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Abstract—Texture is an important visual attribute both for
human perception and image analysis systems. We review re-
cently proposed texture similarity metrics and applications that
critically depend on such metrics, with emphasis on image and
video compression and content-based retrieval. Our focus is
on natural textures and structural texture similarity metrics
(STSIMs). We examine the relation of STSIMs to existing models
of texture perception, texture analysis/synthesis, and texture seg-
mentation. We emphasize the importance of signal characteristics
and models of human perception, both for algorithm development
and testing/validation.

Index Terms—Structural similarity metrics, structurally loss-
less compression, matched-texture coding

I. INTRODUCTION

THE field of image analysis has made significant strides

during the last two decades, incorporating sophisticated

signal processing techniques and models of human perception.

One of the keys to further advances is a better understanding

of texture, and in particular, texture similarity. Even though the

importance of texture for human perception and image analysis

is obvious, it is surprising that it has received relatively little

attention in applications such as image compression, restora-

tion, content-based retrieval (CBR), and computer vision.

For example, image and video compression techniques have

relied on similarity metrics that are sensitive to point-by-point

deviations and thus cannot adequately model the stochastic

nature of texture and how it is perceived by humans [1],

[2]. Similarly, computer vision has mostly focused on object

extraction rather than material perception, which is critically

dependent on texture [3]. Texture analysis is important for a

variety of other applications, including graphics, multimodal

interfaces, and sense substitution (visual to acoustic-tactile
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conversion [4]). The focus of this paper is on texture similarity

and metrics that incorporate knowledge of human perception.

We also look at applications that make use of texture similarity

metrics. Our discussion primarily considers natural textures.

First, we look at image and video compression. Compres-

sion techniques rely on image similarity metrics (typically

called quality metrics), both as embedded system components

that help make decisions on an image-patch-by-image-patch

basis, or in order to evaluate overall system performance (e.g.,

by pooling metric values over a set of patches). The signal

processing community has identified exploiting texture as a

key to increasing compression efficiency [5]–[10]. However,

one of the main obstacles in realizing this goal has been

the lack of metrics that can adequately predict perceptual

texture similarity, which is essential for reducing redundancy

in textured regions. To accomplish this, we need metrics that

allow substantial (visible upon careful observation) point-by-

point differences in textured regions that appear virtually the

same. This necessitates replacing the goal of perceptually

lossless compression, whereby the original and compressed

image are indistinguishable, with what we have called struc-

turally lossless compression, whereby two images (or texture

patches) can have visible point-by-point differences, even

though neither one of them appears to be distorted and both

could be considered as original images [7]. Accordingly, the

texture similarity metrics that accomplish this goal are called

structural texture similarity metrics (STSIMs).

Image restoration also relies on image similarity metrics,

both as embedded system components and for overall perfor-

mance evaluation. State-of-the-art nonlocal restoration tech-

niques rely heavily on image self-similarity (similar patches

typically occur in several image locations) to reconstruct a

cleaner, more accurate overall image [11]–[13]. However,

current algorithms, which are based on point-by-point similar-

ity metrics, can exploit similarities of smooth and piecewise

smooth patches, but cannot handle patches that consist of, or

contain, textures.

In CBR, one may identify a number of problems. The

simplest is retrieving similar patches of uniform texture. The

role of texture similarity metrics is obvious in this case. A

more complicated problem is finding images that correspond

to the same scene as that depicted in the query image. Given

the wide variations in image content (due to the details of

the scene arrangement, or lighting, perspective, scale, etc.),

it is unrealistic to expect that one can match complex im-

ages directly. A more tractable approach is to segment the

image into perceptually uniform regions [14], [15], and then

directly compare the textures of the regions. A somewhat

easier alternative is to use incremental parsing to obtain

image patches that are representative of image content [16],
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[17]. If two images share a substantial number of similar

segments or patches, then the chances of a good match are

much higher. Texture similarity metrics are required for both

segmentation and incremental parsing, as well as comparisons

of the resulting segments or patches.

Image segmentation, in particular, imposes special require-

ments on texture similarity metrics. This is because the statisti-

cal characteristics of perceptually uniform regions in images of

natural scenes are spatially varying due to variations in illumi-

nation, perspective view, and variations in surface properties.

Thus, segmentation must be based on simple texture models

and similarity metrics that can adapt to local variations.

The most difficult CBR problem is the one that is based on

semantics. Texture analysis plays a critical role in this case,

too, providing important “clues” [18] for content extraction.

As mentioned above, one of the problems with traditional

computer vision techniques has been the focus on object

extraction. On the other hand, the psychophysics literature

has established that the human visual system (HVS) relies

on partial information about the presence of objects (visible

parts and their spatial relations) in order to arrive at scene

interpretation [19], [20]. Such information can be provided by

segments of perceptually uniform texture and their descrip-

tors (color and texture, as well as boundary shape, location,

size, and common boundaries) [21]. Incremental parsing [16]

can also be used to identify the most commonly occurring

(rectangular) segments and the associated descriptors (color,

texture, location, size). In either case, the segment descriptors

can be used as medium-level descriptors for the extraction

of semantic information. Alternatively, direct comparisons of

segment textures with reference textures, utilizing a texture

similarity metric, can also facilitate context analysis.

