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Abstract—We consider lossy compression of a broad class
of bilevel images that satisfy the smoothness criterion, namely,
images in which the black and white regions are separated
by smooth or piecewise smooth boundaries, and especially
lossy compression of complex bilevel images in this class. We
propose a new hierarchical compression approach that extends
the previously proposed fixed-grid lossy cutset coding (LCC)
technique by adapting the grid size to local image detail. LCC
was claimed to have the best rate-distortion performance of any
lossy compression technique in the given image class, but cannot
take advantage of detail variations across an image. The key
advantages of the hierarchical LCC (HLCC) is that, by adapting
to local detail, it provides constant quality controlled by a single
parameter (distortion threshold), independent of image content,
and better overall visual quality and rate-distortion performance,
over a wider range of bitrates. We also introduce several other
enhancements of LCC that improve reconstruction accuracy and
perceptual quality. These include the use of multiple connection
bits that provide structural information by specifying which black
(or white) runs on the boundary of a block must be connected,
a boundary presmoothing step, stricter connectivity constraints,
and more elaborate probability estimation for arithmetic coding.
We also propose a progressive variation that refines the image
reconstruction as more bits are transmitted, with very small
additional overhead. Experimental results with a wide variety
of, and especially complex, bilevel images in the given class
confirm that the proposed techniques provide substantially better
visual quality and rate-distortion performance than existing lossy
bilevel compression techniques, at bitrates lower than lossless
compression with the JBIG or JBIG2 standards.

Index Terms—Lossy bilevel image coding, cutset sam-
pling,constant quality, JBIG2, Markov random fields (MRFs).

I. INTRODUCTION

Compression of bilevel images, i.e., images whose pixels

are either black or white, is an important special case of

image compression, both because some images are bilevel

(text, halftones, graphics, line drawings, pen and ink sketches,
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logos, computer icons, silhouettes, etc.) and because bilevel

images can be used to describe segment boundaries (e.g.,

foreground/background) in a variety of applications, including

object-based compression (MPEG-4 [2] and second generation

image coding techniques [3]). This paper proposes lossy

compression techniques for a broad class of bilevel images, in

which the black and white regions are separated by smooth,

or piecewise smooth boundaries. Most bilevel images of the

types listed above fall in this category, especially when the

resolution is high, except halftones.

The JBIG standard [4], [5] provides an efficient method for

lossless compression of all types of bilevel images, including

some halftones generated with periodic screens (with small

period), but not stochastic halftones like error diffusion and

blue-noise screening (long period). However, the resulting

bit rates are still relatively high. Thus, there is a need for

lossy techniques to make substantial further reductions in

coding rate, provided satisfactory perceptual quality can be

maintained.

The JBIG2 standard [6], [7] is an evolution of JBIG that, in

addition to lossless bilevel compression, aims to accomplish

lossy bilevel compression at low bitrates with minimal degra-

dation in image quality. JBIG2 relies on partitioning the bilevel

image into regions (of text, graphs, and halftones) and encod-

ing each region with a different scheme. However, the current

stage of the standard can only handle lossy compression of

text and halftones. Thus, there is a need for lossy compression

of bilevel images that do not fall in these two categories.

There is also a substantial literature on lossy compression

techniques for coding object contours (e.g., for MPEG-4) and

line drawings [8]–[12]. However, the applicability of such

techniques is quite limited, because they assume not only

smooth but well-defined, isolated, binary objects.

As mentioned above, the techniques we consider here apply

to a broad class of images in which the black and white regions

are separated by smooth or piecewise smooth boundaries. We

will refer to this as the smoothness criterion. While, with

the exception of halftones, most bilevel images fall in this

category, most of the benefits apply to complex bilevel images

that satisfy the smoothness criterion. We are aware of only two

techniques that work reasonably well on the broader class of

bilevel images that satisfy the smoothness criterion, the lossy

cutset coding (LCC) approach by Reyes et al. [13], [14], the

extension of which is the objective of this paper, and a finite

automata approach by Culik and Valenta [15], [16].

The key idea of LCC [13], [14] is to losslessly encode all the

pixels on a fixed rectangular grid (which as we will see forms

a cutset), and to rely on the decoder to reconstruct the interiors

of blocks formed by the grid based on a Markov random
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field (MRF) model. The MRF model provides constraints for

reconstructing the smoothest image that is consistent with

the samples on the cutset. Reyes et al. [13], [14] showed

that LCC provides better visual quality and rate-distortion

performance than the Culik and Valenta techniques [15], [16],

at bitrates lower than lossless compression with the JBIG

standard. However, the problem with the fixed-grid approach

[13], [14] is that the amount of detail can vary within an

image and from image to image. In the first case, there is

no fixed grid size that works well over the entire image, and

in the latter, there is no grid size that works well for multiple

images, that is, the grid size would have to be hand-tuned for

each image. Thus, the fixed-grid approach is not a complete,

practical algorithm.

We propose a hierarchical LCC (HLCC) approach that

adapts the grid size to local image detail, thus forming a

quadtree (c.f. [17]). While this requires additional bits for

encoding the quadtree and the additional grid contours, we

show that it provides a better overall perceptual quality and

rate-distortion performance. The key idea is to use a coarser

grid in smooth areas of the image and a finer grid in areas

with more detail. Given a desired error rate and an initial

(typically large) grid size, the grid size is locally adjusted

by splitting to meet the target error rate. This results in a

fixed quality coder and better rate-distortion performance, the

two key advantages of HLCC. The bitrate depends on image

content. In contrast, in the fixed-grid approach, both the error

rate and the bitrate depend on the local image detail, and are

only indirectly controlled by the grid size. As we will see, the

hierarchical approach preserves key structures of the image

and adds details as the splitting threshold decreases.

