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ABSTRACT

In order to facilitate the development of objective tex-
ture similarity metrics and to evaluate their performance, one
needs a large texture database accurately labeled with per-
ceived similarities between images. We propose ViSiProG,
a new Visual Similarity by Progressive Grouping procedure
for conducting subjective experiments that organizes a tex-
ture database into clusters of visually similar images. The
grouping is based on visual blending, and greatly simplifies
pairwise labeling. ViSiProG collects subjective data in an ef-
ficient and effective manner, so that a relatively large database
of textures can be accommodated. Experimental results and
comparisons with structural texture similarity metrics demon-
strate both the effectiveness of the proposed subjective testing
procedure and the performance of the metrics.

Index Terms— structural similarity metrics, image qual-
ity, content-based retrieval.

1. INTRODUCTION

Objective texture similarity metrics are important for a vari-
ety of applications, including image and video compression,
computer vision, and content-based retrieval. Unlike tradi-
tional image quality metrics [1] that evaluate the similarity of
two images on a point-by-point basis, texture similarity met-
rics must allow substantial point-by-point deviations between
textures that according to human judgment are quite similar or
even essentially identical. The development of such metrics
requires extensive subjective tests to fine-tune the metrics and
to ensure that their performance agrees with human judgment.
However, each application imposes its own requirements on
metric performance. For example, in image compression it is
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important to provide a monotonic relationship between mea-
sured and perceived distortion, while in image retrieval appli-
cations it may be sufficient to distinguish between similar and
dissimilar images, while the ordering within each group may
not be important. The application also determines whether
an absolute or relative similarity scale is needed. The focus
of this paper is on content-based image retrieval (CBIR) but
the proposed techniques will also have a significant impact on
other applications, such as image compression.

A key challenge in designing subjective tests for metric
development and evaluation is the collection of extensive
amounts of data from a large database of images in order
to capture the essential properties of the problem. Another
key challenge, closely linked to experimental design, is the
analysis of the recorded data. There exists a rich psychophys-
ical literature on testing procedures and tools for the analysis
of the recorded data [2]. However, the well-known and
readily-available solutions for test design often have to be
substantially modified to fit the constraints and specific needs
of a particular application. One of the main problems is
striking a balance between the length of the test and fatigue
of the subject, and the amount (and quality) of data to be
collected, so it can be properly analyzed to extract the desir-
able information. In addition, if individual preferences are
to be addressed, each subject should provide enough data for
reliable estimation of the relevant parameters. The success of
a subjective test also depends, of course, on providing a set
of unambiguous instructions that do not result in any bias.

Depending on the performance requirements, a number
of traditional statistical measures can be used in conjunction
with subjective tests for metric evaluation. For example, the
Spearman’s rank correlation coefficient and Kendall’s tau
rank correlation coefficient can be used when a relative simi-
larity scale is needed [3], while linear regression can be used
when an absolute scale is necessary. In both cases, however,
a large number of subjective tests is needed in order to com-
pare the objective and subjective similarity between texture
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pairs. The number of comparisons grows quadratically with
the number of textures in the database. However, a better
understanding of the metric performance requirements can
go a long way in reducing the amount of required testing.

For example, in [4], the focus was on the recovery of tex-
tures that are “identical” to the query texture, in the sense that
they are pieces of the same texture. All that is needed in this
case is to start with a database consisting of perceptually uni-
form textures, which we can then cut into (perhaps partially
overlapping) pieces, in order to obtain the test database. Any
two pieces that come from the same original (perceptually
uniform) texture are then considered identical textures. Thus,
the ground truth is known and no further subjective tests are
required. In the information retrieval community this known
as the known-item search [5]. Common measures for this type
of retrieval systems include precision at one (measures in how
many cases the first retrieved document is relevant), mean re-
ciprocal rank (measures how far away from the first retrieved
document is the first relevant one), mean average precision
and precision-recall plots [4].

In [6], the performance criterion was whether a metric can
distinguish between similar and dissimilar pairs, irrespective
of the ordering within each group. In this case, the greater the
gap in metric values between similar and dissimilar pairs, the
better the metric performance. This is the focus of the cur-
rent paper. To test metric performance in the context of this
criterion, we need to organize the test images into clusters of
similar textures, preferably with minimal overlap. To accom-
plish this, we propose a new procedure, Visual Similarity by
Progressive Grouping (ViSiProG), whereby subjects are se-
quentially presented with textures and asked to form groups,
which are progressively refined to converge into clusters of
visually similar textures. The grouping criterion is that tex-
tures blend visually, as if they came from the same tapestry.
Semantic grouping is strongly discouraged.

