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ABSTRACT
The development of objective texture similarity metrics for
image analysis applications differs from that of traditional im-
age quality metrics because substantial point-by-point devia-
tions are possible for textures that according to human judg-
ment are essentially identical. Thus, structural similarity met-
rics (SSIM) attempt to incorporate “structural” information
in image comparisons. The recently proposed structural tex-
ture similarity metric (STSIM) relies entirely on local image
statistics. We extend this idea further by including a broader
set of local image statistics, basing the selection on metric
performance as compared to subjective evaluations. We uti-
lize both intra- and inter-subband correlations, and also incor-
porate information about the color composition of the textures
into the similarity metrics. The performance of the proposed
metrics is compared to PSNR, SSIM, and STSIM on the basis
of subjective evaluations using a carefully selected set of 50
texture pairs.

Index Terms— Steerable filter decomposition, dominant
colors, image retrieval, image compression.

1. INTRODUCTION
The development of objective metrics for texture similarity
differs from that of traditional image quality metrics because
substantial point-by-point deviations are possible for textures
that according to human judgment are essentially identical.
While the emphasis of this paper is on image analysis and re-
trieval applications, texture similarity metrics are also impor-
tant for image coding applications when significant changes
in the image are permissible, provided they do not affect the
perceived image quality, even though in a side-by-side com-
parison there may be clearly perceptible differences.

There have been several attempts to develop metrics that
deviate from traditional point-by-point fidelity. A broad class
of new metrics, the structural similarity metrics (SSIM) [1],
attempt to incorporate “structural” information in image com-
parisons. A number of metrics have been proposed, both in
the space domain (SSIM) [1] and the complex wavelet do-
main (CWSSIM) [2]. In order to overcome some of the lim-
itations of SSIMs when applied to texture analysis applica-
tions, Zhao et al. [3] proposed a structural texture similarity
metric (STSIM) that aims to move further away from point-

by-point comparisons by relying only on local image statis-
tics. In this paper, we extend this idea further by including a
broader set of local image statistics, basing the selection on
metric performance as compared to subjective evaluations. In
particular, we utilize the (usually strong) correlations between
information contained in different subband decompositions of
an image. In addition, we incorporate information about the
color composition of the textures into the similarity metrics.

This paper is organized as follows. Section 2 provides a
brief overview of similarity metrics. The proposed techniques
are described in Section 3. The experimental setup and results
are given in Section 4.

2. BACKGROUND
Traditional quality metrics range from simple MSE and PSNR
to more sophisticated metrics that incorporate low-level mod-
els of human perception [4], and are typically aimed at near-
threshold applications such as image compression. The idea
is to ensure image fidelity on a point-by-point basis. How-
ever, for supra-threshold applications, such as content-based
image retrieval (CBIR), we need metrics that can accommo-
date significant changes as long as the structure of the im-
age is preserved. This was the primary motivation in the de-
velopment of SSIMs [1], which allow non-structural contrast
and intensity changes, and in the case of CWSSIM [2], small
translations, rotations, and scaling changes as well.

SSIM metrics, whether implemented in the space or wave-
let domain, compare two images or image patches (windows)
x and y by multiplicatively combining a number of terms.
Here we assume that the metric is computed in a window of
the k-th subband. The luminance comparison term is defined
as

lk(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(1)

where µx and µy are the means of the two windows; the con-
trast comparison term is defined as

ck(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(2)

where σ2
x and σ2

y are the variances of the two windows; and
the structure term is defined as

sk(x,y) =
σxy + C3

σxσy + C3

(3)

where σxy is the covariance between the two windows. C1,
C2, and C3 are small constants. These terms are then com-
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bined to give a composite measure of structural similarity:
Qk

ssim
(x,y) = lk(x,y)αck(x,y)βsk(x,y)γ (4)

where α, β, and γ are positive weights, typically set to 1. The
SSIM is typically evaluated in a small sliding window (e.g.,
7 × 7), and the overall image similarity is obtained as the
average over all spatial locations and all subbands.

