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The development and testing of objective texture similarity metrics that agree with human judgments of texture
similarity require, in general, extensive subjective tests. The effectiveness and efficiency of such tests depend on
a careful analysis of the abilities of human perception and the application requirements. The focus of this paper
is on defining performance requirements and testing procedures for objective texture similarity metrics. We
identify three operating domains for evaluating the performance of a similarity metric: the ability to retrieve
“identical” textures; the top of the similarity scale, where a monotonic relationship between metric values and
subjective scores is desired; and the ability to distinguish between perceptually similar and dissimilar textures.
Each domain has different performance goals and requires different testing procedures. For the third domain,
we propose ViSiProG, a new Visual Similarity by Progressive Grouping procedure for conducting subjective
experiments that organizes a texture database into clusters of visually similar images. The grouping is based
on visual blending and greatly simplifies labeling image pairs as similar or dissimilar. ViSiProG collects
subjective data in an efficient and effective manner, so that a relatively large database of textures can be
accommodated. Experimental results and comparisons with structural texture similarity metrics demonstrate
both the effectiveness of the proposed subjective testing procedure and the performance of the metrics.
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1. Introduction

In spite of a large body of research on texture analy-
sis, the development and testing of objective metrics for
texture similarity, remain quite open. Further progress
depends on a careful examination of the fundamental
assumptions about the signal characteristics, the capa-
bilities of human perception, and the requirements of
the intended applications. In [1] Zujovic et al. pre-
sented a new class of structural texture similarity metrics
(STSIMs) that account for the first two considerations,
namely, the (typically) stochastic nature of textures and
the ability of the human visual system (HVS) to perceive
textures with visible point-by-point differences as simi-
lar or essentially identical (in the sense that they could
be patches from a large perceptually uniform texture).
This paper considers the evaluation of texture similarity
metrics based on all three considerations. This entails
the establishment of performance requirements for such
metrics and the development of effective and efficient
subjective testing procedures. The main contributions
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of this paper are the following: (1) We identify oper-
ating domains for similarity metrics, each of which has
different performance goals and requires different test-
ing procedures. (2) We then focus on one of these do-
mains (separating similar from dissimilar textures) and
propose a new efficient subjective testing procedure for
creating ground truth for evaluating the performance of
objective texture similarity metrics in this domain. We
will show that the first is essential for obtaining mean-
ingful results, and that both result in sizable reductions
in the amount of subjective testing.

It is widely agreed that textures are images that
are spatially homogeneous, and that typically contain
repeated structures, often with some random variation
(e.g., random positions, size, orientations, or colors)
(e.g., see [2]). The statistical characteristics of tex-
ture, coupled with human perception, necessitate a dif-
ferent approach for the development of objective simi-
larity metrics for textures that differs from that of tra-
ditional image similarity metrics (often referred to as
quality metrics). Thus, HVS can perceive textures with
visible point-by-point differences as essentially identical
[1]. This is beyond the traditional threshold of percep-
tion, or the just noticeable distortion (JND) threshold,
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(a) (b) (c) (d) (e)

Fig. 1. Examples of texture pairs: (a) identical; (b,c) similar; (d,e) dissimilar textures

(a) (b) (c) (d) (e)

Fig. 2. Examples of texture distortions: (a) original; (b) warping; (c) JPEG, Q=15; (d) JPEG, Q=30; (e) severe warping

below which two images are perceptually indistinguish-
able [3, 4]. As we move away from the threshold of
perception and the domain of identical textures, differ-
ences between two texture signals can take many differ-
ent forms. For example, the differences can take the form
of distortions of an original texture, due to compression,
graphical rendering, or the imaging chain. On the other
hand, both images may be (mostly) undistorted with
different texture attributes, such as scale, directionality,
regularity, etc. When such attributes correspond to per-
ceptually important differences, we will refer to them as
perceptual dimensions. The goal is then to evaluate the
ability of a metric to assess the similarity (or difference)
between two textures. The type of difference depends,
of course, on the application, for example, image and
video compression, computer vision, and content-based
retrieval (CBR). Since most of the applications relate
to human perception of textures, it is important that
metric performance agrees with human judgments.

Based on the application requirements and the capa-
bilities of human perception, in Section 3, we identify
three operating domains for evaluating the performance
of similarity metrics:

1. The retrieval of identical textures. Figure 1(a)
shows an example of identical textures. As we
saw, they are identical in the sense that they can
be considered to be patches of the same perceptu-
ally uniform texture, even though they have visible
point-by-point differences.

