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ABSTRACT

We focus on the evaluation of texture similarity metrics
for structurally lossless or nearly structurally lossless image
compression. By structurally lossless we mean that the origi-
nal and compressed images, while they may have visible dif-
ferences in a side-by-side comparison, they have similar qual-
ity so that one cannot tell which is the original. This is par-
ticularly important for textured regions, which can have sig-
nificant point-by-point differences, even though to the human
eye they appear to be the same. As in traditional metrics, tex-
ture similarity metrics are expected to provide a monotonic
relationship between measured and perceived distortion. To
evaluate metric performance according to this criterion, we
introduce a systematic approach for generating synthetic tex-
ture distortions that model variations that occur in natural tex-
tures. Based on such distortions, we conducted subjective ex-
periments with a variety of original texture images and differ-
ent types and degrees of distortions. Our results indicate that
recently proposed structural texture similarity metrics provide
the best performance.

Index Terms— perceptual similarity, image quality

1. INTRODUCTION

The conventional problem of image quality evaluation con-
sists of measuring point-by-point distortions between the
original and the compressed image. This is true for both
the peak-signal-to-noise ratio (PSNR) andperceptual metrics
that incorporate low-level properties of the human visual sys-
tem [1]. The goal of the latter is to measure deviations from
perceptually lossless compression, that is, images cannot be
distinguished in a side-by-side comparison at a given display
resolution and viewing distance [1]. Instead, our focus is on
structurally lossless compression [2], whereby the original
and compressed images may have visible differences in a
side-by-side comparison, but they have similar quality so that
one cannot tell which is the original. The goal of the quality
metric is then to measure deviations from this standard of
performance. This is particularly important for textured re-
gions, which can have significant point-by-point differences,
even though to the human eye they appear to be the same.

The point-by-point measurement of image similarity has
been shown to not be in accordance with human perception,
especially in textured areas [2, 3]. This prevents image (and
video) compression algorithms from using spatial (and tem-
poral) prediction for encoding textured regions, because the
stochastic nature of textures results in large prediction errors
when conventional metrics are used. However, large patches
of texture (e.g., of grass, sand, clouds, forest) could be simply
replaced with previously encoded patches with indistinguish-
able characteristics without any significant effect on perceived
texture quality. This requires texture similarity metricsthat
account for the stochastic nature of textures and allow signif-
icant point-by-point deviations that do not affect textureap-
pearance [4, 5]. Indeed, the development of such metrics and
a better understanding of texture is key to further advancesin
image compression, as well as other image analysis applica-
tions such as computer visions and content-based retrieval[2].
The goal of this paper is to evaluate the performance of texture
similarity metrics for the purposes of image compression.

In order to achieve structurally lossless or nearly struc-
turally lossless compression for textured areas, the goal is to
have a metric that provides a monotonic relationship between
measured and perceived distortion. Such a metric can be used
both for quality assessment and as a tool within a compression
algorithm. However, as we pointed out in [6], such monotonic
metric performance can be achieved only at the high end of
the similarity scale, where the structural distortions have ei-
ther a small effect on perceived quality, or do not affect per-
ceived quality at all. Of course, after a certain point, when
the quality is unacceptable, there is no need for monotonicity;
the metric should simply give low values. It is also important
to have an absolute measure of image similarity, so that con-
sistent image quality can be achieved across different types
of image content, both within an image and across different
images, as well as across different compression techniques.

To explore how metric predictions relate to perceived dis-
tortion, and in particular, to test metric monotonicity andab-
solute performance, we need a systematic approach for ob-
taining different degrees of distortion for a variety of textures
and subjective experiments to rate such distortions. However,
generating a set images with fine differences in type and level
of distortion is a difficult, if not impossible, task in the context



of real applications. We thus chose to generate synthetic dis-
tortions that model variations that occur in natural textures.
Based on such distortions, we conducted subjective experi-
ments with a variety of original texture images and different
types and degrees of distortions. Our results indicate thatre-
cently proposed structural texture similarity metrics [4,5] pro-
vide the best performance.

Gideet al. [7] have conducted a similar subjective study,
where the goal was to build a comprehensive database of tex-
ture images with several sets and degrees of distortions, to
be used as a benchmark for comparison of different texture
quality metrics. While the overall goals are the same, our ex-
periments are aimed at variations that occur naturally in tex-
tures, with the goal of exploiting texture self-similarity(in
compression applications), rather than distortion induced by
traditional coding algorithms such as noise, blur, compression
artifacts, shifts due to motion estimation, or synthesis based
on a parametric texture model [8].