The development of STSIMs has been inspired by the

introduction of the structural similarity metrics (SSIM) [22],

which represent the first serious attempt to deviate from point-

by-point comparisons, and by research in texture analysis-

synthesis [23]. Both rely on steerable filter decompositions

[24] as models of early visual processing. We will explain

the limitations of SSIMs, including the complex wavelet

domain implementation (CW-SSIM) [25], and discuss a new

framework for structural texture similarity metrics [2], [26]

that, like texture analysis-synthesis, rely on subband statistics,

to completely eliminate point-by-point comparisons. We also

look at how these metrics can be evaluated in the context of

different applications.

In the remainder of this paper, Section II discusses texture

in general and Section III reviews structural texture similarity

metrics. Compression and retrieval applications are discussed

in Sections IV and V, respectively, while Section VI presents

approaches for evaluating metric performance. The conclu-

sions and future research can be found in Section VII.

II. TEXTURE OVERVIEW

The precise definition of visual texture is difficult. However,

several authors (e.g., Portilla and Simoncelli [23]) loosely de-

fine texture as “texture images are spatially homogeneous and

typically contain repeated structures, often” (but not necessar-

ily) “with some random variation (e.g., random positions, size,

orientations or colors).” It is even more difficult to identify

features for the perceptual or mathematical characterization of

texture. For a concise review on texture perception, we refer

the reader to [27], and for more detailed reviews, to [28] and

[29].

Several authors have attempted to identify features for tex-

ture classification. Tamura et al. [30], identified six “basic fea-

tures” for the perception of visual texture: coarseness, contrast,

directionality, line-likeness, regularity, and roughness. Rao and

Lohse [31] conducted subjective experiments and analyzed

the results to identify three important perceptual dimensions

for texture perception: repetitiveness versus irregularity, direc-

tional versus nondirectional, and structurally complex versus

simple. Mojsilović et al. [32] conducted a similar investigation

for a special class of color patterns (fabrics and carpets), and

found five perceptual dimensions: overall color, directionality

and orientation, regularity and placement rules, color purity,

and pattern complexity and heaviness. These and other authors

have also attempted to link such high-level features to low-

level image parameters, e.g., [30], [32], [33]. However, this is

difficult, partly due to the fact that texture perception is linked

to semantics. The focus of this paper is on the visual similarity

of two textures and low-level parameters, which can be used to

quantify this similarity without taking semantics into account.

The pioneering work of Bela Julesz in the 60s and 70s

aimed at understanding the statistical properties of texture

that determine preattentive (effortless, instantaneous) texture

discrimination [34]–[36]. Julesz’s hypothesis was that discrim-

ination could be based on Nth-order statistics, and the initial

Julesz conjecture was that textures with identical second-order

statistics are preattentively indistinguishable [34], [35]. He and

his colleagues later proved that the conjecture was wrong [36],

[37], while Victor et al. worked on the exact characteriza-

tion of the perceptually relevant statistics [38]–[40]. Julesz

then went on to emphasize the importance of local features,

which he called “textons” in preattentive texture perception

[41], echoing similar ideas from Beck [42]. Voorhees and

Poggio [43] showed that Julesz’s ideas can be applied to

natural images by proposing an algorithm for the detection

and comparison of textons. On the other hand, Bergen and

Adelson [44] showed that low-level mechanisms, consisting

of linear filtering followed by a nonlinearity (rectification)

and a second stage of linear filtering can go a long way

towards explaining texture discrimination. Similar models have

been proposed by Malik and Perona [45] and others (for a

complete list see [29]), and led to the linear-nonlinear-linear

(LNL) or filter-rectify-filter (FRF) model [29]. The first stage

of the LNL model consists of a multiple scale and orientation

frequency decomposition, like Gabor [46] and steerable [24]

filters. The use of such decompositions is motivated by human

perception, as models of early visual processing [47]. Portilla

and Simoncelli [23] relied on such decompositions to obtain

a statistical model for texture that is parametrized by statistics

that are computed on single or pairs of subband coefficients

at adjacent locations, scales, and orientations. The authors

adopted an analysis/synthesis methodology to demonstrate that

the resulting set of parameters is necessary and sufficient for

perceptual equivalence of the original and synthesized textures.
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Balas [48] carried this work further, conducting subjective

tests to determine the importance of the different statistics of

the Portilla-Simoncelli model for the reconstruction of natural

textures, viewed under preattentive conditions. Finally, recent

work by Balas et al. [49], Rosenholtz et al. [50], and Freeman

and Simoncelli [51] have used the model to demonstrate the

dominant role of texture perception in peripheral vision.

We will revisit the Portilla-Simoncelli model in more detail

in the next section. The texture similarity metrics we discuss in

the next section are inspired by this model and are consistent

with the ideas of the LNL model.

III. TEXTURE SIMILARITY METRICS

The development of objective metrics for texture similarity

is considerably more challenging than that of traditional image

quality metrics because there can be substantial point-by-point

deviations between textures that according to human judgment

are essentially identical. Note that the metrics we discuss do

not comply with the mathematical definition of a metric, so

we are using the term in a loose sense.

The focus of this section is on (general purpose) structural

texture similarity metrics (STSIMs). However, we also look at

texture analysis/synthesis, which makes use of an implicit tex-

ture similarity metric, and image segmentation, which makes

use of much simpler similarity metrics. As we will see, there

is a progression, from very precise to crude metrics.

A. Texture Analysis/Synthesis

Among several approaches for texture analysis/synthesis, we

look at those that are based on multiple scale and orientation

frequency decompositions. Heeger and Bergen [52] demon-

strated the power of such decompositions (steerable filters) by

showing that a simple technique (histogram matching), when

applied in the appropriate (subband) domain, can lead to im-

pressive texture synthesis results. However, their technique can

only model and synthesize stochastic homogeneous textures.