2. The top of the similarity scale, where a monotonic
relationship between metric predictions and human
judgments is desired. Figures 2(b)-2(e) show geo-
metric and coding distortions of the original tex-
ture in Fig. 2(a). For such distortions human sub-

jects are generally able to provide consistent simi-
larity ratings. It thus makes sense (and is useful)
to expect that metrics provide ratings that are con-
sistent with those of the human subjects.

3. The ability to distinguish between similar and dis-
similar textures. Figures 1(b) and 1(c) show exam-
ples of similar textures, while Figs. 1(d) and 1(e)
show examples of dissimilar textures.

Each of these domains imposes different performance
goals for similarity metrics and requires different metric
testing procedures. The first domain was explored in
[1, 5, 6]. The second domain is addressed in [7] and a
forthcoming paper. The third domain is the focus of
Sections 5, 6, and 7 of this paper.

The evaluation of the performance of objective tex-
ture similarity metrics is based on comparisons between
objective and subjective similarity scores. In general,
this requires a large number of subjective tests over a
large database (e.g., containing several hundred images).
A commonly used approach is to ask subjects to rate
the similarity of texture pairs, and then use traditional
statistical measures to compare them to metric predic-
tions, such as Pearson’s correlation coefficient. However,
the number of possible texture pairs grows quadratically
with the number of textures in the database. Thus, there
is a need to select a subset of pairs as stimuli for the sub-
jective experiments. As we will see in Section 3, there
are problems with random selection of texture pairs. On
the other hand, our analysis of human perception abili-
ties and application requirements indicates that a large
part of the subjective comparisons is irrelevant and un-
necessary. The proposed operating domains for texture
similarity are essential for identifying the comparisons
that are needed for obtaining meaningful results and, at
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the same time, result in vast reductions in the amount
of subjective testing.

The need to conduct extensive subjective tests is es-
sentially bypassed when one considers the first operating
domain, namely, the ability to retrieve textures that are
identical to the query texture. This is an important
problem, which is a special case of CBR called “known-
item search” [1, 5]. All that is needed in this domain is
to start with a database consisting of perceptually uni-
form textures, out of which we can cut (perhaps partially
overlapping) pieces, in order to obtain the test database.
Any two pieces that come from the same original (per-
ceptually uniform) texture are then considered identical
textures. Thus, the ground truth is known and no fur-
ther subjective tests are required.

In Sections 5–7, we focus on the domain of distinguish-
ing between similar and dissimilar textures, and propose
an efficient procedure for conducting subjective tests and
creating ground truth for testing metric performance.
Our goal is to label a sufficient number of similar and
dissimilar pairs of textures in a database for metric test-
ing. A direct approach for this requires a huge number
of texture-to-texture comparisons. An alternative ap-
proach that considerably reduces the amount of human
subject effort is to organize the images in the database
into clusters of similar textures. Assuming these clusters
are visually distinct, we can then obtain pairs of similar
(in the same cluster) and dissimilar (in different clus-
ters) textures as ground truth for metric testing. The
use of clustering is well established in the literature; for
example, see [8–12]. To form the similarity clusters, we
propose a new procedure, which we call Visual Similarity
by Progressive Grouping (ViSiProG), whereby subjects
are sequentially presented with textures and asked to
form groups (e.g., of nine textures), which are progres-
sively refined and combined with groups formed by other
subjects to obtain clusters of visually similar textures.
The grouping criterion is that textures blend visually,
as if they came from the same tapestry. (Thus, textures
with different spatial scale or orientation are dissimilar.)
Semantic grouping is strongly discouraged. In this way,
our approach is fundamentally different from clustering
algorithms based on semantic or emotional categories
[9–12], and similar to Balas’s attentive texture similar-
ity [8]. Moreover, unlike these studies, our goal is not
to determine the underlying texture space, requiring the
use of the whole set of textures, but just to find a suffi-
cient number of similar and dissimilar pairs of textures.

ViSiProG makes it possible to obtain a large num-
ber of similar and dissimilar texture pairs starting from
a large and essentially unconstrained database of tex-
tures. This is in contrast to traditional approaches,
where a limited number of stimuli are selected for the
experiment, based on a certain hypothesis. However,
the drawback of such approaches is that the stimuli are
designed to fit the experiment. The proposed approach
allows us to use a wide range of stimuli without imposing
a certain perceptual scale onto the users.

