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ABSTRACT and relies on the decoder to reconstruct the grid interiors,

We propose a hierarchical lossy bilevel image compresbased on an MRF model. In the proposed approach we hi-
sion method that relies on adaptive cutset sampling (alongrarchically adapt the grid size to local image detail. While
lines of a rectangular grid with variable block size) andthis requires additional information for encoding the queel
Markov Random Field based reconstruction. It is an efficienfdecision bits for subdividing the grid and additional grizh-
encoding scheme that preserves image structure by usingt@urs), we show that it provides a better overall rate-digto
coarser grid in smooth areas of the image and a finer grigérformance by utilizing a coarser grid in smooth areas of
in areas with more detail. Experimental results demorestratthe image and a finer grid in areas with more detail. The
that the proposed method performs as well as or better thagiid pixels and the side information are losslessly encared
the fixed-grid approach, and outperforms other lossy hileveing arithmetic coding with each pixel conditionally encdde
compression methods in its rate-distortion performance.  given one previously encoded bit. We obtain accurate esti-

Index Terms— structurally lossless compression, rate-mates of the encoding bitrate via the empirical first-oraer-c
distortion, arithmetic coding, MRF ditional entropy of the bits to be encoded.

Experimental results with a variety of bilevel images
1. INTRODUCTION demonstrate that the proposed method offers an advantage

Compression of bilevel images is important for a varietyover the fixed-grid approach. While the performance gains

of applications involving text, graphics, halftones, pera on mostimages are modest, our results contribute to a better

ink sketches, as well as for encoding segmentation informaunderstanding of the capabilities and limitations of cutse

tion for image analysis and object-based compression, (e.gsoding. Moreover, the method can be easily modified to ob-

MPEG-4). The techniques we are concerned with in this patain a progressive scheme, which starts with relativelyctino

per apply to almost all bilevel images except halftonest(thaimages and adds details as more bits are received.

is, except images in which the black and white pixels are |n Section 2, we review the fixed-grid cutset-MRF ap-

not organized in clusters). The JBIG standard (c.f. [1]}-pro proach. Section 3 describes the proposed adaptive te@niqu

vides an efficient solution for the lossless bilevel comgi®@s  and Section 4 presents our experimental results.

case for all types of content, except for stochastic hadfson

However, higher compression can be achieved by lossy tech- 2. REVIEW OF FIXED-GRID APPROACH

niques that can approximate the bilevel images With_reﬁmiv The encoder of the cutset-MRF technique of [3] uses a rect-
small perceptual losses. The JBIG2 standard [2] aims t0 aG,q,jar grid to subdivide the image into blocks (typically
.ComP"Sh this W',th a!most no QegraQatlon In Image quallty'square), and then encodes the pixels on the block boundaries
it relies on partitioning the bilevel image into regions (0f \5inq 4 jossless compression technique, e.g., arithmetic o
text',ﬁgraphs, r?nd halftones) and fenchmg eafhhregu?n Wit} ffman coding. The decoder losslessly reconstructs the
a different scheme. However, so far, it can only handle texty,o|s on the grid, and uses an MRF model to reconstruct the
and halftones. For more general bilevel images in whicly o\ interiors in a manner that obtains the smoothest &llev

the black and white pixels are more or less organized.int@mage that is consistent with these grid pixels. Thus, i gr
clusters, Reyest al. [3] proposed a new method that relies 5s"a¢ 5 specification for the reconstruction by the decoder

on cutset sampling (along the lines of a rectangular grid) and Ay example is shown in Fig. 1. The role of the points on
Markov random field (MRF) constraints to reconstruct they,o orid s to preserve key structural information, on which
smoothest image that is consistent with the cutset samplegye gecoder bases the reconstruction. In this sense, itean b
which can be e_ncoded in an efficient manner. Th_ey ShoweQrgued that, when the grid lines are not too far apart, thds is
that thellr technique outperforms other lossy techn_lqu]es [4 example ofstructurally lossiess compression [5] for bilevel

.In this paper we extend th? cutset—MRF technique of [3]1'mages, whereby the original and reconstructed images are
which losslessly encodes all pixels on a fixed rectanguldr gr gimiiar and both of high quality, even though in a side-hyesi
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EmEE 2= . . :
Fig. 1. Left to right: Original, specification, reconstruction the middle and right. Note also the dotted lines that connect

the endpoint of the boundary runs separating the black and
white reconstructed pixels.