Portilla and Simoncelli [23], who also based their model on the

steerable filter decomposition, used a more elaborate statistical

model to synthesize a wide variety of textures. To ensure that

the histogram of the synthesized texture is close to the original,

they included histogram statistics – range, mean, variance,

skewness, and kurtosis. The regularity of textures is captured

by the subband auto-correlation statistics, while the crossband

correlations represent “higher order” texture features such as

edges, corners, and bars. This yields a total of 846 parameters

for texture synthesis. Examples are shown in Fig. 1. Note that

the reconstruction works well for the first four examples. As

the authors point out, the technique has trouble with textures

that contain complex repeating structures (fifth example).

Since the Portilla-Simoncelli model parameters characterize

a wide class of textures, they could form a basis for a texture

similarity metric, e.g., as a weighted distance between the

model parameters. Of course, for texture analysis/synthesis,

the model parameters are the same, so there is no explicit use

of a metric. However, as discussed below, a texture similarity

metric can be based on a significantly smaller parameter set.

Fig. 1. Texture analysis/synthesis [23]: Original above, synthesized below

For the STSIMs we discuss next, Zujovic et al. [26], [53],

[54] found that it is more effective to develop separate metrics

for the spatial structure and the color composition of a texture.

To isolate the structure of a texture, they used the grayscale

component of the image. While this ignores chrominance

structure, in most natural textures, the grayscale component

is fairly representative of the overall structure [54]. In what

follows we first review structural texture similarity metrics

for the grayscale spatial structure, and then describe color

composition metrics.

B. Structural Texture Similarity Metrics - Grayscale

The development of STSIMs has been inspired, on the one

hand by the introduction of SSIMs [22], [25], and on the

other by research on texture analysis/synthesis [23]. One of

the most important contributions of the SSIMs was the idea

of replacing point-by-point comparisons with comparisons of

region statistics. The goal was to give high similarity scores to

images that are similar, even though they may have significant

pixel-wise differences. Wang et al. have proposed a number

of metrics, both in the space domain (SSIM) [22] and in the

complex wavelet domain (CW-SSIM) [25]. However, these

metrics still incorporate point-by-point comparisons between

images (cross-correlations in the “structure” term), which

causes them to give low similarity values to textures that are

perceptually similar. In order to overcome such limitations,

Zhao et al. [55] proposed STSIM-1, a metric that completely

eliminates point-by-point comparisons by relying entirely on

local image statistics. The idea was further developed by

Zujovic et al. [53]. A comprehensive presentation of STSIMs

can be found in [2]. In the following, we discuss a general

framework for STSIMs and two specific metrics. An STSIM

is specified by the following:

• A subband decomposition. The subband decomposition

can be real or complex. Following Portilla and Simoncelli

[23], the steerable filter decomposition is used, which like

Gabor filters, is inspired by biological visual processing.

A typical decomposition (used by the metrics we discuss

below) has 14 subbands, corresponding to three scales,

each with four orientations, plus a lowpass and a highpass

subband, which are not subdivided into different orienta-

tions, as shown in Fig. 2.

• A set of statistics, each corresponding to one particular

image, one particular subband or pair of subbands, and

one particular window in that subband. The window

can be local or global (the entire subband). Typical
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Fig. 2. Steerable filter decomposition (left), crossband correlations of dark
blue band with each of the light blue bands (right)

statistics are the mean, variance, horizontal and vertical

autocorrelation, and crossband correlation. For the latter,

only the correlations between subbands at adjacent scales

for a given orientation and between all orientations for a

given scale are included, as illustrated in Fig. 2 (right). All

expectations are computed as empirical averages within

a window. Statistics can be computed on the complex

values or the magnitudes of the coefficients. More details

can be found in [2].

• Formulas for comparing statistics, which can take dif-

ferent forms depending on the values that the particular

statistics take and may include statistic-dependent nor-

malization factors. The result is a non-negative value that

represents the similarity (or dissimilarity) score for the

particular statistic.

• A pooling strategy for combining similarity (or dissim-

ilarity) scores across statistics, subbands, and window

positions in order to obtain an overall STSIM value.

Note that the “structure” term of the SSIM [22] is not a

statistic comparison formula because it does not compute or

compare statistics, one from each image. However, it is com-

bined with similarity scores (the “luminance” and “contrast”

terms) to obtain the overall SSIM value, causing the metric to

sometimes take negative values.

Note also that the STSIMs follow the LNL model, with

three basic stages: subband decomposition (linear), statistic

comparisons (nonlinear), and pooling (linear). While there is

strong perceptual justification for the overall LNL structure

and selection of subband decomposition and set of statistics,

the statistic comparison and pooling approaches remain quite

ad hoc. We now discuss two specific metric embodiments.

C. STSIM-2

The STSIM-2 metric [2], [26] uses the mean value, vari-

ance, and autocorrelations, computed on the complex subband

coefficients, and the crossband correlation, computed on the

magnitudes. The statistic comparison formulas for the mean,

c1x,y , and variance, c2x,y , take the form (same as in the

luminance and contrast term of the SSIMs):

cix,y =
2AxAy + C

A2
x +A2

y + C
(1)

where Ax and Ay are the statistics for images x and y and

C is a small positive constant that is included so that when

the statistics are small the term will be close to 1. Since the

correlation coefficients are bounded and their values lie in the

unit circle of the complex plane (in contrast to the variances

and the means), the comparison terms take a different form

[55]):

cix,y = 1− 0.5|Ax −Ay|
p (2)

for the corresponding statistics Ax and Ay . Typically, p = 1.