For the experimental results, we constructed a
database of 505 photographic texture images that meet
basic assumptions about texture signals (repetitiveness,
spatial homogeneity), and include a wide variety of tex-
tures and a wide range of similarities between texture
pairs. Our experimental results demonstrate that the
proposed procedure collects subjective data in an ef-
ficient and effective manner, so that a relatively large
database of textures can be accommodated, and a large
number of similar/dissimilar pairs can be generated. We
then used the results of ViSiProG to obtain clusters of
similar textures, based on which we obtained a labeled
set of texture pairs, which we used as ground truth for
testing a number of texture similarity metrics in the sim-
ilar/dissimilar domain, including peak signal-to-noise ra-
tio (PSNR), structural similarity metric (SSIM) [13],
complex wavelet SSIM (CW-SSIM) [14], STSIM [1], and
the metrics by Do and Vetterli [15] and Ojala et al. [16].
As in [1], the metric evaluation was based on a num-
ber of statistical tests, which demonstrate that STSIM
outperforms the other metrics.

The remainder of this paper is organized as follows.
Section 2 reviews texture similarity metrics. Section 3
discusses an exploratory study and the operating do-
mains for similarity metrics. In Section 4 we discuss the
necessity of decoupling grayscale and color composition.
Section 5 discusses the design of the subjective experi-
ments in general, while Section 6 describes the new sub-
jective testing procedure. The metric testing results are
presented in Section 7 and the conclusions in Section 8.

Portions of this work were presented as a conference
paper [17]. Some of the conclusions of this paper are
also summarized in a review article [18].

2. Brief Review of Texture Similarity Metrics

In this section we review similarity metrics for grayscale
textures. As we will argue in Section 4, the color com-
position and the spatial pattern of a texture are quite
separate attributes that should be considered separately.
Moreover, Zujovic and co-workers [6, 19] have argued
that separating color composition and (grayscale) struc-
ture leads to more effective metrics; the color composi-
tion metrics they developed are based on the dominant
colors of the textures and their percentages.

As we saw in the introduction, the main idea behind
the development of texture similarity metrics is to give
high similarity scores to pairs of textures that have rel-
atively large point-by-point deviations yet according to
human judgment are visually very similar or essentially
identical. This can be accomplished by replacing point-
by-point comparisons with comparisons of region statis-
tics. Based on this philosophy, Wang et al. proposed
structural similarity metrics, both in the space domain
(SSIM) [13] and in the complex wavelet domain (CW-
SSIM) [14]. However, due to cross-image correlations (in
the “structure” term), these metrics are not completely
free of point-by-point comparisons, which results in low
similarity values for perceptually similar textures. To
overcome such problems, STSIMs [1, 19, 20] rely only



4

on comparisons of statistics computed within each im-
age. The basic elements of an STSIM are:

• A real or complex subband decomposition, typi-
cally a steerable filter decomposition.

• A set of statistics computed for each image, each
subband or pair of subbands, and each window in
that subband. Either a local sliding window or a
global window (the entire subband) can be used.
The statistics typically include the mean, variance,
horizontal and vertical autocorrelations, and cross-
band correlations, and can be computed on the
complex subband coefficients or their magnitudes.

• Formulas for computing similarity scores for each
pair of corresponding statistics, one from each im-
age. The form that each formula takes depends on
the range of values of the particular statistic and
may also include a normalization factor.

• A pooling strategy for combining the similarity
scores, over statistics, subbands, and window po-
sitions, to produce an overall STSIM score.

The two main variations, STSIM-2 and STSIM-M, are
presented in detail in [1]. STSIM-2 computes the statis-
tics (on a local or global window) and compares images
in a similar fashion as CW-SSIM, while in STSIM-M
each image is represented with a vector of its statistics
and the metric computes the dissimilarity between im-
ages as the distance between their respective feature vec-
tors. These metrics offer significant improvement over
existing methods.

Here we should note that, due to the “structure” term,
which is not an image statistic (as it is computed over
two images) and thus is not computed as a similarity
score between statistics, SSIM and CW-SSIM are not
special cases of STSIMs. However, CW-SSIM can be
computed using both a local sliding window and a global
window. SSIM, on the other hand, becomes trivial with
a global window.

We should also point out that the metrics in [1] are
not scale or rotation invariant. This is consistent with
our grouping criterion that textures must blend visually.
However, for applications for which scale or rotation in-
variance are required, the metrics can be modified to
account for such invariance.