Fig. 3. Block Splitting

3. HIERARCHICAL APPROACH

: We now consider the cutset-MRF encoding technique of the
% | - AR previous section with an adaptive grid. As in [3], the iditia
grid consists of everyth row and column, indexed +&N).
This forms blocks of sizéN +1) x (N +1) when the borders
The reconstruction in [3] is based on a MAP estimate ofare included andN —1) x (N — 1) when they consist only of
the interior pixels of a rectangular block, given the valueghe interior pixels; adjacent blocks share a common botder.
of the boundary pixels, which reduces to finding the bilevelthe following, for simplicity, we will refer taV x N blocks.
block interior that in combination with the boundary has theThe blocks are processed in raster order. Each block is re-
fewest black-white transitions between pixels. Thus, mive constructed (at the encoder) from its border specificatisn,
the pixels on the boundary, each block is reconstructed indglescribed in Section 2. The reconstruction is then compared
pendently of its neighbors. The authors found explicit sule With the original block using a similarity metric, and if the
for optimal reconstructions for several boundary Spec_ificasim”al’ity is above a threshold, the block is subdivideaint
tions, that is, the boundary contains: (a) all black (or eaui four subblocks, and the process is repeated until the tbiegsh
lently white) pixels; (b) one run of black (white) pixels;dn is met. For each block the encoder usesplé bit to indicate
(c) two runs of black (white) pixels. Since boundaries ofwhether it was subdivided or not.
three or more runs of black (white) pixels are not very com-  For eachV x N block and subblock, the information to be
mon, they based the reconstruction in such cases on the tvemcoded includes: (a) the top and left border of the block, (b
longest runs of one color, assuming all the other boundarthe internal grid pixels each time a block is subdivided, and
pixels have the other color. In all of these cases, they fount) side information consisting of the split bit for each dio
that the optimal reconstruction consists of monochrome reand subblock, and the connection bit for blocks and sublslock
gions bounded by (smooth, minimally varying) nonintersect with two or more runs on the boundary. As in [3], we consid-
ing lines connecting the endpoints of the boundary runsy Theered the new approach with and without the connection bit,
also showed that, depending on the location of the endpointand found that the former result in considerably superior pe
there may be a number of optimal reconstructions. In sucformance. The encoding of the grid pixels and side informa-
cases, their decoder picks one at random. In this paper, féion can be done using a lossless arithmetic coding scheme,
simplicity, we assume that the lines are straight; sincé sucas discussed below.
lines are included in the optimal set, there is no loss of op- The shape and size of black and white regions in a bilevel
timality; moreover, this solves the ambiguity of multiplp-o  image is not necessarily homogeneous. The block splitting
timal solutions, and eliminates any biases towards black aallows the technique to adapt the block size to local image de
white reconstructions. In the case of two black runs, theréail. When the regions are large, a large block size is most effi
are four endpoints, and thus two possibilities: to conrleet t cient; when the regions are small, a small block size is tede
endpoints of each black run or to connect the endpoints ab preserve image structure/detail. Fig. 3 shows examples
each white run. An optimal reconstruction can be found undeof blocks whose interior cannot be adequately reconstiucte
each constraint. While only one of these reconstructions prdoased on the boundary pixels. Thus, splitting is necessary.
vides the overall optimum in the MAP sense, Regeal. [3]  Reyeset al. [6] investigated different metrics and criteria for
found it beneficial for the encoder to signify the one that besconnection decisions, and found that the fraction of pixels
represents the original image viacannection bit, which is  changed by the encoding/decoding process, which we call the
decided by comparing the two reconstructions to the actuadror rate, works best. They also found that, while the error
block interior. Indeed, they showed that the connection bitate does not correlate well with image quality when com-
contributes significantly to preserving structural infation  paring different compression approaches (e.g., [3] will, [4
in the interior of the blocks. Examples of reconstructiores a when used within the MRF-based compression framework, it
shown in Fig. 2. The gray pixels indicate pixel reconstruc-provides the most robust and perceptually meaningful tesul
tions, light gray as white and dark gray as black. Note that th Their conclusions are also relevant to the splitting deoisi
two possible reconstructions for the boundary specificdtio  to be made in the proposed approach.

Fig. 2. Block Specifications and Reconstructions



We considered adapting the splitting threshold to blockpass yield essentially the same coding rate. Finally, A® wit
size, but found that a fixed threshold works best. We alsdirst-order conditional probability estimates was alsoduse
considered a metric that is equal to the maximum error ratencode the split and connection bits. However, for theratte
over four or nine subblocks, rather than their average. @uchthe gain over not encoding the bits was negligible.
metric is intended to ensure a more even distribution ofrerro
around the block, especially when the block is large. Our 4. EXPERIMENTAL RESULTS
results indicate that the particular choice does not makehmu 1pe proposed method was tested on a variety of bilevel im-
difference in overall perceptual distortion (at a givenading ages and its performance was compared to the fixed-grid ap-
rate), even though it does have an effect on the distribuifon proach of [3]. Four of those images are shown in Figs. 4—
errors around the image. Since there is no clearly winning  The rate-distortion curves for the two techniques are als
strategy, we think that the choice should be left to the user. spown in the figures. The estimated rate of the one-pass first-