Both types of comparison terms produce a number in the in-

terval [0, 1], with 1 representing the highest possible similarity.

For the pooling, for each window and each subband, the

similarity scores corresponding to the four single-band statis-

tics are combined multiplicatively into one score for each

subband and window location

q0(x, y) = (c1x,y)
1

4 (c2x,y)
1

4 (c3x,y)
1

4 (c4x,y)
1

4 (3)

where c1x,y , c2x,y , c3x,y , and c4x,y are the similarity scores for the

means, variances, horizontal, and vertical correlations, respec-

tively. The resulting similarity values can then be pooled across

subbands and window locations, in either order. Since the

crossband correlation comparison terms involve two subbands,

they are added separately.

D. STSIM-M

This takes an entirely different approach for statistic com-

parisons and pooling [2]. For each window, it forms a feature

vector that contains all the subband statistics and computes the

distance between feature vectors. The statistics it uses are the

mean, variance, horizontal and vertical autocorrelations, and

the crossband correlations, all computed on the magnitudes

of the subband coefficients. For the chosen steerable filter

decomposition, this results in a total of 82 terms.

One of the advantages of this approach is that it can

incorporate different weights for different statistics, depending

on the application and database characteristics. For example,

one can compute the Mahalanobis distance between the feature

vectors, which if we assume that the different features are

mutually uncorrelated, is the weighted Euclidean distance of

the feature vectors with weights inversely proportional to the

variance of each feature over the entire database. We refer

to the resulting metric as STSIM-M, where “M” stands for

Mahalanobis. Note that this is a dissimilarity metric that takes

values between 0 and ∞, with 0 indicating highest similarity.

This metric is better suited for comparing entire images or

relatively large image patches [2].

E. Color Composition Similarity Metrics

The most sophisticated approaches for measuring color

similarity are based on dominant colors and the associated

percentages, and have been used for texture retrieval and

segmentation [14], [32], [56]. The idea of dominant colors

is based on the fact that the human visual system cannot

simultaneously perceive a large number of colors. Chen et al.

added spatial adaptation in order to account for the nonunifor-

mity of the statistical characteristics of natural textures [14].

The spatially adaptive dominant colors are obtained with the

adaptive clustering algorithm (ACA) [57].

Zujovic et al. [26], [53] used the texture representation in

terms of spatially adaptive dominant colors and associated

percentages as the basis for color composition similarity
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Fig. 3. Texture segmentation: Original, He [15]

metrics. As in [14], they used the Optimal Color Composition

Distance (OCCD) to compare the color composition of two

texture images or patches. OCCD breaks the histogram of

dominant colors into fixed percentage units, finds the optimal

mapping between these units, and computes the average dis-

tance between them in the CIE L*a*b* color space [58]. This

is essentially the same as the Earth mover’s distance (EMD)

[59].

F. Metrics for Segmentation

As discussed in the introduction, image segmentation into

perceptually uniform regions also requires texture similarity

metrics. However, perceptually uniform regions of natural

scenes typically have spatially varying statistical characteris-

tics. This requires texture models with a few parameters that

can be estimated from small windows, thus adapting to local

variations. The segmentation algorithm exploits the fact that

the spatial characteristics of the textures vary slowly within

each segment and rapidly across segment boundaries. Thus, a

simple similarity metric can be effective, in contrast to texture

retrieval, where the metric needs to discriminate among several

different textures, and texture analysis/synthesis, where small

parameter changes may generate different textures.

Two recently proposed color-texture segmentation ap-

proaches utilize compact texture representations. The algo-

rithm by Chen et al. [14] introduced the spatially adaptive

dominant colors we mentioned above (typically four) and the

percentage of each color in the neighborhood of each pixel,

as well as dominant orientations (smooth, horizontal, vertical,

+45o, −45o, and complex). The dominant orientations are

based on the local median energy of the subband coefficients

of the steerable filter decomposition [24]. The algorithm then

uses OCCD [58] to compare the dominant colors and a simple

metric for the dominant orientations [14]. This approach pro-

duces good segmentations, but the computational cost is quite

high, due to the median filtering and the OCCD computation.

A more efficient approach [15] relies on a simpler texture

model that exploits the fact that perceptually uniform natural

textures are in the majority of cases characterized by one

or two dominant colors. This was empirically observed by

Depalov and Pappas in [60]. The theoretical justification for

the approach in [15] is based on the assumption that the

color reflected from a uniformly colored object has a fixed

chrominance, and varies only in luminance. This results in

a much simplified OCCD metric for color similarity, and a

feature-aligned clustering approach to segmentation that is

computationally efficient without any performance sacrifices

relative to [14]. Examples are shown in Fig. 3.

G. Other Approaches

There is a variety of other techniques for evaluating texture

similarity. Some of these have been quite effective in the

context of clustering/classification and segmentation tasks.

They can be grouped into statistical and spectral methods. The

statistical methods are based on calculating statistics of the

gray levels in the neighborhood of each pixel (co-occurrence

matrices, first and second order statistics, random field models,

etc.) and then comparing the statistics of one image to those

of another, while the spectral methods utilize the Fourier spec-

trum or a subband decomposition to characterize and compare

textures. We review the most recent and most effective.

A very simple yet effective statistical technique for texture

classification was proposed by Ojala et al. [61]; it utilizes local

binary patterns (LBP) to characterize textures. An important

shortcoming, however, is that it is highly localized.