We also introduce several extensions of LCC, which im-

prove reconstruction accuracy as well as perceptual quality,

especially for large grid sizes, thus extending the range of

bitrates that the technique can handle without breaking down.

The first is to add one or more connection bits, which provide

structural information by specifying which black or white runs

on the boundary of a block must be connected. A second

extension is a grid presmoothing step, which is intended to

align the smoothness of the block boundary with that of the

interior. The idea is to flip short runs of black or white pixels

on the cutset, if it does not increase the reconstruction error

in the block interior. While flipping such runs increases the

reconstruction error on the boundary, it improves perceptual

quality by eliminating artifacts caused by isolated runs on the

cutset. In fact, it may even decrease the reconstruction error

in the interior. In addition, it results in a slight decrease in the

bitrate. Thus, the rate-distortion performance improves both

perceptually and according to error rate.

In addition, we propose a progressive encoding scheme,

whereby we first encode the entire image using a coarse grid,

which results in a relatively smooth reconstruction, and then

progressively refine the grid to add details as more bits are

transmitted. That is, the encoding process can be terminated

at any block size at the cost of adding a very small amount

of bitrate overhead over the hierarchical approach.

Finally, for both the hierarchical and progressive schemes,

we use arithmetic coding to encode each pixel on the cutset

(conditioned on a previously encoded pixel) and the side infor-

mation (connection and quadtree splitting bits). The decoded

grid pixels and side information are then used to reconstruct

each block from its boundary based on the MRF model. We

obtain accurate estimates of the encoding rate via the empirical

first-order conditional entropy of the bits to be encoded.

Experimental results with simple and complex bilevel im-

ages that satisfy the smoothness criterion demonstrate that

the hierarchical approach with the proposed extensions yields

lower error rate and better perceptual quality than the fixed-

grid approach at comparable or even lower bitrates. This is

because it adapts to local detail for efficient distribution of

bits around the image. While for some images and bitrates the

rate-distortion performance gains compared to the fixed-grid

approach are modest, it provides constant quality, controlled

by the splitting threshold, within and across images. This

ensures that perceptually important details are well and effi-

ciently encoded, even when they occupy only a small fraction

of the image; as such, they have little effect on the error rate

but substantial effect on overall perceptual quality. In addition,

as the bitrate decreases, the quality decreases gracefully,

preserving the most important information. Moreover, with

this added flexibility, our results bring out and contribute to

a better understanding of the capabilities and limitations of

cutset coding.

We also compare the performance of the proposed approach

to the Culik and Valenta techniques [15], [16], and show that

the former results in significantly better perceptual quality for

comparable bitrates. Compared to the lossless JBIG and JBIG2

techniques, the proposed approach offers reasonable quality

over a range of bitrates, including structurally lossless quality

[18] (encoded images of quality comparable to the original

even though there may be noticeable differences in a side-by-

side comparison) at rates lower than JBIG and JBIG2. On the

other hand, at high bitrates, JBIG and JBIG2 outperform the

proposed technique.

The paper is organized as follows. In section II, we review

the LCC approach. Section III describes two extensions of

LCC: extra connection bits and presmoothing. Section IV

introduces the proposed hierarchical LCC approach. Sec-

tion VI presents a progressive hierarchical approach. Section V

describes the lossless encoding specifics. Section VII presents

the experimental results and Section VIII summarizes the

conclusions.

II. REVIEW OF FIXED-GRID LCC

In this section we review the LCC approach of Reyes et

al. [13], [14] and describe the particular decoding strategy

adopted in this paper. LCC encodes the pixels on a fixed

rectangular grid using a lossless compression technique, such

as arithmetic or Huffman coding. The rectangular grid subdi-

vides the image into (typically square) blocks, and provides

a specification for the reconstruction by the decoder. The

decoder then relies on an MRF model to reconstruct the pixels

in the block interiors, as the maximum a posteriori probability

(MAP) estimates, given the values of the pixels on the block

boundary.
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(a) Original (b) Specification (c) Reconstruction

Fig. 1: Cutset Specification and Reconstruction

(a) Cutset (blue); interior (gray)

(b) 2nd order neighborhood

(c) 2-point cliques

Fig. 2: Second-order MRF and associated cutset

The MRF model provides constraints for reconstructing the

smoothest image that is consistent with the samples on the

block boundaries. An example is shown in Figure 1. For a

first- or second-order MRF [14], the grid forms a cutset, in

the sense that the pixels in the block interior are independent

of the pixels in the interiors of the neighboring blocks [13],

[14].

If the bilevel image satisfies the smoothness criterion and

if the spacing of the grid lines is not too big, it can be argued

that the reconstructed image preserves the structure of the

original image. One can then argue that this is an example of

structurally lossless compression [18], [19] for bilevel images,

whereby the original and reconstructed images are similar and

both of high quality, even though in a side-by-side comparison

there may be visible differences. We now look at the MRF-

based reconstruction in more detail.

A. Detailed Markov Random Field Formulation

Let the image be sampled on an N × N grid, that is, on

columns (rows) 0, N , 2N , etc. Thus, the size of the block

interiors is (N − 1) × (N − 1) pixels, and the size of the

blocks including the boundaries is (N + 1)× (N + 1) pixels.

The MRF in [13], [14] is specified by a graph G = (V,E)
and a collection of clique potential functions ψc(x). V is a

set of nodes, which specifies the pixel locations of the image,

and edges in E define a neighborhood relation between nodes.

Figure 2 shows a cutset associated with a second-order MRF,

in which each node (pixel) is associated with a second-order

neighborhood. A clique c is a subset of nodes in V that are

neighbors of each other, that is, they are connected by an edge.

