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ABSTRACT
We propose a hierarchical lossy bilevel image compres-

sion method that relies on adaptive cutset sampling (along
lines of a rectangular grid with variable block size) and
Markov Random Field based reconstruction. It is an efficient
encoding scheme that preserves image structure by using a
coarser grid in smooth areas of the image and a finer grid
in areas with more detail. Experimental results demonstrate
that the proposed method performs as well as or better than
the fixed-grid approach, and outperforms other lossy bilevel
compression methods in its rate-distortion performance.

Index Terms— structurally lossless compression, rate-
distortion, arithmetic coding, MRF

1. INTRODUCTION

Compression of bilevel images is important for a variety
of applications involving text, graphics, halftones, pen and
ink sketches, as well as for encoding segmentation informa-
tion for image analysis and object-based compression (e.g.,
MPEG-4). The techniques we are concerned with in this pa-
per apply to almost all bilevel images except halftones (that
is, except images in which the black and white pixels are
not organized in clusters). The JBIG standard (c.f. [1]) pro-
vides an efficient solution for the lossless bilevel compression
case for all types of content, except for stochastic halftones.
However, higher compression can be achieved by lossy tech-
niques that can approximate the bilevel images with relatively
small perceptual losses. The JBIG2 standard [2] aims to ac-
complish this with almost no degradation in image quality;
it relies on partitioning the bilevel image into regions (of
text, graphs, and halftones) and encoding each region with
a different scheme. However, so far, it can only handle text
and halftones. For more general bilevel images in which
the black and white pixels are more or less organized into
clusters, Reyeset al. [3] proposed a new method that relies
on cutset sampling (along the lines of a rectangular grid) and
Markov random field (MRF) constraints to reconstruct the
smoothest image that is consistent with the cutset samples,
which can be encoded in an efficient manner. They showed
that their technique outperforms other lossy techniques [4].

In this paper we extend the cutset-MRF technique of [3],
which losslessly encodes all pixels on a fixed rectangular grid
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and relies on the decoder to reconstruct the grid interiors,
based on an MRF model. In the proposed approach we hi-
erarchically adapt the grid size to local image detail. While
this requires additional information for encoding the quadtree
(decision bits for subdividing the grid and additional gridcon-
tours), we show that it provides a better overall rate-distortion
performance by utilizing a coarser grid in smooth areas of
the image and a finer grid in areas with more detail. The
grid pixels and the side information are losslessly encodedus-
ing arithmetic coding with each pixel conditionally encoded
given one previously encoded bit. We obtain accurate esti-
mates of the encoding bitrate via the empirical first-order con-
ditional entropy of the bits to be encoded.

Experimental results with a variety of bilevel images
demonstrate that the proposed method offers an advantage
over the fixed-grid approach. While the performance gains
on most images are modest, our results contribute to a better
understanding of the capabilities and limitations of cutset
coding. Moreover, the method can be easily modified to ob-
tain a progressive scheme, which starts with relatively smooth
images and adds details as more bits are received.

In Section 2, we review the fixed-grid cutset-MRF ap-
proach. Section 3 describes the proposed adaptive technique,
and Section 4 presents our experimental results.

2. REVIEW OF FIXED-GRID APPROACH

The encoder of the cutset-MRF technique of [3] uses a rect-
angular grid to subdivide the image into blocks (typically
square), and then encodes the pixels on the block boundaries
using a lossless compression technique, e.g., arithmetic or
Huffman coding. The decoder losslessly reconstructs the
pixels on the grid, and uses an MRF model to reconstruct the
block interiors in a manner that obtains the smoothest bilevel
image that is consistent with these grid pixels. Thus, the grid
acts as a specification for the reconstruction by the decoder.
An example is shown in Fig. 1. The role of the points on
the grid is to preserve key structural information, on which
the decoder bases the reconstruction. In this sense, it can be
argued that, when the grid lines are not too far apart, this isan
example ofstructurally lossless compression [5] for bilevel
images, whereby the original and reconstructed images are
similar and both of high quality, even though in a side-by-side
comparison there may be visible differences.