As we saw above, one of the main thrusts in the SSIM
approach is to move away from point-by-point comparisons,
and instead, to base the comparisons on region statistics. In
an attempt to fully embrace this philosophy, Zhao et al. [3]
replaced the structure term – which in spite of its name is in
fact a point-by-point comparison – with terms that depend on
region statistics. They introduced terms that compare the first
order correlation coefficients (autocovariance normalized by
the variance) in the horizontal ρk

x(0, 1) and vertical ρk
x(1, 0)

directions as follows:
ck
0,1(x,y) = 1 − 0.5

(

|ρk
x(0, 1) − ρk

y(0, 1)|
)p (5)

The vertical term is defined similarly. Note that these com-
parison terms take values in the interval [0, 1], are symmetri-
cal with respect to x and y, and have a unique maximum. An
additional advantage of eliminating the structure term is that
the metric takes only positive values. Here we assume p = 1.

To compute the overall value of the metric, the two images
are decomposed into subbands using a steerable filter decom-
position, and the statistics are computed, for each orientation
and scale, within small sliding window. The different terms
are combined multiplicatively to obtain the similarity coeffi-
cient at each location and subband
Qk

stsim(x,y)= lk(x,y)
1

4 ck(x,y)
1

4 ck
0,1(x,y)

1

4 ck
1,0(x,y)

1

4 (6)
Note that the exponents sum to one in order to normalize the
metric values, so that metrics with different numbers of terms
can be compared. The overall metric value is then calculated,
either additively by averaging over all subbands and spatial
locations, or multiplicatively by multiplying the coefficients
of all subband and then averaging over all spatial locations.

3. PROPOSED TECHNIQUES
The proposed metrics extend the ideas of [3] by including a
broader set of local image statistics. The motivation for this
comes from the analysis/synthesis literature, and in particu-
lar, the work of Portilla and Simoncelli [5], who have shown
that a broad class of textures can be synthesized using a set
of statistical parameters that characterize the coefficients of
a multiscale frequency decomposition. While texture synthe-
sis requires several hundred parameters, we believe that a lot
fewer will be adequate for texture similarity.

As in [2, 3], we use the steerable filter decomposition of
the grayscale component of the two images. In the following,
we use three scales (Ns = 3) and four orientations (No = 4).

In addition to the terms in (6), we use terms that compare
the cross-correlation between subbands. The luminance, con-
trast and autocorrelation terms in (1), (2), and (5) are calcu-
lated on the raw subband coefficients, while the cross-correla-
tion statistics are computed on the magnitudes.

Note that all the subbands (except the low-frequency band)
are zero-mean over the whole image; however, within small
windows, e.g., 7 × 7, this is not necessarily true. Thus, we
need to compute the average for each sliding window and use
it in the variance calculation.

Portilla and Simoncelli [5] base the justification for the
use of coefficient correlations within subbands on the fact that
the steerable filter decomposition is overcomplete and the ex-
istence of periodicities in the textures. They also argue that,
while raw coefficients may be uncorrelated, the coefficients
magnitudes are not statistically independent, and large mag-
nitudes in natural images tend to occur at the same spatial
locations in subbands at adjacent scales and orientations.

In the proposed metric, for each orientation we compute
the cross-correlations between the magnitudes of subband co-
efficients at adjacent scales, and for each scale we compute
the cross-correlations between the subband magnitudes of all
orientations. Thus, for the 3-scale, 4-orientation decomposi-
tion, we have

(

4

2

)

= 6 coefficients for each scale, and 2 coeffi-
cients for each orientation, for a total of M = 3 ·6+4 ·2 = 26
new terms. In the Section 4 we will discuss the effect of uti-
lizing all or subsets of these 26 coefficients.

The cross-correlations between the coefficient magnitudes
at subbands k and l are normalized by the variances of the two
subbands to obtain the cross-subband correlation coefficient

ρk,l
x (0, 0) =

E{(|xk,i,j | − µxk
)(|xl,i,j | − µxl

)}

σxk
σxl

(7)

where |xk,i,j | and |xl,i,j | are the magnitudes of the coeffi-
cients of subbands k and l, respectively, and µxk

and µxl
are

the corresponding means of the magnitudes in the window.
The expected value is an empirical average over the window.