As alast stage of the encoding process, one can eliminaiider AC was used for these plots. The plots also show the
border runs that are not connected to any interior pixelshSu performance of the method in [4] and JBIG, which is loss-
runs can be due to rare blocks with more than two bordefass. The points for the fixed-grid (no split) technique [3]
runs, or isolated runs that are not connected to anything, gSere obtained by varying the grid size (1-16). The points
for example the one at the right side of the left block in Fig. 3 tor the hierarchical adaptive-grid technique were obiog
Even though the removal such runs increases the errorrate gkarting with block size 16, and varying the threshold fa th
improves perceptual quality (smoother image), and saves bi pjock error rate. Starting with block size 16 yields beter r
3.1. Lossless Coding sults than other starting sizes (32 or 8). The results in few

As described previously, encoding of an image is accomobtained by varying therror rate factor.
plished by losslessly encoding grid pixels, as well as conne  Fig. 4 shows an original12 x 480 image and three recon-
tion and split bits. There are, of course, many potentialsvaystructions, corresponding to the points labeled in the eurv
to do this. Here, as in [3], we focus on arithmetic codingthe associated encoding statistics are shown in Fig. 5: for
(AC) based on first-order conditional probabilities. Sfieci each block size, fraction of image encoded with such, con-
cally, each of the three types of bits is arranged, i.e.,redie tribution to total bitrate, and fraction with connectiort, s
into a separate stream to which AC is applied. AC requiresvell as, bitrate allocated to split bits. Note that the fityetie-
that as each bit is fed to the encoder, it is accompanied bgrades gracefully with decreasing bitrate; one can argae th
a probability distribution{p(0), p(1)} that is relevant to this the image structure is preserved. At high quality levels the
bit. (Actually, only p(0) is needed.) In our tests of the new adaptive method offers a modest advantage over the fixed-
method, as in [3]p(0) is an estimate of the conditional proba- grid approach, while as the rate (and quality) decreases, th
bility that the current bit i) given the value of a prespecified performance in the rate-distortion sense is virtually tobeh.
prior member of the stream, called dsntext. More importantly, the perceptual quality of decoded images
For coding the grid pixels, the context of the current pixelwith approximately the same error rate is similar. Actuadly
is chosen to be another grid pixel, either the one just to itghe two highest rates the gain over the fixed-grid approach is
left or the one just above it. Thus, the grid pixel stream mussubstantial (25%), but we only claim a modest advantage be-
be ordered so that every pixel in the stream is preceded bsause at these rates JBIG outperforms both techniques.-As ex
a left or upper neighbor. For example, one can scan the leftected, the fraction of the image encoded with smaller Idock
and upper borders of ead% x N block, taken in raster or- decreases with decreasing bitrate and so does the bitrate fo
der, followed by the right and bottom borders of the entirethe split bits, while the added bigger blocks use more connec
image, and then the internal grid pixels. As the encoding protion bits. However, the contribution to total bitrate frohet
ceeds, conditional probability estimatg(0|0) andp™(0]1)  connection bits remains very small (.001 bpp).
are developed such thgit (0]7) is the probability input to the The results for the images in Fig. 6 are comparable to
AC encoder when encoding thh pixel in the stream and its those for the first image. On the other hand, Figs. 7 and
context has valué. The estimate™(0]:) is computed sim- 8 demonstrate a significant advantage of the proposed tech-
ply as the fraction of previous pixels that weravhen their  nique, both in terms of the rate-distortion curve, and imter
context was. The resulting number of bits produced by AC of the perceptual quality of images at approximately eqisal b
is, with great accuracy, Ef‘f: 1 logy p™ (2|2, ), WhereM  trates. Overall, we found that the performance advantage of
is the total number of grid pixels;, is thenth grid pixel and  the proposed technique varies from modest to substangial, d
¢y, is the index of its context. When divided By this can be  pending onimage content. We believe that the performance of
viewed as an estimate of the first-order conditional entadfpy the proposed approach will increase by a carefully designed
the grid pixels. Since this formula is so accurate, we used gecond-order AC. More importantly, as we mentioned in the
to determine coding rate, instead of explicitly applying.AC introduction, the proposed technique can easily be modified
We have also tried &wo-pass AC and found, as typi- to make itprogressive, by adding information at a finer grid
cally happens, thatne-pass, as described above, and two- size as additional bits are received.



—e—no split
—e— with split|
0.06 . * JBIG
Culik

o]
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
e bit rate

Fig. 4. Hierarchical coding examples: Original, .09 bpp (A), .@pKB), .04 bpp (C) (left to right), rate-distortion curves
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Fig. 5. Statistics for hierarchical coding examples A, B, and Cim B.
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Fig. 8. Rate-Distortion Curves; Hierarchical Coding: 0.052 bpp39 bpp, 0.03 bpp (left to right)
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