The spectral methods provide a better link to human per-

ception. The most effective rely on the energies of different

subbands as features for texture segmentation, classification,

and retrieval. Do and Vetterli [62] use wavelet coefficients as

features and show that their distribution can be modeled as

a generalized Gaussian density, which requires the estimation

of two parameters. They then base the classification on the

Kullback-Leibler distance between two feature vectors. Man-

junath and Ma [63] use Gabor filters to model early HVS

processing.

Finally, we want to mention MPEG-7 texture descriptors

[64], which include the homogeneous texture descriptor that

consists of the means and variances of the absolute values

of the Gabor coefficients; the edge histogram descriptor that

is based on local edge histograms; and the texture browsing

descriptor that attempts to capture higher-level perceptual

attributes such as regularity, directionality, and coarseness.

Ojala et al. [61] have shown that the MPEG-7 descriptors are

rather limited and provide only crude texture retrieval results.

The techniques we reviewed in this subsection have been

shown to be quite effective in evaluating texture similarity

in the context of clustering and segmentation tasks. How-

ever, there has been very little work towards evaluating their

effectiveness in providing texture similarity scores that are

consistent across texture content, agree with human judgments

of texture similarity, and can be used in different applications.

IV. STRUCTURALLY LOSSLESS IMAGE COMPRESSION

State-of-the-art lossy image compression techniques gen-

erally rely on a transformation (DCT, subband or wavelet

decomposition) to efficiently encode the image values. Such

techniques work well in smooth regions, where the energy

is concentrated in low-frequency coefficients, but are not

as efficient in textured regions and transition regions (i.e.,

regions containing edges), where there is much energy in high

frequencies. In video compression, transition regions can be

efficiently encoded using motion compensation, whereby an

image region (block) is encoded as the sum of a previously

encoded block and a residual. However, due to the stochastic

nature of texture, this approach has not worked well for

textured regions because, first, it is difficult to find good
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matches with traditional similarity metrics, and second, even

if a good match is found with a texture similarity metric

(see Section III), the residual would either cost more bits to

encode than starting from scratch or would result in significant

distortion. Accordingly, the key to efficient compression of

textured regions is to find previously encoded texture patches

that can be reused with little modification and, consequently,

very few bits. This requires a texture similarity metric that

agrees well with perception. It also requires the use of texture

blending techniques [65] to ensure that transitions between

similar texture patches are not noticeable. The most obvious

approach is to reuse texture as is, but simple transformations

(scaling, perspective) can also be used.

As mentioned in the introduction, this requires a reconsid-

eration of the goals of image compression. One commonly

considered goal has been perceptually lossless compression in

which, as we saw, the original and compressed image are visu-

ally indistinguishable in a side-by-side comparison. The devel-

opment of perceptual similarity metrics to accomplish this goal

[66], [67] was a significant advance over previous techniques

that made only implicit use of HVS characteristics. However,

in many applications severe bandwidth limitations dictate the

need for further compression. With present methods, this can

be done at the expense of significant compression artifacts or

a significant reduction in image resolution [68]. Hemami et al.

conducted systematic studies to quantify perceptual distortion

in suprathreshold (visible artifacts) applications [69], [70].

In contrast, structurally lossless compression aims to exploit

the perceptual redundancy of texture for substantial bitrate

reductions that do not affect the visual quality and overall

perception of the image. Exploiting the stochastic nature of

texture and the human eye’s insensitivity to its point-by-point

variations, may result in substantial point-by-point changes

that may be perceptible when the original and compressed

images are viewed side-by-side, but are not noticeable when

the reproduction is viewed by itself. In fact, the quality of the

two images should be comparable, so that it is not obvious

which is the original. Similar ideas have been explored in

graphics; for example, Ferwerda et al. [71] introduced the

notion of visual equivalence, whereby two “images convey

the same impressions of scene appearance, even if they are

visibly different”.

A. Matched-Texture Coding

In this subsection, we review a new compression method,

called matched-texture coding (MTC) [72], whose goal is to

obtain structurally lossless compression using the idea sug-

gested above of encoding textured image patches by pointing

to previously encoded perceptually similar patches. The rest

of the image, i.e., the non-textured regions, is encoded with a

baseline method, such as JPEG.

Accordingly, the key to this method is a texture similarity

metric that enables good judgments to be made as to what

constitutes good matches for textured patches. In addition to

the metric and baseline coding method, key components of

MTC are a procedure for identifying which candidates are to

be tested, a similarity threshold, a mechanism for signifying

Fig. 4. Context for candidate (C) and target (T) blocks in side matching

the chosen candidate to the decoder, and a method for blending

[65] the chosen candidate with the reproductions that surround

it, so as to avoid blocking artifacts.

There are two basic versions of MTC – Direct Matching

and Side Matching – as well as combinations. In both, for

a chosen N the method successively encodes nonoverlapping

N×N blocks. Given such a target block to be encoded, MTC

first seeks a candidate in the already coded region of the image

that sufficiently matches the target. If it does not find one, it

divides the target into four square subblocks and recursively

repeats the process on the subblocks. The smallest size for the

target block is 16× 16; if no suitable candidate can be found,

then it is encoded with the baseline coder, e.g., JPEG applied

to each 8× 8 subblock.

1) Direct Matching (DM): DM-MTC operates like motion

compensation in video coding. For each target block, it seeks

the best candidate, as assessed by the STSIM metric, among

all possible candidates in the previously encoded region of the

image, and if a quality threshold is met, it encodes the location

of this candidate.