3. Operating Domains for Texture Similarity Metrics

In this section we identify operating domains for test-
ing texture similarity metrics. These are based on the
capabilities of human perception and the requirements
of the intended applications. As we pointed out in the
introduction, the establishment of such domains is es-
sential for obtaining statistically meaningful results as
well as for vast reductions in the amount of subjective
testing. As we will see, in the similar/dissimilar domain,
the reductions also depend on the subjective testing pro-
cedure we propose in Sections 5 and 6. We first discuss
an exploratory study, which motivated the development
of the proposed approach.

(a) 5th (b) 7th (c) 23th (d) 26th (e) 50th

Fig. 3. Examples of texture pairs used in the exploratory
study, ranked according to decreasing subjective similarity:
(a) similar structure and color; (b) similar structure, differ-
ent color; (c) similar color, different structure; (d) similar
structure, different color; (e) dissimilar color and structure

3.A. An Exploratory Study

In an exploratory study of subjective texture similar-
ity, we used 30 color texture images, organized into 50
pairs. Some examples of pairs can be seen in Fig. 3.
Ten subjects were asked to rate the similarity of each
pair on a scale from 1 to 10, with 10 being the highest
score. The results were pooled together, and each pair
was assigned the mean value of the subjective scores as
its overall subjective similarity score.

For this initial study, we used STSIM-2 as an objective
metric (see Section 2 and [1, 19]), computed with a slid-
ing window of size 7×7. We also used the color similarity
metric described in [19], also computed with a 7×7 slid-
ing window. We then used a linear combination of the
two metrics (appropriately normalized to yield scores in
the [0, 1] interval, with 1 indicating highest similarity)
to calculate a single similarity score for a pair of color
textures. Such linear combination is in accordance with
some of the existing literature [21–23]. For comparison,
we used a second objective metric, CW-SSIM, also de-
scribed in Section 2 (combined with the color similarity
metric of [19] in the same way as STSIM-2).

To evaluate metric performance, we used Pearson’s
correlation coefficient, which is typically used to measure
the association between metric values and subjective
scores. The results are depicted in Fig. 4, which presents
a scatter plot of metric values versus subjective scores,
each “standardized,” i.e., converted into Z-values, which
are zero-mean, unit-variance variables. Pearson’s r is
the slope of the minimum-mean-square error (MMSE)
linear fitting of the data, for each metric. It is clear
that the performance of both metrics is far away from
the ideal linear relationship that Pearson’s correlation
presumes, i.e., that the slopes of MMSE linear fits are
not close to the ideal slope of 1. More importantly, it is
also evident that no monotonic curve could describe the
relationship between the subjective scores and the val-
ues of either metric well. While one cannot claim that
the performance shown in Fig. 4 is the best an objective
metric can do, the results are indicative of the difficul-
ties of evaluating a metric on a (by necessity) small set
of subjective data, which does not necessarily capture
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Fig. 4. Scatter plot of metric values versus average subjective
scores

the complexity of the problem.

A closer look at the subjective data reveals relatively
large disagreements among human judgments. One ap-
proach for measuring the consistency of the subjective
scores is via the intra-class correlation coefficient (ICC)
[24], which is equal to 0.66 for single measures when
subjective evaluations for the entire set of texture pairs
is used. This number is low, indicating low consistency
among human subjects.

A careful examination of the texture pairs in the
database elucidates the difficulties in obtaining consis-
tent subjective data. If we look at the texture pairs at
the high end of the subjective similarity scale, for exam-
ple, the pair shown in Fig. 3(a), ranked 5th most similar
based on the subjective similarity scores, we see that the
textures are similar in both structure and color compo-
sition (even though there is a bit of a spatial scale dif-
ference). For such pairs, our exploratory data indicate
that subjects give consistently high similarity scores. As
we move down the scale, we find images that are similar
in some respect but different in another. For example,
in the 23rd pair, shown in Fig. 3 (c), they have simi-
lar color composition but different structure, while the
7th and 26th pairs, shown in Figs. 3 (b) and 3(d), respec-
tively, have similar structure but different colors. In such
cases, the subject-to-subject consistency is poor because
the relative importance of each attribute (color, struc-
ture) differs from subject to subject in determining over-
all texture similarity. Similar inter-subject inconsisten-
cies should be expected for other perceptual dimensions,
such as regularity, scale, and orientation. An interesting
observation is that the 7th pair, shown in Fig. 3(b), was
given a very high average similarity score. This is appar-
ently because many of the subjects based their decision
on the structure and essentially ignored the color differ-
ence. Finally, at the bottom of the subjective similarity
sale, e.g., the 50th pair, shown in Fig. 3(e), the textures
are dissimilar in almost every respect. For such images,
the subjective scores are generally consistently low, but

the subjects do not necessarily agree in the ranking of
the dissimilarities.