In this paper, we consider a second-order MRF and only the

two-point cliques (horizontal, vertical, and diagonal) shown

in Figure 2(c). Let C denote the collection of all two-point

cliques in G. Now consider a bilevel image x that assigns a

0 (white) or 1 (black) to each node in V . For each c ∈ C,

a clique potential function ψc(x) takes a value that depends

only on the nodes in c. For the two-point cliques, we define

the potential functions as follows:

ψc(x) =

{

−β, xs = xq, (s, q) ∈ c, β > 0
+β, xs 6= xq, (s, q) ∈ c, β > 0

(1)

When one pixel is black and the other is white, we will refer to

the clique as an odd bond, and when the pixels are the same,

we will refer to the clique as an even bond. The probability

density function of an image realization x is given by the

Gibbs density

p(x) =
1

z
exp{−

∑

c∈C

ψc(x)} (2)

where z is a normalizing constant. It can also be expressed in

terms of the odd and even bonds as follows:

p(x) =
1

z
exp{−βt(x) + β(|E| − t(x))} (3)

where E is the total number of edges in all cliques and t(x)
is the total number of odd bonds.

A key property of an MRF is that the probability of a

realization over a subset of nodes, given the values of the

neighbors of the subset, is independent of the values of the

rest of the nodes [13], [14]. Thus, as we mentioned above, for

the given second-order MRF model, given the pixels on the

boundary, the pixels in the block interior are independent of

the pixels in the interiors of the neighboring blocks. It is this

property that makes the rectangular grid of pixels a cutset.

The MAP estimate of the interior pixels of a block, given

the values of the boundary pixels, reduces to finding the

bilevel block interior that in combination with the boundary

has the fewest black-white transitions between pixels (odd

bonds) [13], [14], [20]. Reyes et al. [13], [14] found explicit

rules for optimal reconstructions for boundary specifications

that contain: (a) all black (or white) pixels; (b) one run of

black (and one run of white) pixels; and (c) two runs of

black (and two runs of white) pixels. In all of these cases,

the optimal reconstruction consists of monochrome regions

bounded by minimally varying (smooth is hard to define for

pixelated lines) nonintersecting lines connecting the endpoints

of the boundary runs. In [14] they called such lines simple

paths. A path is a sequence of edges connecting two pixels.

A simple path consists of edges that are either all in the same

direction (horizontal, vertical, diagonal, or antidiagonal) or all

in two directions, one horizontal or vertical, and the other

diagonal or antidiagonal. They also showed that, depending

on the endpoint locations, there may be a number of optimal

reconstructions, in which case, the decoder picks one at

random.

Examples of optimal reconstructions for 1-run and 2-run

blocks using simple paths are shown in Figure 3. In the 1-

run case, all simple paths connect the end points of the run,

resulting in two monochrome regions. In the case of two runs,

there are two possibilities: simple paths connect the endpoints

of each of the white runs or they connect the end points of

each of the black runs, as shown in Figure 3 (b) and (c),

respectively. In the former case, this results in one connected

black region separating two white regions, and the converse in

the latter. An optimal reconstruction can be found in each case.

While only one of these choices provides the overall optimum

in the MAP sense, Reyes et al. [13], [14] found it beneficial for

the encoder to signify the one that best represents the original

image via a connection bit. This is decided by comparing the

two reconstructions to the actual block interior, and selecting
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(a) 1 run
(b) connect 2

black runs

(c) connect 2

white runs

Fig. 3: Block Reconstruction

the one that results in the lower error rate. While the error rate

does not correlate well with image quality when comparing

different compression approaches (e.g., LCC [13] with [16]),

Reyes et al. [21] found that, compared to other criteria for

the run connection decision, the error rate provides the most

robust and perceptually meaningful results. Reyes et al. [13],

[14] showed that the connection bit is critical for preserving

structural information, and results in dramatic improvements

in rate-distortion performance.

For boundaries with three or more runs, the reconstruction

was based on the two longest runs of one color [13], [14].

They used the following ad hoc rules: (i) change all but the

two longest black runs to white and reconstruct by connecting

the white runs; (ii) change all but the two longest white runs

to black and reconstruct by connecting the black runs; and (iii)

choose between the results of (i) and (ii) based on the error,

and indicate the decision by a connection bit. They argued

that for relatively small grid sizes (N = 8), the occurrence

of more than two black (white) runs is rare, and when it

does happen, the ad hoc approximation does not significantly

affect the resulting error rate or visual quality. In summary,

all that LCC needs to transmit are the pixels on the grid and

the connection bits (for blocks with two or more runs).

In this paper, we base all reconstructions on digital straight

lines using Bresenham’s approximation [22]. Note that such

lines are simple paths (optimal) and, in addition to eliminating

the ambiguity of multiple optimal solutions, they eliminate any

biases towards black or white reconstructions. Examples are

shown in Figure 3.

III. EXTENSIONS OF FIXED-GRID LCC

In this section we introduce a number of improvements of

LCC [13], [14] that enhance its performance.

A. 4-connectivity of Reconstructed Regions

As we discussed in Section II, the MRF formulation was in-

tended to impose constraints for reconstructing the smoothest

image that is consistent with the samples on the block bound-

aries. However, while the optimal reconstruction rules are well

defined, they can lead to some reconstructions that cannot

be characterized as smooth. For example, the first row of

Figure 4 shows the Bresenham line reconstructions for the

boundary specifications when the connection bit indicates that

the black runs should be connected. Note that the black runs

are 8-connected [23, ch11]; these reconstructions correspond

to the fewest odd bonds for connected black runs. Interestingly,

however, the white runs are also 8-connected. To avoid such

cases and to enhance the smoothness and visual continuity

of the connections, we will assume that the connection bit

8-connected black runs

4-connected black runs

Fig. 4: Connectivity examples: connecting black runs

enforces 4-connectivity between black or white runs. The

second row of Figure 4 shows examples of 4-connected black

runs. In this case the white runs are not connected. Note that

two one-pixel runs on opposite corners of the block cannot be

4-connected; so we added two pixels in the first example of the

second row to enable a 4-connected reconstruction. Assuming

4-connectivity of the black runs, the reconstruction is optimal

as it follows the simple path rule of [14]. Overall, imposing 4-

connectivity enhances the visual continuity of the connections.