Fig. 1. Left to right: Original, specification, reconstruction

Fig. 2. Block Specifications and Reconstructions

The reconstruction in [3] is based on a MAP estimate of
the interior pixels of a rectangular block, given the values
of the boundary pixels, which reduces to finding the bilevel
block interior that in combination with the boundary has the
fewest black-white transitions between pixels. Thus, given
the pixels on the boundary, each block is reconstructed inde-
pendently of its neighbors. The authors found explicit rules
for optimal reconstructions for several boundary specifica-
tions, that is, the boundary contains: (a) all black (or equiva-
lently white) pixels; (b) one run of black (white) pixels; and
(c) two runs of black (white) pixels. Since boundaries of
three or more runs of black (white) pixels are not very com-
mon, they based the reconstruction in such cases on the two
longest runs of one color, assuming all the other boundary
pixels have the other color. In all of these cases, they found
that the optimal reconstruction consists of monochrome re-
gions bounded by (smooth, minimally varying) nonintersect-
ing lines connecting the endpoints of the boundary runs. They
also showed that, depending on the location of the endpoints,
there may be a number of optimal reconstructions. In such
cases, their decoder picks one at random. In this paper, for
simplicity, we assume that the lines are straight; since such
lines are included in the optimal set, there is no loss of op-
timality; moreover, this solves the ambiguity of multiple op-
timal solutions, and eliminates any biases towards black or
white reconstructions. In the case of two black runs, there
are four endpoints, and thus two possibilities: to connect the
endpoints of each black run or to connect the endpoints of
each white run. An optimal reconstruction can be found under
each constraint. While only one of these reconstructions pro-
vides the overall optimum in the MAP sense, Reyeset al. [3]
found it beneficial for the encoder to signify the one that best
represents the original image via aconnection bit, which is
decided by comparing the two reconstructions to the actual
block interior. Indeed, they showed that the connection bit
contributes significantly to preserving structural information
in the interior of the blocks. Examples of reconstructions are
shown in Fig. 2. The gray pixels indicate pixel reconstruc-
tions, light gray as white and dark gray as black. Note that the
two possible reconstructions for the boundary specification in

Fig. 3. Block Splitting

the middle and right. Note also the dotted lines that connect
the endpoint of the boundary runs separating the black and
white reconstructed pixels.

3. HIERARCHICAL APPROACH

We now consider the cutset-MRF encoding technique of the
previous section with an adaptive grid. As in [3], the initial
grid consists of everyN th row and column, indexed(1+kN).
This forms blocks of size(N +1)×(N +1) when the borders
are included and(N −1)×(N −1) when they consist only of
the interior pixels; adjacent blocks share a common border.In
the following, for simplicity, we will refer toN × N blocks.
The blocks are processed in raster order. Each block is re-
constructed (at the encoder) from its border specification,as
described in Section 2. The reconstruction is then compared
with the original block using a similarity metric, and if the
similarity is above a threshold, the block is subdivided into
four subblocks, and the process is repeated until the threshold
is met. For each block the encoder uses asplit bit to indicate
whether it was subdivided or not.

For eachN×N block and subblock, the information to be
encoded includes: (a) the top and left border of the block, (b)
the internal grid pixels each time a block is subdivided, and
(c) side information consisting of the split bit for each block
and subblock, and the connection bit for blocks and subblocks
with two or more runs on the boundary. As in [3], we consid-
ered the new approach with and without the connection bit,
and found that the former result in considerably superior per-
formance. The encoding of the grid pixels and side informa-
tion can be done using a lossless arithmetic coding scheme,
as discussed below.

The shape and size of black and white regions in a bilevel
image is not necessarily homogeneous. The block splitting
allows the technique to adapt the block size to local image de-
tail. When the regions are large, a large block size is most effi-
cient; when the regions are small, a small block size is needed
to preserve image structure/detail. Fig. 3 shows examples
of blocks whose interior cannot be adequately reconstructed
based on the boundary pixels. Thus, splitting is necessary.
Reyeset al. [6] investigated different metrics and criteria for
connection decisions, and found that the fraction of pixels
changed by the encoding/decoding process, which we call the
error rate, works best. They also found that, while the error
rate does not correlate well with image quality when com-
paring different compression approaches (e.g., [3] with [4]),
when used within the MRF-based compression framework, it
provides the most robust and perceptually meaningful results.
Their conclusions are also relevant to the splitting decisions
to be made in the proposed approach.



We considered adapting the splitting threshold to block
size, but found that a fixed threshold works best. We also
considered a metric that is equal to the maximum error rate
over four or nine subblocks, rather than their average. Sucha
metric is intended to ensure a more even distribution of error
around the block, especially when the block is large. Our
results indicate that the particular choice does not make much
difference in overall perceptual distortion (at a given encoding
rate), even though it does have an effect on the distributionof
errors around the image. Since there is no clearly winning
strategy, we think that the choice should be left to the user.

As a last stage of the encoding process, one can eliminate
border runs that are not connected to any interior pixels. Such
runs can be due to rare blocks with more than two border
runs, or isolated runs that are not connected to anything, as
for example the one at the right side of the left block in Fig. 3.
Even though the removal such runs increases the error rate, it
improves perceptual quality (smoother image), and saves bits.

3.1. Lossless Coding
As described previously, encoding of an image is accom-
plished by losslessly encoding grid pixels, as well as connec-
tion and split bits. There are, of course, many potential ways
to do this. Here, as in [3], we focus on arithmetic coding
(AC) based on first-order conditional probabilities. Specifi-
cally, each of the three types of bits is arranged, i.e., ordered,
into a separate stream to which AC is applied. AC requires
that as each bit is fed to the encoder, it is accompanied by
a probability distribution{p(0), p(1)} that is relevant to this
bit. (Actually, onlyp(0) is needed.) In our tests of the new
method, as in [3],p(0) is an estimate of the conditional proba-
bility that the current bit is0 given the value of a prespecified
prior member of the stream, called itscontext.