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of similarity metrics. The
experimental setup is presented in Section 3, the results in
Section 4, while the final conclusions are drawn in 5.

2. SSIM REVIEW

Structural similarity metrics (SSIMs) [9] were developed
for supra-threshold applications, such as perceptually lossy
compression, where significant changes are allowed that do
not affect image structure. When implemented in the image
domain, SSIMs allow non-structural contrast and intensity
changes, while the complex wavelet version (CWSSIM) [10]
also allowssmall translations, rotations, and scaling changes.

SSIM (and CWSSIM) compares two images on a slid-
ing window basis. In each window it computes three terms:
the luminance term compares the means of pixels (or com-
plex coefficients) in two corresponding windows, thecontrast
term compares their variances, while thestructure term com-
putes the cross-correlation between the corresponding win-
dows. The three terms are multiplied in each window, and av-
eraged across windows to produce the overal image similarity.
For CWSSIM, each subband produces a similarity score; the
total similarity is computed as their mean.

For texture similarity, where significant point-by-point
differences are possible between two texture images that ac-
cording to the human eye can be considered as “identical”
textures, Zhaoet al. [4] proposed a new Structural Texture
Similarity Metric (STSIM). Their metric removed the struc-
ture term from the CWSSIM – which in spite of its name is in
fact a point-by-point comparison – and added two new terms
that depend only on region statistics. The new terms compare
the first order correlation coefficients in the horizontal and
vertical direction, so that for each sliding window, they mul-
tiply four terms instead of three. Again, the final similarity
score is obtained by spatial and frequency pooling.

The metric proposed in [5] extends the ideas of [4] by

Fig. 1. Original textures

including a broader set of local image statistics. In addition
to the STSIM computation for each subband, STSIM2 also
computes terms that compare the cross-correlations between
subbands that correspond to adjacent scales for a given orien-
tation, as well as different orientations within the same scale.
STSIM2 then combines the results of STSIM and adds the
cross-correlation comparison terms to form a final similarity
score for two images. We will refer to this asSTSIM2, to dis-
tinguish it from the metric in [4]. In the remainder of this pa-
per, we use a three-scale, four-orientation steerable pyramid
decomposition, and sliding windows of size7× 7.

3. EXPERIMENTAL SETUP

Our goal is to determine how successful various similarity
metrics are in predicting the perceived degree of distortion in
texture images. For our experiments, we chose ten different
grayscale texture images, shown in Fig. 1. They range from
noise-like to highly structured images, and they exhibit dif-
ferent levels of susceptibility to different types and degrees of
distortions. The image resolution is128× 128 pixels.

As we discussed in the introduction, we chose to generate
synthetic distortions that model variations that occur in nat-
ural textures. Since these include variations in position,ori-
entation, and color [8], we implemented the following types
of distortion: (1)random rotation of small local patches, (2)
random shifts of small local patches, and (3)image warping,
whereby the images are distorted according to random de-
viations of the control points of an underlying mesh. The
severity of each type of distortion can be easily manipulated
by varying the distortion parameters (probabilistic distribu-
tion of rotations, shifts, and mesh points). For the rotation
angles, shifts, and the control points of the warping, we as-
sumed a uniform distribution of the corresponding variables,
the range of which determines the degree of distortion. Each
of the ten textures was distorted with three distortion algo-
rithms, with three degrees of severity for each distortion.Ex-
amples of the distorted images corresponding to three differ-
ent originals, are given in Fig. 2. From left to right, we have
three rotation-distorted images, three shift-distorted images,
and three warped images. For each type of distortion, the
severity is increasing from left to right.

In our experiments, we used11× 11 pixel patches, while
the warping meshes were5 × 5. This is because the smaller
meshes result in artifacts of similar scale as those of the larger



Fig. 2. Examples of distorted texture images: rotation (columns 1–3), translation (columns 4–6), warping (columns 7–9),

(a) Original (b) Low distortion (c) High distortion

Fig. 3. Warping distortion with underlying meshes

Fig. 4. Grid points in the original and distorted meshes

patches, as shown in Fig. 3. The reason for this is illustrated in
Fig. 4, which shows the control points of the underlying mesh.
Note that each disjoint set of four points on the grid can be
seen as the control points of one rectangle (dashed lines), with
space between rectangles for smooth transitions, effectively
producing deformations on rectangles of size10× 10.

For each of the ten original images, the subjects were
asked to rank the distorted images frombest to worst, com-
pared to the original image. They were not allowed to give
the same ranking to two distorted images. As a result, every
user provided rankings between1 and9 for the nine distorted
images corresponding to each original. This, however, pro-
duces data that can only be processed for a given original, not

across originals. In order to determine metric performance
across different originals, the subjects were also asked torank
the worst distortions for each of the original textures.