The error rate of reconstructions stays essentially the same. To

enforce the 4-connectivity, we use the 4-connected Bresenham

line implementation in the OpenCV library [24].

B. Extended Connection Bits

As we discussed in Section II, Reyes et al. [13], [14] argued

that, for relatively small grid sizes, blocks with three or more

runs are rare and do not affect the quality of the results. When

the grid size is large (e.g., N = 16), however, such blocks

are more common and reducing them to two runs introduces

significant reconstruction errors. In this section, we introduce

additional connection bits and associated reconstruction rules

to handle up to four runs in a block (four black and four white

runs). We will refer to the use of additional connection bits as

extended connection bits.

The reconstruction rules for boundaries with two or fewer

black (and white) runs remain unchanged. The rules for blocks

with boundaries containing three or more black (and white)

runs are modified as follows. In a 3-run block, there are

five possibilities for connecting the runs: (1-3) three ways

of connecting two black runs and self-connecting the other

black run, i.e., connecting the two end-points of the run, as

in the 1-run case; (4) connecting all black runs; and (5) self-

connecting each black run. Specifically, if all the black runs

on the boundary are labeled clockwise from the top right as

B0, B1, B2, then as shown in Figure 5 the different choices

are:

• B0-B1, B2 (connect B0 with B1, self-connect B2)

• B0-B2, B1 (connect B0 with B2, self-connect B1)

• B1-B2, B0 (connect B1 with B2, self-connect B0)

• B0-B1-B2 (connect B0, B1, B2)

• B0, B1, B2 (self-connect B0, B1, B2)

In a 4-run block, there are 14 possibilities for connecting

the runs: (1-6) six ways of connecting two black runs and
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(a) 3-run block (b) B0-B1,B2 (c) B0-B2,B1

(d) B1-B2,B0 (e) B0-B1-B2 (f) B0,B1,B2

Fig. 5: Connectivity examples: connecting black runs

TABLE I: Encoding of Extended Connection Bits

number of black (white) runs 0 1 2 3 ≥ 4

number of connection choices 1 1 2 5 14
binary code length 0 0 1 3 4

self-connecting the other two black runs; (7-8) two ways of

connecting pairs of adjacent black runs; (9-12) four ways

of connecting three black runs and self-connecting the other

black run; (13) connecting all black runs; and (14) self-

connecting each black run. Specifically, if all the black runs

on the boundary are labeled clockwise from the top right as

B0, B1, B2, B3, then the different choices are:

• B0-B1, B2, B3

• B0-B2, B1, B3

• B0-B3, B1, B2

• B1-B2, B0, B3

• B1-B3, B0, B2

• B2-B3, B0, B1

• B0-B1, B2-B3

• B1-B2, B3-B0

• B0-B1-B2, B3

• B0-B1-B3, B2

• B0-B2-B3, B1

• B1-B2-B3, B0

• B0-B1-B2-B3

• B0, B1, B2, B3

Note that, as we discussed in Section II, optimal reconstruc-

tion does not allow intersecting lines in the block interior. The

rules for connecting black runs are symmetric and equivalent

with the rules for connecting white runs. For block boundaries

with 5 or more runs, the shortest runs are ignored and

considered as part of their connecting (surrounding) runs, so

that the 4-run connection rule can be applied to the block. The

short runs are then self-connected.

The 5 choices for 3-run blocks are signaled by 3 connection

bits and the 14 choices for 4-run blocks are signaled by

4 connection bits. Table I lists the number of connection

choices and the length of the binary code for each number

of black runs. The fixed-length codes are uniquely decodable

given the number of runs. We then use arithmetic coding to

compress, which results in moderate gains (about 10%). The

implementation is discussed in Section V.

C. Presmoothing the Cutset

The MRF-based reconstruction algorithm assumes that the

underlying bilevel image satisfies the smoothness criterion.

However, the actual images to be encoded are not always

smooth. Moreover, due to the size of the grid relative to image

details, there may be black blobs in the image that, after cutset

sampling, are represented only as a single black run on a grid

line, and then reconstructed as a single thin line segment, or

Original Cutset Reconstruction Presmoothed

Fig. 6: Isolated Blobs

Fig. 7: Nonhomogeneous Blocks

are represented by parallel black runs on adjacent grid lines,

but due to the presence of multiple runs, the connection bit

cannot signal that the reconstruction should connect these runs.

Examples of the former are shown in Figure 6, and of the latter

in Figure 8(b) and (e), where only one connection bit was used.

In both cases, the reproductions misrepresent the detail, and

it is better to eliminate the detail before encoding. Although

this may increase the reconstruction error rate, it improves

the perceptual quality of the reconstruction, as can be seen in

Figures 6 and 8(d), and has the additional benefit of reducing

bitrate. Since the proposed bilevel coding algorithms are lossy,

there is no reason to insist on lossless encoding of the grid

samples, if we can improve bitrate and perceptual quality.

We thus use the following rule for removing a run in a block

boundary. Starting from the shortest run, we flip the color of

the run, i.e., eliminate the run, if the error in the interior of all

the blocks adjacent to the run does not increase. This rule is

not applied to 4×4 or smaller blocks, that is, when the number

of interior pixels is less than the number of boundary pixels,

unless the run is completely isolated, i.e., not connected with

any interior pixels. Such run removals are typically associated

with large blocks with multiple runs or isolated runs that are

not connected to any interior pixels in the reconstruction.

IV. HIERARCHICAL LCC APPROACH

The distribution of shapes and sizes of black and white

regions in a bilevel image is not necessarily homogeneous.