The main conclusion of this exploratory study was
that, when the data set contains dissimilar textures or
textures that are similar in some respect (e.g., struc-
ture) and dissimilar in another (e.g., color composition),
subjects cannot provide consistent similarity judgments.
It thus makes no sense to expect the metric to do bet-
ter. An effective treatment of texture similarity requires
a more careful look at the problem. We first look at
human perception.

3.B. Human Perception

The capabilities and limitations of human perception
can and should be used to set the expectations on metric
performance. Thus, we should expect texture similarity
metrics to be consistent with human performance only
in the situations in which humans can provide consistent
similarity judgments. We should not expect metrics to
accomplish what humans cannot.

The results of our exploratory study make it clear
that it is inappropriate to use standard statistical ap-
proaches, such as Pearson’s correlation, to judge metric
performance over the entire subjective similarity scale.
It is only at the very high end of the scale, where the
textures are essentially modifications of the same tex-
ture, as in the examples of Fig. 2, that we can expect a
monotonic relationship between subjective ratings and
metric values. In this range, we can measure the perfor-
mance of objective metrics using Spearman’s rank cor-
relation coefficient, which describes how well the rela-
tionship between two variables can be described with
a monotonic function, while Pearson’s correlation coeffi-
cient measures how well this (arbitrary) monotonic func-
tion could be represented with a straight line. Indeed,
our work with texture distortions for image compression
[7] demonstrates that such a monotonic relationship ex-
ists at this end of the scale.

For the remainder of the subjective similarity scale, a
much simpler task should be considered, namely, differ-
entiating between similar and dissimilar textures. The
question is whether subjects can make consistent judg-
ments in this simpler task. According to our exploratory
results, this is not possible when the textures are sim-
ilar in one respect and dissimilar in another. Hence-
forth, such textures will be considered dissimilar. In
further exploratory study, we gave subjects a relatively
small number of textures (150) printed on paper cutouts
and asked them to form clusters of similar textures. We
found that different subjects used different criteria for
forming the clusters, some relying on directionality, oth-
ers on scale, color, regularity, etc. It is only when the
textures are similar in every perceptual dimension that
subjects agree that they are similar. However, given a
small random selection of textures, such similar pairs are
unlikely. As we will discuss in Sections 5 and 6, to form
consistent clusters of similar textures, it is necessary to
conduct tests with a large number of textures, and with
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Fig. 5. MacAdam ellipses, CIE 1931 xy chromaticity diagram

explicit instructions to select textures that are similar in
every respect.

In summary, the requirement for a monotonic relation-
ship between metric predictions and human judgments
should be limited to the high end of the subjective sim-
ilarity scale. Over the rest of the scale, a metric should
only be required to differentiate between similar and dis-
similar textures. As we will see in Section 3.C, these con-
clusions are in line with the needs of applications such as
image compression and content-based retrieval. These
requirements simplify the subjective testing procedures
considerably, and drastically increase the chances of ob-
taining consistent subjective results.

3.B.1. Analogies With Color

The above conclusion should not be surprising as even
in the case of color, which is considerably simpler than
texture, consistently quantifying similarity is only pos-
sible for colors that are close to each other. It does not
make much sense to ask whether blue and orange are
more different than green and red, as we would not get
consistent answers. Thus, perceptually uniform color
spaces, such as CIELAB and CIELUV, provide consis-
tent results only over small distances.

In fact, we can extend the color analogy to the tex-
ture similarity problem. Color can be described in a
three-dimensional space. The MacAdam ellipses, shown
in Fig. 5 (solid lines), encompass the colors that are per-
ceptually indistinguishable from the color at the center
of that ellipse. Assuming that textures can be repre-
sented in an N-dimensional space (where each dimension
represents an independent perceptual dimension), then
we would have four kinds of ellipses. The first (solid lines
in Fig. 5), would include the textures that are perceptu-
ally indistinguishable from the texture at the center of
the ellipse, and thus correspond to the traditional JND
threshold [3, 4]. These ellipses are the exact analog of the
MacAdam ellipses. The second (dotted lines in Fig. 5),

would be the ellipses that encompass all the textures
that are visually identical to the texture at the center [1].
The third (dot-dashed lines in Fig. 5), would encompass
all the textures that are small modifications/distortions
of the texture at the center. In this ellipse, a monotonic
relationship between metric values and subjective rat-
ings is expected to exist; this corresponds to the range
of colors for which the CIELAB space is approximately
perceptually uniform. Finally, a fourth ellipse (dashed
lines in Fig. 5) encompasses all the textures that are
similar in every perceptual dimension to the texture at
the center. In Section 5, we will propose a procedure for
forming clusters of similar images, which are included in
the similar texture (dashed) ellipse.