2) Side Matching (SM): The key idea of SM-MTC is that

if the pixels in the left and upper border (called the context)

of a candidate in the already encoded region closely match the

corresponding context of the target block, then there is a good

chance that the candidate itself matches the target. To find a

suitable target match, SM-MTC searches for the K closest

side matches, and selects the one that results in the best target

match, according to STSIM. If that meets a quality threshold, it

encodes its index; this typically requires much fewer bits than

the DM-MTC approach. As illustrated in Fig. 4, the context

is typically taken to be an L-shaped region. To enable good

blending, mean-squared error is used as the SM metric [65],

in contrast to the STSIM used for target matching. Thus, SM

serves a dual role, to identify candidates for target encoding

and to facilitate smooth blending. Moreover, SM enables better

target matching because textures tend to be locally uniform,

and thus among candidates with roughly equal STSIM quality,

the ones with good point-by-point context matches tend to be

more similar to the target. Of course, SM can also work for

smooth and transition blocks.

Finally, we should also mention that blending of JPEG-

coded blocks with previously MTC-coded blocks requires

special care, and that context matching and blending are also

needed in the DM version. More details can be found in [72].

Taking into account compression, reproduced image quality,

and computational complexity, the best results so far have

been attained with a combination of DM and SM [72]. A

representative result is shown in Fig. 5 which compares MTC

with JPEG at 0.34 b/pixel. For 44% of the image, JPEG, is
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Fig. 5. Coding of “woman” at 0.34 bpp: (a) MTC, (b) JPEG

replaced by Block Matching. This allows the allocation of

more bits to the JPEG-encoded blocks, which in turn provide

better candidates for encoding the MTC blocks.

It is interesting to note that MTC fixes the most serious

shortcoming of conventional compression techniques, namely,

their inability to exploit the complementarity of smooth and

textured regions. In smooth regions, the signal is simple but

a strict fidelity metric must be met. In textured regions, the

signal is complex but a lot more forgiving due to strong

masking effects. Conventional techniques (e.g., JPEG) can

handle the first case very efficiently, but signal complexity

causes them to be inefficient in the latter. However, it is the

complexity of the texture, which allows substantial point-by-

point changes without affecting visual quality, that enables

the efficient encoding of texture patches by MTC, provided of

course that a suitable texture similarity metric is available.

A conceptual precursor to the SM approach is side-matched

vector quantization [73]. There are also close links to non-

local restoration techniques [11]–[13] and fractal image coding

[74], both of which exploit image self-similarity. However, in

fractal coding, all that needs to be encoded is the specification

of the similarity transformations. All of these precursors rely

on pointwise similarity (local shape) and could greatly benefit

from the incorporation of STSIMs.

B. Other Texture-Based Approaches

There have been a variety of other approaches for exploiting

texture in image compression. The most common approach

is to identify textured segments of the image that can be

replaced by synthesized texture. The segmentation info and

the parametric description of the texture is what needs to

be encoded for these segments. A similarity metric is, of

course, also needed, but sometimes is implicit in the texture

reconstruction method. One of the earliest attempts for such

compression-by-synthesis was presented by Popat and Picard

[75], for both lossy and lossless compression.

Ballé et al. [9] have used a statistical texture model to

encode blocks of homogeneous texture. The image is divided

into nonoverlapping blocks, and each block that is classified

as texture is decomposed into a lowpass component, which is

encoded with standard compression techniques, and a highpass

component, which is encoded by texture synthesis; the texture

model parameters are sent as side information. All other blocks

are encoded with standard techniques. Note that this texture

coding approach can only handle homogeneous stochastic tex-

tures; it cannot be used to encode periodic textures or blocks

(a) (b) (c) (d) (e)

Fig. 6. Examples of texture pairs: (a) dissimilar textures, (b) similar color,
different structure, (c) similar structure, different color, (d) similar in all
perceptual dimensions, (e) “identical”

patially covered with texture. Similar approaches relying on

segmentation and texture synthesis have been proposed by

Bosch et al. [8], Zhang and Bull [10], as well as other

“compression-by-synthesis” papers [5], [6].

V. CONTENT-BASED RETRIEVAL

As discussed in the introduction, a texture similarity metric

is critical for CBR problems. We have identified two problems

of interest.

The first is the retrieval of identical textures [2], whereby

one is interested only in exact matches, that is, samples of the

same texture. An example of identical textures is shown in

Fig. 6(e). This problem is important when searching for images

that contain a particular texture (concrete wall, gray-shingle

roof) or images that correspond to the same scene. However, it

is also of interest in its own right, e.g., for retrieving textures

from a database (of carpets, fabrics, marble tiles, etc.). To

construct a database that contains groups of identical textures,

all one has to do is cut patches from larger perceptually

uniform textures, as explained in [2]. The advantage of such

a database is that the ground truth is known, and therefore,

metric testing does not require any subjective tests. Of course,

this is true to the extent that the textures from which the

identical pieces are sampled are perceptually uniform.

The second problem is the retrieval of similar textures

[54]. This is considerably more difficult, because texture is a

multidimensional attribute and similarity can be defined along

one or more perceptual dimensions (color, scale, orientation,

regularity, shape of texture elements, etc.). When textures are

similar along one perceptual dimension and dissimilar along

other perceptual dimensions, it is difficult to quantify their

overall similarity. For example, the textures in Fig. 6(b) have

similar colors, while the textures in Fig. 6(c) have similar

structure (orientation, scale, periodicity). Whether the textures

in each pair are similar, or which of the pairs is more

similar than the other can be quite subjective. It is only when

textures are similar along all perceptual dimensions, as in the

textures in Fig. 6(d), that subjects consistently classify them

as similar. Thus, an important problem for texture retrieval is

distinguishing between similar and dissimilar pairs.