For encoding large smooth regions, a large cutset grid size

is most efficient. For encoding fine details, a small grid size

is needed to preserve image structure and details. Figure 7

shows examples of blocks decoupled by a cutset, in which

the block interior cannot be adequately reconstructed based

on the boundary pixels and the MRF model we reviewed in

Section II. Thus, adaptive block splitting is desirable.

We propose a hierarchical LCC (HLCC) coding approach

that adapts the cutset to local image detail. The image is

initially sampled on an N × N grid, defined in Section II.

The blocks are processed in raster order. For each block, the

block interior is reconstructed from its boundary specification,

using connection bits when there are two or more black runs.

The reconstructed block is then compared with the original

block using a distortion metric. If the distortion exceeds a

threshold, the block is subdivided into four subblocks. The
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(a) Original (b) Fixed (c) Hierarchical

(d) Presmoothed (e) Fixed Recon. (f) Hier. Recon.

Fig. 8: Fixed vs. Hierarchical Cutset

process is repeated recursively for each subblock until all the

subblocks satisfy the distortion threshold or a minimal block

size is reached. The minimal block size is typically 1× 1, so

that the block splitting is controlled by the distortion threshold.

An example of the resulting cutset sampling grid is shown

in Figure 8. Note that the reconstructions assume only one

connection bit.

For each block, the encoder uses a splitting bit to indicate

whether it should be subdivided or not. The information to be

encoded for an N×N block includes: (1) the boundary pixels;

(2) a splitting bit; and (3) the information for encoding the

subblocks if the block is split, or the connection bits (if any)

if the block is not split. As in [13], we found that including

the connection bits results in considerable improvements in

rate-distortion performance.

For the distortion metric, we use the error rate, that is, the

fraction of pixels changed by the encoding/decoding process.

This is consistent with the criterion used for the connection

decisions discussed by Reyes et al. [13], [14], [21]. We

explored four variations of the splitting criterion: (1) the

distortion over the entire block exceeds a fixed threshold; (2)

the threshold decreases with block size; (3) the distortion of

one of the subblocks exceeds a fixed threshold; and (4) taking

into account the error distribution in subblocks. However, all of

these strategies yielded essentially the same overall perceptual

distortion at a given encoding rate, even though they each

produced a different distribution of errors around the image.

So, we picked the simplest strategy (1).

V. LOSSLESS CODING

In the hierarchical LCC approach, the information to be

encoded includes the pixels on the cutset, the connection bits,

and the splitting bits. The connection bits are generated for

blocks with two or more black runs, but are not encoded if the

block is split. The splitting bits are generated and encoded for

all blocks, except when the minimal block size is reached. The

cutset pixels, connection bits, and splitting bits are ordered into

separate streams, and losslessly encoded using an arithmetic

coder (AC). Here, as in [13], AC is based on the first-order

conditional probabilities. We also tried second-order AC but

did not offer any significant improvement. Overall, depending

on the degree of compression, AC provides gains by factors of

3-6, almost entirely from encoding the cutset pixels; typically,

the higher the compression the higher the gains.

An AC requires that for each value to be encoded there

is an associated probability distribution. When encoding the

cutset pixels, a first-order AC uses the conditional probability

pi(xi|ti) of the value xi of the i-th pixel, given ti, the value of

a specific pixel in the previously encoded bitstream, which is

called the context. The conditional probabilities pi(xi|ti) are

estimated by the fraction of previous occurrences of xi with

ti as its context, and are updated each time a new pixel is

encoded. The number of bits required for AC encoding of the

cutset pixels is estimated by the empirical conditional entropy,

HP = −

NP
∑

i=1

log
2
pi(xi|ti) (4)

where NP denotes the total number of cutset pixels, and

xi, ti ∈ {0, 1} denote the i-th cutset pixel and its context.

The encoding of the connection and splitting bits is done in a

similar fashion using a first-order AC.

The AC described above is a one-pass coder. The probability

distributions are estimated in the same fashion by the encoder

and the decoder. It is also possible to use a two-pass AC,

whereby the probability distributions are first estimated over

all the pixels (and all the connection and splitting bits, re-

spectively) and transmitted to the decoder before the encoding

begins. The estimate of the required number of bits for the

cutset pixels becomes

H ′

P = −NP

∑

t

p(t)
∑

x

p(x|t) log
2
p(x|t) (5)

where NP denotes the total number of cutset pixels, x, t ∈
{0, 1} denote a cutset pixel and its context, and p(t) denotes

the empirical distribution of the context pixels.

In this paper, we use one-pass AC because it yields essen-

tially the same bitrate as the two-pass AC. In fact, a one-pass

AC coder may be more efficient than a two-pass coder because

it can adapt to local image characteristics.

A. Hierarchical Probability Estimation

For first-order AC, the context for estimating the conditional

probability distribution of a pixel on the cutset is a previously

encoded neighboring pixel, located at either the top or the

left on the cutset. If both the top and the left pixels have

been previously encoded, then the one on the left is used. The

context for a binarized connection bit is the previously encoded

binarized connection bit, and for a splitting bit, the previously

encoded splitting bit. As is conventional, the conditional

probability estimates used when AC encoding a current cutset,

connection, or splitting bit are relative frequencies of the past

values of the same type of bit in instances with the same

context as the current bit.

The hierarchical structure can be further utilized to improve

bitrate efficiency by obtaining separate estimates of the con-

ditional probabilities for different block sizes; we will refer
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(a) Initial subdivision

(b) Final subdivision

Fig. 9: Level assignments for prob. distribution estimation

to these as coding levels. We have explored two schemes for

assigning a pixel xi to a coding level: based on the initial or the

final subdivision of the cutset. Figure 9 illustrates an example

of the two schemes. In this example, the initial, maximum

block size is 8× 8 pixels.