For coding the grid pixels, the context of the current pixel
is chosen to be another grid pixel, either the one just to its
left or the one just above it. Thus, the grid pixel stream must
be ordered so that every pixel in the stream is preceded by
a left or upper neighbor. For example, one can scan the left
and upper borders of eachN × N block, taken in raster or-
der, followed by the right and bottom borders of the entire
image, and then the internal grid pixels. As the encoding pro-
ceeds, conditional probability estimatespn(0|0) andpn(0|1)
are developed such thatpn(0|i) is the probability input to the
AC encoder when encoding thenth pixel in the stream and its
context has valuei. The estimatepn(0|i) is computed sim-
ply as the fraction of previous pixels that were0 when their
context wasi. The resulting number of bits produced by AC
is, with great accuracy,−

∑
M

n=1
log

2
pn(xn|xcn

), whereM

is the total number of grid pixels,xn is thenth grid pixel and
cn is the index of its context. When divided byM this can be
viewed as an estimate of the first-order conditional entropyof
the grid pixels. Since this formula is so accurate, we used it
to determine coding rate, instead of explicitly applying AC.

We have also tried atwo-pass AC and found, as typi-
cally happens, thatone-pass, as described above, and two-

pass yield essentially the same coding rate. Finally, AC with
first-order conditional probability estimates was also used to
encode the split and connection bits. However, for the latter,
the gain over not encoding the bits was negligible.

4. EXPERIMENTAL RESULTS

The proposed method was tested on a variety of bilevel im-
ages and its performance was compared to the fixed-grid ap-
proach of [3]. Four of those images are shown in Figs. 4–
8. The rate-distortion curves for the two techniques are also
shown in the figures. The estimated rate of the one-pass first-
order AC was used for these plots. The plots also show the
performance of the method in [4] and JBIG, which is loss-
less. The points for the fixed-grid (no split) technique [3]
were obtained by varying the grid size (1–16). The points
for the hierarchical adaptive-grid technique were obtained by
starting with block size 16, and varying the threshold for the
block error rate. Starting with block size 16 yields better re-
sults than other starting sizes (32 or 8). The results in [4] were
obtained by varying theerror rate factor.

Fig. 4 shows an original512×480 image and three recon-
structions, corresponding to the points labeled in the curve;
the associated encoding statistics are shown in Fig. 5: for
each block size, fraction of image encoded with such, con-
tribution to total bitrate, and fraction with connection bit, as
well as, bitrate allocated to split bits. Note that the fidelity de-
grades gracefully with decreasing bitrate; one can argue that
the image structure is preserved. At high quality levels the
adaptive method offers a modest advantage over the fixed-
grid approach, while as the rate (and quality) decreases, the
performance in the rate-distortion sense is virtually identical.
More importantly, the perceptual quality of decoded images
with approximately the same error rate is similar. Actually, at
the two highest rates the gain over the fixed-grid approach is
substantial (25%), but we only claim a modest advantage be-
cause at these rates JBIG outperforms both techniques. As ex-
pected, the fraction of the image encoded with smaller blocks
decreases with decreasing bitrate and so does the bitrate for
the split bits, while the added bigger blocks use more connec-
tion bits. However, the contribution to total bitrate from the
connection bits remains very small (.001 bpp).

The results for the images in Fig. 6 are comparable to
those for the first image. On the other hand, Figs. 7 and
8 demonstrate a significant advantage of the proposed tech-
nique, both in terms of the rate-distortion curve, and in terms
of the perceptual quality of images at approximately equal bi-
trates. Overall, we found that the performance advantage of
the proposed technique varies from modest to substantial, de-
pending on image content. We believe that the performance of
the proposed approach will increase by a carefully designed
second-order AC. More importantly, as we mentioned in the
introduction, the proposed technique can easily be modified
to make itprogressive, by adding information at a finer grid
size as additional bits are received.



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.015

0.03

0.045

0.06

0.075

bit rate

er
ro

r 
ra

te

 

 

no split
with split
JBIG
Culik

A

B

C

Fig. 4. Hierarchical coding examples: Original, .09 bpp (A), .05 bpp (B), .04 bpp (C) (left to right), rate-distortion curves

16 8 4 2 1 split tot.
% image 72.7 15.6 7.7 3.7 .41 100

bitr. contr. .048 .010 .005 .002 .0003 .021 .09
% con. bit 15.2 14.1 8.1 2.0 0

16 8 4 2 1 split tot.
% image 85.2 11.5 2.9 .38 .06 100
bitr. contr. .034 .005 .001 .0002 .00 .006 .05
% con. bit 20.6 23.8 16.8 3.25 0

16 8 4 2 1 split tot.
% image 90.8 8.13 .96 .07 .02 100

bitr. contr. .029 .003 .0003 .00 .00 .003 .04
% con. bit 23.7 26.7 25.3 0 0

Fig. 5. Statistics for hierarchical coding examples A, B, and C in Fig. 4.
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Fig. 6. Hierarchical Approach Examples: Original images and rate-distortion curves

Fig. 7. Fixed-Grid Coding: Original,6 × 6 grid (0.052 bpp),8 × 8 grid (0.04 bpp),12 × 12 grid (0.03 bpp), (left to right)
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Fig. 8. Rate-Distortion Curves; Hierarchical Coding: 0.052 bpp,0.039 bpp, 0.03 bpp (left to right)
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