Note that the threshold for the perceptually indistin-
guishable ellipses is well-defined [3, 4]. The threshold for
the identical ellipses is discussed in [1], while the thresh-
old for similar versus dissimilar textures is considered in
Section 7 [as its choice is guided by the receiver operat-
ing characteristic (ROC) curves]. Finally, the threshold
for the monotonic region depends on the application and
user preferences, and is expected to be more difficult to
establish.

3.C. Metric Performance in Different Applications

We now turn from human visual system abilities to the
requirements of key applications that make use of tex-
ture similarity metrics. As we saw in the introduction,
a variety of applications can make use of texture simi-
larity metrics, and each imposes different requirements
on metric performance.

For applications such as image compression it is im-
portant to have the correct ordering of images according
to perceived similarity, that is, to have a monotonic rela-
tionship between measured and perceived similarity (or
distortion). For example, it is important to quantify the
distortions in Figs. 2 (b)-(e) relative to the original in
Fig. 2 (a). This holds true for both applying the metric
to image quality assessment and for using it as a tool
within a compression algorithm. However, this is only
needed up to the point where the distorted images are no
longer of acceptable quality; beyond that point it should
be sufficient that the metric gives a low value. In addi-
tion, at the high end of the scale, it is important to have
a threshold for identical textures and an absolute scale
for image similarity, so that consistent quality can be
achieved across different types of content, both within
an image and across different images.

In CBR applications, the foremost task is to distin-
guish between similar and dissimilar images, while the
precise ordering of the retrieved images may also be use-
ful but of lesser importance. Thus, the texture pairs in
Fig. 1 (b) and (c) should be labeled as similar, and the
pairs in Fig. 1 (d) and (e) as dissimilar. The ability
to retrieve identical textures (Fig. 2 (a)) is an impor-
tant special case. The task is to retrieve a certain num-
ber of images from a database that are most similar –
preferably, but not necessarily, in order of similarity –
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Fig. 6. Conceptual plot of desired metric performance: met-
ric values vs. subjective similarity scores

to the query. However, the ordering may be useful at
the high end of the scale. An absolute threshold may
also be needed for determining whether any of the re-
trieved textures are sufficiently similar or identical to
the query in the database. Similarly, for computer vi-
sion and image understanding, qualitative distinctions
(similar/nonsimilar) may be more important than quan-
titative ones.

3.D. Operating Domains

We thus see a convergence between human percep-
tion abilities and application requirements. Figure 6
schematically illustrates the desired performance of a
texture similarity metric, normalized to yield scores in
the [0, 1] interval, with 1 indicating highest similarity. It
plots objective metric values of texture pairs versus sub-
jective scores s, ordered from lowest to highest. For the
sake of argument, we assume the subjective scores repre-
sent the average or ideal observer. We also assume that
the horizontal axis includes all possible pairs of natural
textures. In practice, it would include all pairs of tex-
tures in a database. Thus, for a database of N images,
the x-axis would contain a total of

(

N

2

)

points. We have
identified the following important regions of interest in
the plot.

At the top of the subjective similarity scale, subjects
are able to assign consistent similarity values. This
is the region where the textures are “essentially the
same,” even though substantial differences (including
distortions and identical textures) may still be visible.
A monotonic relationship between subjective similarity
scores and metric values is desirable in this region, to
the right of the dot-dashed violet line (s > tm). This
is the primary focus for compression applications, but
a monotonic relationship may also be useful for CBR
applications.

In the broader region of similar pairs, to the right of
the dashed green line (s > ts), the subjects agree that
the textures are similar but may not assign consistent
similarity values. The metric requirement is generally

to assign high values in this area. At the other end of
the scale, we have the region of dissimilar pairs, to the
left of the dot-dashed red line (s < td). In this region,
the subjects agree that the textures are “substantially
different,” even though they may not assign consistent
similarity values. The metric requirement is simply to
assign low values in this area; any other constraints on
metric behavior in this region are relaxed. A clear gap
between the metric values assigned to similar and dissim-
ilar pairs is desired. This is the primary need of CBR
and image understanding applications, but as we saw,
this is also important for compression applications.