The blocks are recursively subdivided into 4× 4 and 2× 2
based on the splitting criterion. The initial subdivision scheme

assigns pixels to the coding level that corresponds to the

initial block size that they belong to before subdividing. This

scheme can be directly adapted to a one-pass progressive

coding scheme. The final subdivision scheme assigns pixels

on the left and top boundaries of the smallest block they

reside in to the corresponding coding level. This results in

slightly better rate-distortion performance when subdivision

occurs frequently. Note that in both schemes, the pixel and its

context do not necessarily have to belong to the same coding

level. However, it is the coding level of the pixel itself that

determines what probability estimate it contributes to.

The decision bits (connection and splitting bits) are also

encoded based on level-wise probability estimation. The con-

nection bits, when they exist, are encoded only if there is no

further splitting of the block. The splitting bits, on the other

hand, are generated and encoded for every block and subblock.

B. Hierarchical Lossless Coding

The cutset pixels and extra bits are fed into an arithmetic

coder following [25]. The number of bits for hierarchical LCC

is estimated by total entropy H

H =
∑

n

(HPn
+HCn

+HSn
) (6)

where n denotes the level in hierarchical coding, which is

determined by the block size, and HPn
, HCn

, and HSn
are the

empirical conditional entropies (defined as in (4)) for lossless

encoding of the cutset pixels, the binarized connection bits,

and the splitting bits, respectively. When the total entropy is

divided by the number of pixels in an original image, it is the

bitrate for encoding the image.

VI. PROGRESSIVE SCHEME

The hierarchical approach can be easily adapted to obtain a

progressive coding scheme that allows encoding and decoding

of an image as the bitstream is transmitted, progressively

adding image details to go from a coarse to a fine image

reconstruction. The encoder and decoder can stop coding at

any block size Nf (coding level) by adding a small overhead

to the hierarchical approach.

In the hierarchical approach, the connection bits, when

generated, are encoded only for non-splitting blocks. In the

progressive scheme, the connection bits are always encoded,

regardless of the block splitting decision, in order to pro-

vide a better reconstruction when the encoder stops before

proceeding to the next coding level. The encoding of the

extra connection bits only adds a very small overhead to the

bitstream for a substantial improvement in the image quality

of the partial reconstructions. Note also that in the progressive

approach, any cutset smoothing must be done after decoding,

as post-smoothing, because any isolated lines eliminated at one

level may be connected at the next level.

The progressive coding scheme is obtained from the initial

subdivision of the hierarchical coding. The bitstream at the

coding level associated with block size N/2×N/2 includes the

pixels on the N/2×N/2 grid, the connection bits associated

with the N/2×N/2 blocks, and the split bits generated from

previous coding level associated with N×N blocks, if it exists.

The decoder uses the part of the bitstream from current and

previous coding levels to reconstruct the image.

VII. EXPERIMENTAL RESULTS

The proposed approaches were tested on a variety of bilevel

images. Examples of 512 × 512 test images are shown in

Figure 10. These images satisfy the smoothness criterion,

except for the “MRF sample” image, which includes isolated

dots. To obtain the rate-distortion performance of the proposed

techniques, we used the bitrate obtained with a one-pass

first-order arithmetic coder, implemented in C++, based on

ref. [25], and the contexts described in Section V. For the

distortion we used the error rate.

A. Four-connectivity

As we mentioned in Section III-A, imposing 4-connectivity

in the reconstruction does not result in any significant change

in error rate. However, there is a small but noticeable im-

provement in perceptual quality. Figure 11 shows two exam-

ples of reconstructions without and with enforcement of 4-

connectivity. Note the thicker tail in Figure 11(c). The bottom

example in Figure 11 illustrates an added advantage of im-

posing 4-connectivity. While the reconstruction in Figure 11(e)

has lower error (and could thus not be obtained via the use of a

connection bit), imposing 4-connectivity results in a smoother,

if not as accurate, reconstruction. Note also that in Figure 11(e)

presmoothing the cutset would eliminate the line at the left-

most corner of the letter “N.” In the rest of the experiments

we allowed only 4-connected reconstructions.

B. Fixed-grid LCC with Extended Connection Bits

As we discussed in Section III-B, for fixed-grid LCC,

the introduction of additional (extended) connection bits can

improve rate-distortion performance when the block size is

large. Table II shows the percentage of blocks with different
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�

(a) Al (b) Boat (c) MRF sample (d) People (e) Tree (f) Woman

�

(g) Northwestern (h) Cat (i) Bamboo (j) Tools (k) Clown (l) Kids

Fig. 10: Examples of test images

(a) Original (b) 8-connected (c) 4-connected

(d) Original (e) 8-connected (f) 4-connected

Fig. 11: Reconstruction with 8- and 4-connectivity

number of black (white) runs for the test image “Al.” The

block sizes range from 2 to 32. Note that the number of

blocks with 3 or more runs is insignificant for N ≤ 8,

but becomes significant as N approaches 16 and higher. For

N < 32, covering up to 4 pairs of black and white runs

provides a good balance between reconstruction accuracy and

bitrate overhead. Figure 12 shows that the use of extended

connection bits, as opposed to the baseline approach that uses

only up to one connection bit per block, improves the rate-

distortion performance in the low bitrate region. Figure 13

shows examples of fixed-grid LCC with N = 16. It can

be seen that the use of extended connection bits leads to

significant reduction in the error rate (E) with a small increase

in bitrate (R), but more importantly, there is a significant

improvement in the perceptual quality of the reconstructions.

In the remainder of the experimental results we will use the

extended connection bits with the proposed techniques.