4. EXPERIMENTAL RESULTS

Eleven subjects participated in this experiment that compared
the PSNR, SSIM, CWSSIM, STSIM, and STSIM2 metrics.

4.1. Analyzing the ranking results per original image

Analyzing the ranking data can be done in a number of ways.
In all cases, for each original image, we extract a 1-D vector
that describes the subjective similarity between the original
and the nine distorted images. This vector is compared to the
values of each similarity metric. To measure the goodness of
fit, we use the Pearson’s correlation coefficient, which evalu-
ates absolute metric performance, and the Spearman rank cor-
relation coefficient, which describes how well a metric ranks
the distorted images compared to the subjective rankings. The
reported values for Pearson’s and Spearman’sρ are the aver-
age correlation coefficients taken over all the originals.

The simplest approach is to find the mean ranking for each
distorted image and use that as its “subjective” position with
respect to the original. This is perhaps one of the oldest tech-
niques, proposed in 1770 by Jean-Charles de Borda, and to-
day usually known as Borda’s rule. He called this method
“election by order of merit,” i.e., the cumulative preference
given to a candidate is its final score.

One popular way to analyze this type of data is to use
Thurstonian scaling [11]. It is applied on thepreference ma-
trix P , whereP (i, j) denotes how many times imagei was
preferred to imagej, i.e., how many times imagei was ranked
as closer to the original than imagej. After pooling all the re-
sults, the preference matrix is scaled to represent percentages
(“imagei was preferred to imagej in p percent of cases”) and
percentages are converted into z-scores. This can produce sin-
gular values when we have perfect agreement among raters,
so an alternative has been proposed by Kruset al. [12], which
avoids such undesirable behavior.



Algorithm Borda’s rule Thurstonian scale MDS

PSNR 0.72 0.72 0.72
SSIM 0.74 0.74 0.74

CWSSIM 0.84 0.84 0.83
STSIM 0.88 0.88 0.87
STSIM2 0.88 0.88 0.87
Table 1. Pearson’sρ for different analysis methods

Algorithm Borda’s rule Thurstonian scale MDS

PSNR 0.67 0.66 0.67
SSIM 0.72 0.71 0.72

CWSSIM 0.81 0.81 0.81
STSIM 0.85 0.85 0.85
STSIM2 0.86 0.86 0.86
Table 2. Spearman’sρ for different analysis methods

Yet another way to analyze the data is to treat the ranks as
distances between images. For example, the image that was
ranked as number 1 and the image that was ranked as num-
ber 5 would be assigned distance of 4. After aggregating all
the data from all the users, we can then perform multidimen-
sional scaling (MDS) [13,14] to extract the perceptual dimen-
sions embedded in the data. For each methods, we report the
Pearson’sρ in Table 1, and the Spearman’sρ in Table 2.

4.2. Analyzing the ranking results across originals

In the final step of the test, each user had to rate ten images
they previously labeled as the “worst” ones, from “best” to
“worst.” Thus, every user gives a ranking of a subset of all
possible pairs of images across different originals. Giventhat
there are910 possible different subsets, it is clear that the data
gathered in this manner produces very sparse matrices.

Methods for comparing the similarity or preference ma-
trices with incomplete data do exist. However, in this case,
when analyzed with non-metric multidimensional scaling
techniques [15], the results are very unreliable, due to the
high sparsity of the formed preference matrix.

An alternative is to use a metric that estimates the agree-
ment between the subjective scores and a metric’s scores.
One possible test to perform is Kendall coefficient of agree-
ment [16] (or Kendall’s W), which is designed to measure
inter-rater agreement. To analyze the performance of a met-
ric, we can treat it as yet another rater and then compute the
joint agreement between the metric values and the subjective
scores. The higher the overall coefficient of agreement, the
better the metric represents the subjective data. Values for
this test are reported in Table 3.

5. CONCLUSION

We have presented a novel approach for generating synthetic
texture distortions that model variations that occur in nat-
ural textures. We conducted subjective tests to learn how
the human subjects perceive the severity of such distortions,
and to determine which texture similarity algorithm corre-
lates the best with the subjective judgements. The STSIM2

algorithm always outperforms, or is tied with, the other al-
gorithms, which shows its usefulness for compression appli-
cations.Future research will include a broader range of image
deformations, as well as more thorough subjective testing and
the incorporation of the metric into a compression algorithm.

PSNR SSIM CWSSIM STSIM STSIM2

0.53 0.60 0.66 0.67 0.68
Table 3. Kendall’s coefficient of agreement
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