Finally, as we mentioned above, in lossy image compres-
sion applications a monotonic relationship between measured
and perceived distortion is needed. However, such a relation-
ship makes sense only for similar textures. It is difficult even
for humans to quantify the similarity of textures that are not
similar [3]. Does it make sense to say that sand and tree bark
are more dissimilar than marble and snake skin? Thus, any
subjective tests must be limited to similar groups. The pro-
posed ViSiProG procedure is a key preliminary step in con-
ducting subjective tests for compression applications. The
overall picture is summarized in Fig. 1, which demonstrates
the desired metric performance. Subjective similarity scores
are on the horizontal axis and metric similarity values are on
the vertical axis. A good metric will result in a monotonic re-
lationship between the two variables in the similar range, and
will have a large gap between similar and dissimilar textures.

The similarity of two textures depends on both the color
composition and the spatial texture characteristics. However,
our previous work indicates [3, 4] that the two attributes
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Fig. 1. Ideal performance of texture similarity metric

should be considered separately. Thus, in the present study
we focus only on grayscale textures. However, a similar
subjective testing procedure can be implemented for color
textures, whether one looks only at composition or at the
overall texture.

Our experimental results demonstrate that the proposed
procedure collects subjective data in an efficient and effective
manner, so that a relatively large database of textures can be
accommodated. Comparisons with structural texture similar-
ity metrics are then used to evaluate metric performance.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of texture similarity metrics.
The new subjective testing procedure is described in in Sec-
tion 3 and the experimental setup and results in Section 4.

2. REVIEW OF STRUCTURAL TEXTURE
SIMILARITY METRICS

In this section we review the structural texture similarity met-
rics (STSIM) proposed in [6, 3]. These metrics compute the
similarity of two images x and y by multiplicatively combin-
ing a number of terms that compare subband statistics of the
two images. The terms to compare can either be computed
over the entire image (global window), or over a small sliding
window and spatially averaged for an overall metric value.
The images are decomposed into subbands using a steerable
pyramid. For each orientation and scale we get a similarity
score, which we average for the final value for the metric.

For the k-th subband, the luminance comparison term is
defined as:

lk(x,y) =
2μk

xμk
y + C1

(μk
x)2 + (μk

y)2 + C1

(1)

where μk
x and μk

y are the means of the two windows (local or
global). The contrast comparison term is defined as:

ck(x,y) =
2σk

xσk
y + C2

(σk
x)2 + (σk

y )2 + C2

(2)

where (σk
x)2 and (σk

y )2 are the variances of the two windows.
C1, C2 are small constants, preventing 0/0 division. The first
order correlation terms compare the first order correlation co-
efficients (autocovariance normalized by the variance) in the
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horizontal ρk
x(0, 1) and vertical ρk

x(1, 0) directions as follows:

ck
0,1(x,y) = 1 − 0.5

(
|ρk

x(0, 1) − ρk
y(0, 1)|

)
(3)

The vertical term is defined similarly. These terms are then
combined to give a composite measure of structural texture
similarity (STSIM) [6] for the kth subband:

Qk
stsim(x,y)= lk(x,y)

1

4 ck(x,y)
1

4 ck
0,1(x,y)

1

4 ck
1,0(x,y)

1

4

(4)
The STSIM-2 metric proposed in [3] extends the ideas of

[6] by including a broader set of local image statistics, mo-
tivated by the analysis/synthesis literature [7]. In addition to
the terms in (4), STSIM-2 uses terms that compare the cross-
correlation between subbands. The luminance, contrast and
autocorrelation terms in (1), (2), and (3) are calculated on the
raw subband coefficients, while the cross-subband correlation
statistics are computed on the magnitudes. For each orienta-
tion, STSIM-2 computes the cross-correlations between sub-
bands at adjacent scales, and for each scale, it computes the
cross-correlations between all orientations.

The cross-correlations between the coefficient magni-
tudes at subbands k and l are normalized by the variances
of the two subbands to obtain the cross-subband correlation
coefficient

ρk,l
x (0, 0) =

E{(|xk,i,j | − μxk
)(|xl,i,j | − μxl

)}

σxk
σxl

(5)

where |xk,i,j | and |xl,i,j | are the magnitudes of the coeffi-
cients of subbands k and l, respectively, and μxk

and μxl
are

the corresponding means of the magnitudes in the window.
These are compared as in (3) to obtain a statistic that describes
the similarity between the cross-correlations:

ck,l
0,0(x,y) = 1 − 0.5

(
|ρk,l

x (0, 0) − ρk,l
y (0, 0)|

)
(6)

Note that the ck,l
0,0(x,y) values are in the interval [0, 1], just

like the STSIM terms.
If the steerable pyramid decomposition yields a total of

N subbands, we compute N STSIM maps as in (4), and also
M maps (M being a function of the number of scales and
orientations in the pyramid) of cross-subband statistics, based
on (6). The Nt = N + M matrices are then be combined
additively

Qt(x,y) =
1

Nt

⎛
⎝∑

k

Qk
stsim

(x,y) +
∑
k,l

ck,l
0,0(x,y)

⎞
⎠ (7)

to obtain a single similarity score.