TABLE II: Block % vs. number of runs (“Al” image)

% number of black (white) runs on block boundary

N 0 1 2 3 4 ≥5

32 14.5 25.8 25.8 19.9 10.2 3.9
28 20.2 26.0 30.7 14.7 6.6 1.7
24 24.6 31.8 26.9 11.4 3.1 2.3
20 28.1 36.4 22.8 9.2 1.9 1.6
16 35.0 39.2 19.2 4.8 1.7 0.2
12 46.4 36.1 14.4 2.3 0.7 0.1
10 52.7 35.3 9.9 1.7 0.3 0
8 58.0 34.5 6.6 0.9 0.1 0
6 67.3 28.4 3.9 0.4 0 0
4 76.2 22.1 1.7 0.1 0 0
3 81.8 17.5 0.7 0 0 0
2 87.4 12.5 0.2 0 0 0

C. LCC with Presmoothed Cutset

Figure 14 shows an example of presmoothing the cutset,

that is, eliminating isolated runs that do not connect to any

pixels in the adjacent block interiors. Such isolated runs

violate the smoothness criterion. In addition, presmoothing

will eliminate speckles of noise. Pre-smoothing typically re-

sults in slightly increased error rate (E), decreased bitrate

(R), and most importantly, improved perceptual quality. The

overall rate-distortion performance also improves, as shown in

Figure 15. Note that the improvement is pronounced for the

“MRF sample” image, which contains a lot of noise speckles.

In the remainder of the experimental results we will use

presmoothing with the proposed techniques.

D. Hierarchical LCC

Figure 16 shows rate-distortion curves for the hierarchical

LCC approach for initial grid sizes 32 and 16, and different

splitting thresholds T , ranging from 1.0 to 0.0 (lossless). Note

that the minimal block size is 1×1, so block splitting continues

until the distortion threshold is met.

The figure also shows the rate-distortion curves of the

fixed-grid approach for grid sizes ranging from 32 to 1. The

figure shows that the hierarchical approach clearly outperforms
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Fig. 12: Rate-distortion curves for fixed-grid LCC with baseline and extended connection bits (labeled with block size N ).
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(a) Original
(b) Baseline

E=0.050, R=0.025
(c) Extended

E=0.047, R=0.026
(d) Difference

E ↓ 7.63%, R ↑ 2.37%

� � �

(e) Original
(f) Baseline

E= .017, R= .022
(g) Extended

E= .014, R= .022
(h) Difference

E ↓ 14.5%, R ↑ 0.2%

Fig. 13: Fixed-grid LCC with baseline and extended connection bits (N = 16) and reconstruction difference

the fixed-grid approach in the high bitrate range, because

it encodes the image details more efficiently. In the low

bitrate range, the advantage of the hierarchical approach is less

pronounced, because there is very little splitting. The figure

also shows that the rate-distortion curves of the hierarchical

approach with smaller (16) initial block size may start above

but end up as good as or better than those with higher initial

block size (32).

Figure 17 shows the hierarchical cutsets and the correspond-

ing decoded images for different block splitting error rate

thresholds; the initial block size is 16. The figure demonstrates

that the hierarchical approach preserves key structures of the

image and adds details as the splitting threshold decreases.

The threshold provides an upper bound for the error rate of

the decoded image, and thus controls the compression quality

consistently across different images.

Figure 18 compares the hierarchical approach with the

fixed-grid approach. The comparison shows that the hierarchi-

cal approach yields better perceptual quality and lower error

rate than the fixed-grid approach at comparable or even lower

bitrates. Note the improvements in the windows of the “boat”

image and the eyes of the “woman.” These can be attributed

to the adaptation to image details with efficient bit allocation.

E. Level-wise Arithmetic Coding

Figure 19 shows that calculating probability distributions

separately for each of the hierarchical coding levels (block

sizes) substantially improves the rate-distortion performance

compared to calculating probability distributions for all block

sizes together. The rate-distortion curves for hierarchical cod-

ing utilizing level-wise probability distributions based on the

initial and the final subdivision are virtually identical, and
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(a) Basic grid

E= .047, R= .026
(b) Presmoothed grid

E= .047, R= .024
(c) Basic reconstruction (d) Presmoothed recon.

Fig. 14: Fixed-grid LCC with basic and presmoothed cutset (N = 16)
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Fig. 16: Rate-distortion curves for hierarchical (initial block sizes 32 and 16) vs. fixed-grid LCC (with block size N ).

only shown as a blue line in the figure. We select the

initial subdivision in the remainder of this paper so that it

is consistent with the progressive scheme.

Table III shows how the bits are distributed at each coding

level for the test image “Al,” losslessly encoded (splitting

threshold is 0) at 1.2 bits per pixel. The table includes the

number of blocks and cutset pixels to be encoded at each level,

the connection bits (up to 4 bits per block, as explained in

Section V and Table I), and the splitting bits (1 bit per block at

each level, excluding the last level, as described in Section V).

As the cutset grid becomes finer, the ratio of splitting bits

over cutset pixels increases. The connection bits are encoded

only if generated by non-splitting blocks, and thus contribute

a relatively small bitrate overhead.

TABLE III: Encoded bits for lossless encoding of “Al” image

Block size blocks pixels connection bits splitting bits

16 1024 32769 18 1024
8 2272 16472 66 2272
4 4512 14664 151 4512
2 5264 6580 63 5264
1 2192 548 0 0

Overall 71033 298 13072

F. Progressive Scheme

Figure 20 shows progressive coding starting with block size

16 and ending with Nf = 16, 8, 4 and 2. As we discussed

in Section VI, the cutset post-smoothing is performed after

decoding (reconstruction), thus removing isolated lines on the

cutset grid without affecting the decoding of the next level.
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T =0.2 T =0.1 T =0.2, E= .036, R= .029 T =0.1, E= .021, R= .044

� �

T =0.2 T =0.1 T =0.2, E= .020, R= .018 T =0.1, E= .012, R= .024

Fig. 17: Hierarchical LCC: Cutsets and decoded images with initial block size 16 and different block splitting error rate

thresholds T , resulting error rates E, and bitrates R.