VI. TESTING TEXTURE SIMILARITY METRICS

In Sections I, IV, and V, we discussed applications that

make use of STSIMs. Each application imposes its own
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requirements on metric performance. In image compression

it is important to ensure a monotonic relationship between

measured and perceived similarity. However, this monotonicity

is needed only when the images we compare are fairly similar;

when the images are dissimilar, it is sufficient that the metric

simply gives a low value. For compression, it is also important

that the similarity metric give consistent values across different

types of images, so that we can establish a uniform quality

criterion. In CBR, as discussed above, it is important to

distinguish between similar and dissimilar pairs. The ordering

of the retrieved images may also be desired, but only at

the high end of the scale, i.e., identifying the most similar

images. At the bottom of the scale, it is sufficient to simply

declare that a texture pair is dissimilar, and there is no need

to compare it to other dissimilar pairs. Finally, at the high end

of the scale, there may be a need for thresholds, to establish

if two textures are sufficiently similar or identical. In both

applications, similarity can be quantified only over a small

range at the top of the scale, while below a certain threshold,

it suffices to simply declare texture pairs as dissimilar.

From a perceptual perspective, Zujovic et al. [26], [54]

found that, when judging texture similarity, subjects are con-

sistent at the high end of the similarity scale, where images

exhibit similarity in every texture attribute (scale, direction-

ality, color, regularity, etc.). When two textures are similar

in some respect (e.g., color composition, directionality) but

different in another (e.g., scale, regularity), the subject-to-

subject agreement is poor because each subject puts different

weights on different texture attributes in determining overall

texture similarity. It thus makes no sense to require monotonic

metric behavior in this range. Overall, human subjects are not

able to make consistent judgments when asked to order pairs

of dissimilar textures. On the other hand, Zujovic et al. [26],

[54] found that human subjects give consistently low scores

for dissimilar textures.

Thus, both human perception and application requirements

agree that a monotonic relationship is desired in the region

of very similar textures, and that in the rest of the similarity

range, the metric should be able to distinguish between similar

and dissimilar textures. Fig. 7 is a schematic illustration of

good metric behavior according to these requirements [26],

[54]. It plots subjective rankings versus objective metric val-

ues. The subjective similarity scores on the x-axis are for all

possible pairs of texture patches in some hypothetical database.

For the sake of argument, we assume here that it is possible

to derive consistent subjective similarity scores for all image

pairs. In reality, this would be difficult, if not impossible.

Observe that a monotonic relationship is desired only in the

region of very similar textures (to the right of T1; this also

includes identical textures). The similar range (to the right of

T2) is where subjects agree that textures are similar but do

not assign consistent similarity scores; in this range we do

not expect a monotonic relationship, but expect high metric

scores. In the region of dissimilar textures (to the left of T3),

the subjects agree that textures are dissimilar but, again, do not

assign consistent similarity scores; the only constraint here is

that the metric yields low values.

Zujovic et al. [26], [54] have identified three distinct do-

Fig. 7. Desired metric behavior (metric values vs. subjective similarity scores)

Known-item-search Similar texture retrieval

Metric P@1 MRR MAP P@1 MRR MAP

PSNR 0.04 0.07 0.06 0.14 0.23 0.17

S-SSIM 0.09 0.11 0.06 0.41 0.49 0.24

CW-SSIM 0.39 0.46 0.40 0.84 0.90 0.64

CW-SSIM global 0.27 0.36 0.28 0.72 0.82 0.54

STSIM-2 0.74 0.80 0.74 0.86 0.90 0.69

STSIM-2 global 0.93 0.95 0.89 0.84 0.89 0.62

STSIM-M 0.96 0.97 0.92 0.84 0.89 0.62

Do and Vetterli 0.84 0.89 0.80 0.79 0.85 0.56

Ojala et al. 0.90 0.92 0.86 0.57 0.68 0.39

TABLE I
INFORMATION RETRIEVAL STATISTICS

mains for metric testing:

• identifying identical textures

• distinguishing similar and dissimilar textures

• metric monotonicity at the high end of the scale

Each domain requires a different database (and associated

ground truth) and different testing procedures.

For the retrieval of identical textures, as discussed in the

Section V, the database can be constructed by cutting patches

from larger perceptually uniform textures. Then the metric is

tested on its ability to distinguish identical from nonidentical

textures. For retrieval of similar textures, the database needs

to have clusters of similar textures, and the metric should be

able to separate similar (within cluster) and dissimilar (across

clusters) textures. To form such similarity clusters, Zujovic et

al. have devised an efficient procedure called Visual Similarity

by Progressive Grouping (ViSiProG) [26], [54]. In ViSiProG,

each subject is asked to form small groups of similar textures

one at a time, in a step-by-step fashion, picking similar images

(typically a set of nine) out of a small set of images, and

repeating the process with a new set that contains the group

and a new set of images, progressively refining the similarity

group. The results of several groups from several subjects are

combined to form a similarity matrix for the entire database,

which can be analyzed by spectral clustering [76] to form the

final similarity clusters.

For the CBR problems, a number of statistical evaluation

measures have been developed to test system performance.