3. TEXTURE SIMILARITY SUBJECTIVE
EXPERIMENT

Gathering subjective scores on texture similarity can be car-
ried out in the conventional way, by asking subjects to rate
each and every pair of images and averaging the pooled
scores, as was done in [3]. However, there are two serious
problems with such conventional approaches. First, as was
found in [3], when two texture images are not similar, it is dif-
ficult for human subjects to quantify the difference in relative

or absolute terms, and there are large inconsistencies between
users. There is a similar difficulty in quantifying color dif-
ferences, for example, whether yellow is more similar to blue
than orange is to green. A second problem is that the number
of pairs grows quadratically with the total number of images,
thus limiting the size of the database on which we can test.

As we argued in the introduction, these problems can be
avoided by restricting the range of comparisons to pairs of
similar textures (the right most part of Fig. 1). To accomplish
this we can divide the experiment into two stages. The first
stage consists of forming similarity clusters, whereby, tex-
tures are similar to each other within a cluster and dissimilar
across different clusters. The second stage consists of stan-
dard pairwise comparisons of images that belong to the same
cluster. Thus, by restricting pairwise comparisons to similar
textures, this procedure alleviates the problem of quantifying
similarity between dissimilar textures, and also, greatly re-
duces the number of comparisons.

The focus of this paper is on the first stage of the test-
ing procedure, forming similarity clusters of texture images.
These clusters are in some sense analogous to MacAdam el-
lipses [8] in color, where each ellipse encompasses the col-
ors that are indistinguishable by human observers from the
color at the center of the ellipse. Here, we are working in
texture space, and we wish to find the N-dimensional ellipses
that contain textures that are considered to be similar by hu-
man observers, a relaxed condition compared to MacAdam’s
perceptually indistinguishable colors. Of course, the crite-
rion could be adjusted to very similar or perceptually indis-
tinguishable textures but the challenge is to go beyond the
threshold of detection. This is not a trivial task because tex-
tures may differ along several perceptual dimensions, such as
contrast, scale, directionality, regularity, periodicity, size and
shape of texture elements (textons), average gray level, etc.
Preliminary experiments showed that if you ask subjects to
group textures into similarity groups, they tend to pick one
or more specific dimensions and to ignore other dimensions.
Another problem is that subjects may use semantic criteria
for the grouping. To avoid such problems, and to encourage
subjects to form groups that contain images that are similar
in multiple aspects, we tailored our experimental interface so
that it relies on visual blending as the similarity criterion.

3.1. Visual similarity by progressive grouping (ViSiProG)

We now present a new approach for forming similarity clus-
ters when given a relatively large set of textures. A key prob-
lem in forming clusters when the image set is large, is that
it is difficult for a subject to see all the textures on a single
computer screen in order to form similarity groups. One so-
lution is to print the textures on paper, and to ask the subject
to form groups on a table. However, even then, it is difficult
to see and compare all the textures. The main ideas are (a)
to build the similarity groups one at a time, and (b) to build
each group in a step-by-step fashion, picking similar images
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out of a small subset of images, then repeating the process
with another subset of images, until all the images have been
considered. Each subject can build several groups in this fash-
ion (one at a time), and the results of multiple subjects can be
combined to obtain all the similarity groups in the database.
We call the new testing procedure Visual Similarity by Pro-
gressive Grouping (ViSiProG).