Fixed-grid N = 10
E= .016, R= .024

Hierarchical
E= .012, R= .024

Fixed-grid N = 8
E= .008, R= .041

Hierarchical
E= .006, R= .039

Fig. 18: Comparison of fixed-grid and hierarchical LCC approaches

TABLE IV: Lossless encoding bitrates

Test image Hierarchical Progressive Overhead

Al .127 .130 .003
Boat .070 .071 .001
Tree .170 .175 .005

Woman .094 .096 .002

When the final block size is 1, the reconstruction is lossless.

The splitting threshold is 0, that is, we always split if an

error exists. Observe how the reconstructions add details as the

final block size decreases. Table IV compares the progressive

and non-progressive schemes, for lossless coding based on

the initial subdivision. It is clear that the overhead for the

additional connection bits is very small.

G. Comparison with Other Approaches

We now compare the proposed hierarchical LCC (HLCC)

with other bilevel compression approaches, namely, the fixed-

grid LCC of Reyes et al. [13], the finite automata approach

by Culik and Valenta [15], [16], and the JBIG and JBIG2

standards. Figure 21 compares the rate-distortion performance

of the four approaches, while Figure 22 shows decoded images

at comparable bitrates in the lossy but essentially structurally

lossless range. The rate-distortion curves show that both LCC

and HLCC clearly outperform the finite automata approach,

with HLCC offering a definite advantage over LCC. The

JBIG and JBIG2 standards offer efficient lossless compres-

sion. However, HLCC provides essentially structurally lossless

performance at lower bitrates than the lossless JBIG and

JBIG2 standards, as can be seen in Figure 22. For the JBIG2
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Fig. 20: Progressively decoded images. Encoding starts with block size 16, ends with Nf .

implementation we used the JBIG2 open source encoder at

[26]; there is no lossy option for our experimental content.

The figure also shows a clear advantage of HLCC over LCC

in the fine details, especially for the “Woman” image.

H. Compression Quality Control

A key advantage of the proposed hierarchical coder is that

it is a fixed error rate coder. Achieving essentially constant

quality across an image ensures that perceptually important de-

tails are well and efficiently encoded, even when they occupy

only a small fraction of the image. In HLCC the error rate is

controlled on a block by block basis, namely, it cannot exceed

a specified threshold. Thus, the bitrate required to achieve a

given quality level depends on image content. In contrast, in

the fixed-grid approach, the error rate is determined indirectly

by the block size. The hierarchical approach controls the

quality and the bitrate follows, while the fixed-grid approach

does not directly control either.

To demonstrate this fact, we collected 128 bilevel images,

ranging from simple silhouettes, to graphics, to relatively

complex cartoons, to complex sketches. Some of these im-

ages, especially the complicated sketches, do not satisfy the

piecewise smooth property. The size and detail of these images

varies. Figure 23 shows some of the test images, sorted from

easy to difficult in terms of the required bitrate. The images

were encoded with the fixed-grid approach using different

cutset sampling steps (16, 8, and 4) and the hierarchical

approach starting with block size 64 and different splitting

thresholds (0.05, 0.03, and 0.01). Note that when the splitting

threshold is 1, the hierarchical approach reduces to the fixed-

grid approach with additional overhead for encoding the

splitting bit; when the splitting threshold is 0, the hierarchical

coding becomes lossless. The rate-distortion performance is

shown in Figure 24. Note that the distribution of the points

for each threshold of the hierarchical approach is more or less

flat, that is, the quality is fixed. On the other hand, the fixed-

grid approach yields results in varied error rate and varied

bitrate for a given block size.

I. Cummulative Comparison of HLCC, LCC, JBIG, and

JBIG2

We now compare the rate-distortion performance of the

HLCC and LCC approaches averaged over the 129 images

we mentioned in the previous subsection. The average bitrate

is computed as the ratio of the total number of bits needed

to encode the images to the total number of pixels in the 129

images. Similarly, the average error rate is computed as the

ratio of the total error to the total number of pixels. Figure 25

shows the results. The cummulative rates for JBIG and JBIG2

are also shown.

VIII. CONCLUSIONS

We presented HLCC, a simple, efficient, and effective

algorithm for hierarchical lossy bilevel image compression.

The main advance over the fixed-grid LCC approach on which

it is based is that it adapts the grid size to local image detail,

thus eliminating the most important LCC drawback, the fact
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Fig. 21: Rate-distortion comparison of HLCC (initial block size 16, splitting thresholds: 1, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01, 0);

LCC (labeled with block size N ); Culik-Valenta (error rate factors 400, 300, 200, 100, 50, 1); JBIG; and JBIG2
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Fig. 22: Comparison: JBIG; JBIG2; HLCC (splitting threshold 0.05); LCC (N = 6); Culik-Valenta (error rate factor 1)

that it cannot be optimized for detail variations within an

image. The grid adaptation makes HLCC a fixed error rate

coder that provides constant quality, controlled by a single

parameter (distortion threshold), both within an image and

across all images. The proposed approach also introduces

several other enhancements of the LCC approach that improve

reconstruction accuracy and perceptual quality. These include

the use of multiple connection bits that provide structural

information by specifying which black (or white) runs on

the boundary of a block must be connected, a boundary

presmoothing step, stricter connectivity constraints, and more

elaborate probability estimation for arithmetic coding. Overall,

the proposed approach provides better rate-distortion perfor-

mance than the fixed-grid approach, especially at high coding

rates, and better visual quality at low coding rates. While in

some cases the improvement in quantitative rate-distortion per-

formance is modest, constant quality ensures that perceptually

important details, which occupy a small fraction of the image,

are well and efficiently encoded, resulting in significantly

better overall perceptual quality. In addition, we proposed a

progressive scheme, which refines the image reconstruction as

more bits are transmitted, with very small additional overhead.
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