Since the cross-subband correlation coefficients take val-
ues in the interval [−1, 1], we can compare them as in (5)
to obtain a statistic that describes the similarity between the
cross-correlations:

c
k,l
0,0(x,y) = 1 − 0.5

(

|ρk,l
x (0, 0) − ρk,l

y (0, 0)|
)p (8)

Note that the c
k,l
0,0(x,y) values are in the interval [0, 1], just

like the STSIM terms.
For a steerable pyramid with Ns scales and No orienta-

tions, we have a total of N = Ns · No + 1 subband images
(including the highpass but not the lowpass). For each of these
subbands, we compute the STSIM maps as in (6). We also
compute M maps with the new statistics, based on (8). The
Nt = N + M matrices can then be combined additively

Qt(x,y) =
1

Nt





∑

k

Qk
stsim(x,y) +

∑

k,l

c
k,l
0,0(x,y)



 (9)

or multiplicatively to obtain a single similarity matrix. Fi-
nally, spatial summation over the matrix values gives a single
value for the similarity metric.
Color Similarity Metric
A straightforward approach for extending an image quality
metric to color is to apply the grayscale metric to each of three



color components in a trichromatic space; this is what is typi-
cally used in image compression applications. An alternative
approach that is more effective in image retrieval applications
is to use separate metrics for comparing the grayscale textures
and the color composition of an image, and then to combine
them in order to obtain one number.

The simplest approach for describing and comparing the
color composition of images is to use color histograms and
simple histogram intersection metrics [6] or a more sophisti-
cated color quadratic distance [7]. However, based on the ob-
servation that the human visual system cannot simultaneously
perceive a large number of colors, more compact color repre-
sentations in terms of dominant colors have been employed,
e.g., in [8, 9, 10]. In addition, direct histogram comparisons
have given way to more sophisticated techniques that account
better for the HVS properties. One of the best known tech-
niques is the earth mover’s distance (EMD) [11].

In this paper, we adopt the dominant color idea and use a
metric that follows the same philosophy as EMD, the Optimal
Color Composition Distance (OCCD), which finds the opti-
mal mapping between the color composition features of two
segments and computes the average distance between them in
the CIE L*a*b* color space [12]. Since the appearance of an
image is best described by the spatial distribution of features,
rather than by individual feature vectors [13], we are utilizing
a sliding windows approach to assess color similarity, just like
we did for texture. In order to account for spatially varying
textures, we use the adaptive clustering algorithm [14] to ob-
tain spatially adaptive dominant colors. The advantage of this
technique is that the averaging is performed only on pixels
that belong to the same segment, thus avoiding any blurring
along the borders of two segments.

Since the OCCD computes the distance between two col-
ors, their similarity can be rated as 1 − distance. Thus, as a
similarity measure, we use the map Qc(x,y) = 1−OCCD.
The mean of Qc(x,y) map is taken as the color similarity
measurement Qc. The color texture similarity is determined
on a sliding windows basis, thus producing a color similarity
map, similar to those obtained for the grayscale texture.

The final step is to linearly combine the texture and color
similarity measures Qt and Qc with appropriate weights, , wt

and wc = 1 − wt, as is widely done in the literature

Qtotal = wt · Qt + wc · Qc (10)

4. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed techniques, we
conducted an informal subjective test, whereby people were
asked to rate similarity between pairs of images. We used a
carefully selected set of 50 texture pairs, obtained from a pool
of thirty textures, extracted from the Corbis online database
[15]. The size of the texture images was 128× 128. Figure 1
shows the seven most similar pairs according to the human
judgments, as well as two dissimilar textures.

The subjective test was conducted using Matlab GUI. The
number of subjects was ten. Each subject was asked to grade
50 pairs of textures according to their similarity, with the low-
est grade being 1 (“completely dissimilar”) and the highest
grade being 10 (“same texture”). The final score assigned to
a pair of textures was the mean value of all the subjective
scores. At the beginning of the test, each subject was shown
a representative set of textures. The subjects were asked to
rank the similarity between two textures without any specific
guidelines, e.g., on the relative importance of texture struc-
ture, scale, color, etc. Note that since we used a set of natural
textures, it was unavoidable that the semantics had an effect
on the similarity evaluations.

