are dissimilar. Finally, the determination whether two textures are
identical is important for both applications.

Thus, both human perception and application requirements agree that a monotonic relationship between
metric values and subjective ratings is desired only in the region of very similar textures, and that otherwise, the
metric should be able to distinguish between similar and dissimilar texture pairs. Figure 9 provides a schematic
illustration of the desirable metric behavior.65,66 It plots subjective similarity ratings versus objective metric
values. Observe that the monotonic relationship is limited to the region of very similar textures – to the right
of T1, which includes identical textures. There is also a similar range – to the right of T2 – where subjects agree
that textures are similar but do not assign consistent similarity scores. Metric values should be high in this
range, but monotonic behavior is not expected. Finally, there is a region of dissimilar textures – to the left of
T3) – where the subjects agree that the textures are dissimilar but cannot assign consistent similarity scores.
Metric values should be low in this range.

In summary, there are three operating domains where a similarity metric can be tested:

1. The metric ability to differentiate perceptually similar and dissimilar textures.

2. The existence of a monotonic region at the top of the scale.

3. The metric ability to retrieve identical textures.

Each of these domains requires different metric testing procedures. The first domain is explored in Ref. 65, the
second in Ref. 85, and the third in Ref. 62.

9. HIGH-LEVEL TEXTURE FEATURES

In Sections 7.2 and 8, we discussed several attributes (scale, regularity, color) that can be used for the perceptual
characterization of texture. The identification of such attributes, most of which are high-level in the sense that
they relate to semantics, has been an important topic of research. Several authors have proposed high-level
attributes (or features) for the perception of visual texture. Tamura et al.,86 identified six basic features: coarse-
ness, contrast, directionality, line-likeness, regularity, and roughness. On the basis of subjective experiments,
Rao and Lohse87 identified three important perceptual dimensions for texture perception: repetitiveness versus
irregularity, directional versus nondirectional, and structurally complex versus simple. Mojsilovic et al.88 con-
ducted subjective experiments with a special class of color patterns (fabrics and carpets), and identified five
perceptual dimensions: overall color, directionality and orientation, regularity and placement rules, color purity,
and pattern complexity and heaviness. There have also been several attempts, by these and other authors, to
link such perceptual features to low-level image parameters.86,88,89 However, the linking of low-level features to
high-level semantics is a difficult problem that remains an active topic of research.
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10. CONCLUSIONS

The past 25 years have seen a lot of advances in our understanding of texture perception and the development
of image processing algorithms for exploiting this understanding. However, a lot of problems remain open.
In addition, the development of new electronic imaging technologies (displays, mobile devices, communication
networks), has opened up new promising avenues for research. One of the most promising research directions
is the study of individual texture attributes, such as surface reflectance (gloss)90–92 and roughness.93 Other
attributes, such as directionality, regularity/periodicity, are also interesting to explore. One of the lessons we
learned from the past 25 years is the importance of image statistics in tackling these problems. Of course, the
most important lesson is that a better understanding of texture is key to further advances in image analysis,
compression, and semantic extraction, as well as electronic imaging in general.
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