These include precision at one (measures in how many cases

the first retrieved document is relevant), mean reciprocal rank

(measures how far away from the first retrieved document

is the first relevant one [77]), and mean average precision

[78]. Table I shows representative results. For the known-item-

search case, the database included 1180 texture patches taken
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Fig. 8. Examples of texture distortions: Original, rotation, translation,
warping

from 425 perceptually distinct images, each considered to be a

homogeneous texture [2]. For the retrieval of similar textures,

the tests were performed on 11 clusters with a total of 120

texture patches, which the subjects selected from a total of

505 patches. Texture pairs that belong to the same cluster were

considered similar and those that belong to different clusters

were considered dissimilar. All texture patches were of size

128×128. Note that in the known-item-search, global methods

have significantly better performance than the local ones,

while the opposite is true in the similar texture retrieval case.

This can be explained by the fact that global metrics provide

more robust estimates, which are important in differentiating

identical from different textures, while local metrics provide

better accuracy when comparing different degrees of similarity.

Note also that the best metric performance in the known-item-

search case is better than the performance in the similar texture

retrieval case. This should be expected because the former is

not as well defined as the latter.

Another measure of performance that evaluates a metric’s

ability to establish an absolute threshold, based on which

identical and nonidentical or similar and dissimilar textures

can be distinguished, is through the use of the receiver

operating characteristic (ROC). This type of performance is

quite distinct from the retrieval statistics we discussed above,

and is important for both retrieval and compression applica-

tions. Overall, the STSIM-2 and STSIM-M metrics outperform

existing metrics according to the different criteria. More details

can be found in [2], [26].

For testing metric monotonicity, it is important to collect

a set of images that covers fine differences in distortion

level at the high end of the similarity scale, which can

then be ranked by human subjects, thus providing ground

truth for metric testing. Obtaining such a set would be a

difficult in the context of real applications like structurally

lossless compression discussed in Section IV. Thus, Zujovic

et al. [79] chose to generate synthetic textures that model

distortions that occur in such applications. Due to the nature of

structurally lossless compression, the synthesized distortions

take the form of variations in natural textures, that is, variations

in position, orientation, and color [23]. Thus, Zujovic et al.

implemented the following distortions: random rotation of

small local patches, random shifts of small local patches, and

image warping, whereby the images are distorted according to

the random deviations of the control points of the underlying

mesh. Examples are shown in Figure 8. The idea is that the

severity of each type of distortion can be easily controlled by

varying the distortion parameters (probabilistic distribution of

rotations, shifts, and mesh points), so that the monotonicity of

a metric can be assessed.

PSNR SSIM CWSSIM STSIM2

Borda’s rule 0.72 0.74 0.84 0.88

TABLE II
PEARSON’S r FOR DIFFERENT ANALYSIS METHODS

For the subjective experiments conducted in [79], three

levels were selected for each of the three types of distortions,

and subjects were asked to rank the distorted images from

best to worst, compared to the original image. In more recent

experiments, we found it beneficial to also include the original

texture in the set of distorted textures, so the subjective

similarity values can be anchored. In order to determine metric

performance across content, the subjects were also asked to

rank the worst distortions for each of the original textures.

The ranking data can then be analyzed in a number of

ways to obtain a subjective similarity score for each (distorted)

image. The simplest is Borda’s rule, which bases the similarity

score on the mean rank of each image. A second approach is

to use Thurstonian scaling [80]. A third alternative is to treat

the ranks as distances between images and to use multidimen-

sional scaling (MDS) [81], [82] to obtain the similarity scores.

Once the subjective similarity scores are obtained, the

metric performance can be evaluated using Pearson’s correla-

tion coefficient, which evaluates absolute metric performance

(correlation between metric and subjective scores), and Spear-

man rank correlation coefficient, which describes how well a

metric ranks the distorted images compared to the subjective

rankings. Table II shows Pearson’s r, averaged over 10 textures

for Borda’s rule [26], [79]. The Spearman results and other

approaches are comparable.

VII. CONCLUSIONS

We have reviewed algorithms for measuring texture similar-

ity that incorporate knowledge of human perception, and their

importance for further advances in image analysis applications.

We examined image compression and content-based retrieval

in considerable detail; however, texture similarity metrics, and

a better understanding of texture in general, are critical for

a variety of other applications, including image restoration,

computer vision, graphics, sense substitution, and multimodal

interfaces.

Our main focus was on structural texture similarity metrics

(STSIMs). We argued that they follow naturally from work

on texture analysis/synthesis [23], which relies on a multiple

frequency and orientation subband decomposition and statis-

tical analysis of the subband coefficients. The selection of

such models is based on both perceptual principles and signal

characteristics, and is motivated by and supports an ecological

approach to visual perception, whereby the visual system

relies on informative statistical cues [83], rather than solving

a complicated (and compute intensive) “inverse” problem to

figure out the properties of the surfaces it is looking at.

The development of texture similarity metrics is closely

linked to the methods for their testing and validation. Based

on both human perception and application requirements, we

argued that texture similarity can be consistently quantified

only over a small range at the top of the similarity scale, where

textures are similar in every respect (scale, directionality,
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color, regularity, etc.), while in the rest of the similarity

range, it suffices to simply declare texture pairs as similar or

dissimilar. Quantifying texture perception beyond this narrow

range requires a better understanding of the importance of

the different texture attributes. Thus, a promising direction for

current research is quantifying texture similarity along specific

texture attributes, such as surface reflectance (gloss) [83], [84]

and roughness [85]. Other attributes, such as directionality,

regularity/periodicity, and scale are also under consideration.

Other directions for future research include the development

of similarity metrics that can provide consistent measurements

between smooth, textured, and transition regions, and explor-

ing the relationship – and integration with – of visual texture

to other modalities (tactile and acoustic).
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