The region between the dot-dashed red line and the
dashed green line (td < s < ts) is the “non-consensus
area,” where the subjects cannot agree whether the tex-
ture pairs are similar or dissimilar. This should be a
transition area for the metric, without any other strict
requirements.

Finally, we should add the regions of identical (to the
right of the dotted blue line, s > ti) and perceptually
indistinguishable (to the right of the solid orange line,
s > tp) textures. As we discussed, the former is im-
portant for identical texture retrieval applications; the
metrics should assign very high similarity scores in this
region. The latter is important for perceptually lossless
compression; the metrics should give the highest value
in this region.

The plot emphasizes the fact that a monotonic rela-
tionship between metric predictions and human judg-
ments in the range of dissimilar textures is not impor-
tant, and is perhaps unachievable. Even in the range of
similar textures, for many applications, it may not be
important for the metric to provide a monotonic rela-
tionship between subjective and objective values. Thus,
the relationship between subjective and objective simi-
larity needs to be monotonic only at the high end of the
subjective similarity scale. Our analysis removes unnec-
essary constraints on metric performance and eliminates
irrelevant experiments, thus turning a problem that re-
quires an enormous human effort into a tractable one.

We now summarize the three operating domains
where a similarity metric can be tested:

1. The metric ability to retrieve identical textures.

2. The top of the subjective similarity scale, where a
monotonic relationship between metric values and
subjective scores is desired.

3. The metric ability to differentiate perceptually
similar and dissimilar textures.

Each of these domains imposes different performance
goals for similarity metrics and requires different met-
ric testing procedures. Sections 5 to 7 are going to focus
on the third domain.

4. Decoupling Grayscale and Color Composition

In the discussions of the previous section, we saw that
different subjects weigh color composition and struc-
ture differently when assessing overall texture similar-
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ity. Moreover, their weights may depend on the appli-
cation and the experimental settings [21, 23]. This sug-
gests that we separate metric development and testing
for these two attributes. In addition, one can argue that
the same should be done for each perceptual dimension.
Indeed, the development of metrics for individual dimen-
sions (directionality, roughness, glossiness, scale, etc.)
may be the only way to make quantitative assessments
for dissimilar textures. However, deriving and testing
similarity metrics for different perceptual dimensions is
beyond the scope of this paper. On the other hand, there
are several reasons for separating color and (grayscale)
structure for metric development and testing:

• It is easy to eliminate color. (The converse is not
true [6].)

• Color (in combination with structure) provides
strong semantic clues, which we are trying to
avoid.

• Eliminating color, substantially increases the do-
main of textures that are similar without being
identical textures.

• We can develop more effective metrics when we
separate color composition and grayscale structure
[6, 19].

Here we should clarify, that by color composition we
mean the dominant colors of an image – as perceived by
a human, not a histogram of the colors of the individual
pixels – without regard to their spatial arrangement in
the texture; and by structure we mean the form of the
spatial arrangement of these colors. One way of isolating
the structure of a texture is by looking at the grayscale
component of the image. Of course, this ignores any
structure in the chrominance components. On the other
hand, in most natural textures, the grayscale component
is fairly representative of the overall structure.

For the subjective procedure and experimental results
we present in the following sections, we will focus on
grayscale textures and examine the performance of gray-
scale similarity metrics like the ones reviewed in Sec-
tion 2.

5. Design of Subjective Experiments for Similar ver-
sus Dissimilar Texture Pair Labeling

We now turn our attention to the problem of identifying
pairs of perceptually similar and dissimilar textures. A
large number of texture pairs that are labeled as sim-
ilar or dissimilar can serve as ground truth for metric
testing. For this, it is necessary to conduct subjective
experiments with a large database of textures. The se-
lection of the database and the subset of texture pairs
from the database should ensure that we have a reason-
able sampling of similar and dissimilar pairs.