We now describe ViSiProG in more detail. Let the total
number of images in the database be N . A set of Nd randomly
selected images is displayed on the screen, and the subject is
asked to form a group of Ng “most similar” images. For ex-
ample, in our experiments we used N = 246, Nd = 32, and
Ng = 9. Next, the Nd−Ng images that are not included in the
group are replaced with a new batch of randomly selected im-
ages from the database; the images (Ng from the group and
Nd − Ng from the new batch) are shuffled; and the subject
is asked again to form a group. This procedure is repeated
until the subject has seen all the images in the database. Fig-
ure 2 shows a snapshot of the test. The group is formed at
the upper left corner of the screen, and is highlighted by a
different background color (green in this case). At each iter-
ation, the subject is asked to select Ng images to form a new
group out of the Nd displayed images. In the initial stages,
the new group does not have to be similar to the group of the
previous stage; all the subject is asked to do is form the most
similar group. However, as the test progresses and the subject
converges on one group of images, then the group is kept to-
gether, and the subject is asked to refine it by replacing some
of the textures with textures from the new batch. The conver-
gence criterion is the amount of overlap between the groups
of two consecutive iterations; in our experiments we set the
threshold at 50%, that is, at least five out of nine images must
stay the same. If the threshold is met, then the group is kept
together for the next iteration; otherwise, the group is shuffled
with the new batch of images. This feature allows drifting in
the early stages of the test and facilitates convergence in the
later stages. The subject can keep refining the group for as
long as she/he desires. When the subject has seen all the im-
ages in the database at least once, then she/he is given the op-
tion of terminating the test and saving the results (the “That’s
it! Save & close” button appears).

In the first iteration, Nd images are selected randomly
with equal probability from the set of N images. In subse-
quent iterations, each new batch of images is selected ran-
domly from the set of N − Ng images, but the probability of
selection decreases with the number of times it has already
appeared (and been rejected). This ensures that the subject
will see all N images in a relatively small number of trials,
but also allows images to be presented multiple times, until
the subject converges to a cluster.

The subject forms the group by toggling the check mark
at the bottom of each texture. A selection counter makes sure
that the subject selects nine textures each time. The subject
is allowed to try (by clicking on “show group!”) as many

texture combinations as desired before proceeding to the next
iteration (by clicking on the “Keep my group & shuffle the
rest” button). The subject also has the option of rotating each
texture (by 90o at a time) to get a better visual match.

The similarity criterion is one of the keys to the success to
achieving our goal of forming texture clusters that are similar
across several dimensions. We ask the subject to form a group
of textures that blend visually, as if they came from the same
tapestry. As we pointed out, semantic grouping is strongly
discouraged. As shown in Fig. 2, the group is highlighted
by a different background color. Note, that including a border
between images facilitates (rather than inhibits) blending, as it
masks the discontinuities at the edges of the different textures.
A similar effect was observed in tiled displays [9].

Since there are multiple similarity clusters in the database,
the choice of the initial subset of images shown to a subject
will greatly influence the resulting cluster. Thus, given ran-
dom selection of textures, it is very likely that subjects will
form different clusters across trials.

4. EXPERIMENTAL RESULTS

In our experiment we used 246 grayscale texture images, out
of which 242 were taken from the Corbis database [10] and
four are from the authors’ personal collection. The images
were originally 128 × 128 pixels, but were downsampled to
100 × 100 to be presented on the screen. No sampling con-
version artifacts were apparent at any stage of the test. We
used Matlab GUI development tools, and the users were able
to perform the test on their own machines. A total of 15 users
participated in this study. They all had normal or corrected-
to-normal eyesight. The subjects were asked to execute the
test a few times, and the instructions stated that they should
neither focus on regenerating the previous group, nor not re-
generating it, but to try to do the test as if it were the first time
they were seeing it. Each user performed the test three times
and generated three distinct groups, for a total of 45 groups.

The experimental results were summarized in a similarity
matrix S, the off-diagonal entries (i, j) of which indicate how
many times image i was in the same group as image j; the
diagonal elements, S(i, i) represent the total number of times
image i was selected in a group. Out of 246 images, only
134 were selected by the users in a group. The remaining
112 images were never selected. In addition, the rotations of
images are taken into consideration, and each rotated image
(by±90◦ or 180◦) was treated as a different image. When this
was factored in, the total number of (distinct) images the users
selected was 138. Therefore, we can reduce the 246 × 246
similarity matrix S to form a smaller 138 × 138 matrix Sred.

To analyze the results of the subjective experiment, we
used the spectral clustering technique [11]. Spectral cluster-
ing methods operate on similarity graphs, which are repre-
sented by adjacency matrices, and use the eigenvectors and
eigenvalues to cluster the points. These similarity graphs can
be formed in different ways, depending on the application. In
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Fig. 2. Test snapshot

our case, the nodes of the graph represent the images, and the
edges and their weights represent the similarity between two
images. The adjacency matrix W is formed by scaling the el-
ements of Sred by a constant C = max(Sred)+1, and placing
ones on the diagonal (images are self-similar).

A graph is fully connected if there is an edge between
each pair of images. A graph can be reduced by eliminating
edges with weights less than some ε, or by keeping the m
strongest edges that come out of each node. We chose to use
a fully connected graph because we do not want to discard
any data gathered from the subjects.