As we discussed, in our experiments we used a 3-scale,
4-orientation decomposition. The sliding window for all the
metrics was 7×7. In order to determine the best set of param-
eters for the proposed metric, that is, the best combination of
texture maps in (9) and the optimal values for the weights wt

and wc, we tried different combinations and selected the one
that results in the best correlation with human judgments.

Evaluating performance of similarity evaluation systems
is difficult. Since we are using a relatively small set of pairs,
we are mostly interested in how the metric rankings of texture
similarity compare to the subjective rankings. Thus, instead
of Pearson’s, we used the Spearman rank correlation coeffi-
cient, “a non-parametric measure of correlation – that is, it
assesses how well an arbitrary monotonic function could de-
scribe the relationship between two variables, without making
any assumptions about their frequency distribution” [16].

In addition to selecting parameters for the proposed met-
ric, we compared its performance to other metrics. As might
be expected, the Spearman correlation coefficient for PSNR
was 0.283. The SSIM [1] (based on the Matlab implemen-
tation downloaded from [17]) performed considerably better;
we used the same varying weights, and the best result was
0.515. The CW-SSIM and STSIM metrics performed better
with 0.579 and 0.598, repsectively. The best performance of
the proposed metric, and best overall, was 0.659. This was
obtained for the additive approach including all the terms in
(9) and with weights wt = 0.6 and wc = 0.4 in (10). We
also tried another well-established test, the Kendall tau rank
correlation coefficient, and the results were similar.

To distinguish the effect of including the new terms (9) vs.
including color information only, it should be noted that the
Spearman rank correlation coefficient for the proposed metric
without using color (wt = 1 and wc = 0) was 0.638, well
above the best performance without the new terms (0.598).
This shows that the crucial improvement was accomplished
by adding new cross-correlation terms.

Since raw correlation numbers like ρ = 0.65 are not very
descriptive when one does not know what to expect, we per-
formed the following calculation. For each of the subjects,
we removed their judgments from the pool, and computed the
mean grades of the remaining subjects. Then, we conducted
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Fig. 1. Selected texture pairs used in the experiments and average human scores (a-g) similar, (h-i) dissimilar.

the Spearman rank correlation tests, to find out how well a
human performs against other humans; to be fair, we recom-
puted the correlation coefficients between our best performing
method, and the same mean grades of the remaining subjects.
In other words, we compared the performance of our metric
with the performance of each human subject versus that of the
remaining subjects. The mean value of the correlations of hu-
man judgments against one human was 0.794, as compared to
the value of 0.661 for the proposed metric. For practical pur-
poses, a metric is considered to be useful if the Spearman rank
correlation coefficient exceeds 0.8; this result shows that, in
future, we need to design the subjective tests more carefully
and have more reliable benchmark human judgements.

As another indication of metric performance, Figure 2
shows a scatter plot of the subjective tests versus the met-
ric values for the CW-SSIM, STSIM, and the proposed met-
ric (all variables are standardized, i.e., centered around 0 and
scaled by their standard deviations). The slope of the mean-
square fit, which is in fact the Pearson’s correlation coeffi-
cient, is an indication of performance. Note that, while the
proposed technique is closest to the ideal slope of one, it is
still a long way from ideal performance. Looking at the seven
most similar pairs as judged by the subjects, we get an idea
of the difficulty of the task. One possibility for improvement
may be to decouple the grayscale from the color judgment.
Another issue to be addressed more carefully is texture scale.
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[9] A. Mojsilović, et al., “Matching and retrieval based on
the vocabulary and grammar of color patterns,” IEEE Tr.
Image Proc., vol. 1, pp. 38–54, Jan. 2000.

[10] J. Chen, et al., “Adaptive perceptual color-texture image
segmentation,” IEEE Tr. Image Proc., vol. 14, pp. 1524–
1536, Oct. 2005.

[11] Y. Rubner, et al., “The earth mover’s distance as a metric
for image retrieval,” Int. J. Comp. Vision, vol. 40, pp.
99–121, 2000.
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