Once the W matrix is generated, the degree of a vertex is
defined as:

di =

R∑
j=1

W (i, j)

where R = 138. If we define the degree matrix D as a di-
agonal matrix with entries d1, ..., dR, the unnormalized graph
Laplacian matrix L is calculated as:

L = D − W.

We refer the readers to [11] for further reading on graph
Laplacian matrices. We then compute the R eigenvec-
tors {u1, ...,uR} and eigenvalues {λ1, ..., λR} of L. The
spectral clustering algorithm consists of applying the K-
means algorithm to those eigenvectors. To cluster into K
groups, we use the first K eigenvectors, where each im-
age i is assigned a point pi in the k-dimensional space with
pi = (u1(i), ...,uK(i)). The number of zero eigenvalues
denotes the number of disconnected (non-overlapping) clus-
ters, which in our case was five. By performing K-means

clustering on {u1, ...,u5}, we get the five non-overlapping
clusters the subjects formed.

After forming the initial five clusters, we can partition
the graph Laplacian matrix L into five smaller matrices
L1, ..., L5, by grouping the rows and columns that belong
to the same clusters. Further analysis of those five clusters is
carried out by performing eigenvector decompositions on the
smaller Laplacian matrices, and using them as the input to the
K-means algorithm.

Since the 5 clusters are connected, there is no strict rule on
the number of subclusters into which they should be divided.
For our purposes, the most intuitive way to proceed is to look
at each cluster in (heavily reduced) texture space defined by
the dominant eigenvectors, by placing the images in 2- or 3-
dimensional grids. The eigenvectors define for each image a
point in space. An example of this visualization is given in
Fig. 3, where one of the five clusters is shown. Note that, for
the purposes of clarity of the image, not all of its members
are present on the plot. Also, note that some of the presented
images were selected by users only once, but as mentioned
earlier, we did not prune the collected subjective data.

Three of the five clusters had a relatively small number of
members (9, 15 and 16) and were not further subdivided. The
remaining two clusters had 43 and 55 members. We chose
to subdivide them into 3 subclusters each. The choice of the
number of subclusters was based on the fact that we wanted
stable subclusters, i.e, consistent results of the K-means pro-
cedure; at the same time, the subclusters should not be too
small (in the extreme case, each image would be a cluster on
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Fig. 3. One of the clusters (with three subclusters)

its own, which would be 100% stable). Setting K = 3 sat-
isfied these conditions for both clusters. In 10, 000 K-means
runs, one cluster (with 55 members, depicted in Fig. 3) con-
verged to the same partitioning in 96% of cases, and the other
one (with 43 members) in 76%. Setting K larger than 3 in
both cases resulted in inconsistent partitions and/or merging
of the subclusters, thus coming back to the 3 subclusters.

As a result, the 138 images were divided into a total of 9
clusters, counting 2×8, 9, 11, 14, 15, 16, 24 and 33 members.

4.1. Analysis of STSIM-2 performance

In this subsection, we will compare the performance of the
STSIM-2 metric with respect to the clusters obtained by the
subjective experiments. One possible solution is to perform
spectral clustering on the STSIM-2 similarity matrix, and to
try to recreate the nine clusters we obtained by clustering the
subjective data. While the adjacency matrix formed by the
subjects was very sparse, STSIM-2 assigned a non-zero value
to every pair of textures. In that case, spectral clustering is
not very effective at sharply separating the clusters.

Another approach is to compare the values of the met-
ric within clusters (intra-cluster similarity values), and across
clusters (inter-cluster similarity). This is depicted in Fig. 4.
The intra-cluster histogram was computed by pooling all the
STSIM-2 values of pairs of images that belong to the same
clusters (i.e, STSIM-2 values of all possible pairs within each
of the nine clusters). The inter-cluster histogram was com-
puted by pooling all the STSIM-2 values of pairs of images
that belong to two different clusters. Both histograms were
converted to relative frequencies, since the numbers of possi-
ble pairs in intra- and inter-category are different.

As can be seen from the plot, the separation of the STSIM-
2 values between similar images (i.e, within one cluster) and
dissimilar images (i.e, across different clusters) is not per-
fect, and there is an overlap in the similarity scores. How-
ever, we can also notice that the intra-cluster similarity val-
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Fig. 4. Histograms of intra- and inter-cluster metric values

ues are more tightly concentrated around their mean value
(μintra = 0.91), while the inter-cluster values are, in com-
parison, widely spread (μinter = 0.87). One of the possible
explanations is that we need more subjective experiments to
make strong conclusions about which images are considered
to be similar, and even more importantly, which images are
considered to be dissimilar.
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