Once the database of textures has been selected, the
process of separating similar texture pairs from dissimi-
lar ones can be done in a number of different ways. The
most straightforward approach is to perform a single-
stimulus binary forced-choice test, where the subjects

are asked to rate each pair in the database as “similar”
or “dissimilar.” Alternatively, we can ask subjects to
assign a numerical value (e.g., in the range 1 to 10) to
the similarity of each texture pair, but this offers little
advantage if our goal is to identify similar and dissimilar
pairs. However, in both cases, the number of compar-
isons grows quadratically with the number of textures
in the database: N(N − 1)/2 pairs for a database of N
images. For typical values of N (in the hundreds) this
would require far more subject time than is feasible. Ac-
cordingly, a far more efficient approach is needed.

An even more laborious approach is to ask subjects to
compare two texture pairs at a time and choose the most
similar (two-alternative forced choice). This can be used
to obtain numerical similarity values [25]. However, in
this case, the number of comparisons grows quadrati-
cally with the number of pairs in the database, i.e., is
proportional to N4.

Another approach is to conduct the test as multiple
rank order judgments [26], where the subjects are asked
to rank a small subset of images based on the similar-
ity to a given image from the database. The database
is partitioned in such a way that each subject makes a
judgment on the similarity between all possible pairs of
images. Using this method the subject gets to compare
all the pairs in the database with a reduced number of
trials, since they are simultaneously comparing a few im-
ages, as opposed to comparing them one pair at a time.
This method has been applied in image similarity experi-
ments and can reduce the needed number of comparisons
by four [27]. However, it still requires lengthy tests and
many subjects when the database under consideration is
large.

A more efficient procedure for discriminating between
similar and dissimilar texture pairs is a texture clustering
experiment, whereby the subjects are asked to form well-
separated similarity clusters, i.e., sets of images that are
similar to each other and dissimilar from images in other
sets. Since most texture pairs in the database are dis-
similar, clustering avoids a large number of unnecessary
comparisons, concentrating on the most meaningful ones
[8]. Indeed, clustering has been used in a number of
prior studies [8–12]. However, while such a test is well-
defined and easy to carry out for a relatively small set
of images, when the number of images is in the order of
several hundred or more, practical problems arise, as it
is difficult for subjects to see images in multiple clusters
simultaneously. This is particularly difficult when the
experiment is conducted electronically and the database
is too large to be presented in its entirety on a single
computer screen.

To alleviate this problem, in the next section, we pro-
pose a progressive testing scheme, named ViSiProG. The
key idea is that when the database is relatively large, i.e.,
too large to be presented on a single computer screen,
it will be easier for the subjects to form small similarity
groups one at a time, in a step-by-step fashion, picking
similar images out of a small set of images, and repeating
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the process with a new set that contains the group and
a new set of images, progressively refining the similarity
group. Since the subject cannot see the entire database,
it is very difficult to decide how large each cluster should
be. By necessity, then, the subjects are asked to form
similarity groups of a predetermined size. The final clus-
ters are obtained by combining and analyzing multiple
groups formed by several subjects.

An alternative approach for handling a large database
is to use hierarchical clustering [9–11]. However, hierar-
chical clustering is suboptimal because as we subdivide
the clusters, the clustering criteria change, which may
necessitate reassignment of the entire database. Another
alternative is to base the initial cluster formation on a
subset of the database [8] or on a number of anchor
stimuli [9], but this requires previous knowledge of the
database.

As we stated in the introduction, our goal is to la-
bel a sufficient number of similar and dissimilar pairs
of textures in the database for metric testing, not to
obtain all possible similarity clusters for a complete tex-
ture space characterization. Texture space characteriza-
tion has received considerable attention in the literature
[8–10, 28, 29]. Using ViSiProG as the basis for texture
space characterization would be a natural extension of
the proposed techniques, but is beyond the scope of this
paper.

6. Visual Similarity by Progressive Grouping

The goal of the ViSiProG procedure is to form clusters of
similar textures. A number of subjects perform ViSiProg
a number of times, each called a trial and each producing
one group of Ng (e.g., 9) similar images. As will be
described, the groups formed from a number of trials by
a number of subjects are then pooled and analyzed (e.g.,
merged and pruned) to form the clusters.

The main idea of ViSiProG is that a subject working
at a computer terminal is sequentially presented with
subsets of the database and builds a similarity group in
a step-by-step fashion. The procedure consists of a se-
ries of rounds, where the goal in each round is to form a
group of Ng most similar images. In the first round, the
subject is presented with a batch of Nb images, as shown
in Fig. 7. Once the similarity group is formed, as illus-
trated in Fig. 8, a new round begins with a new batch of
images. Typical values are Ng = 9 and Nb = 36 images.
A key to the procedure is that the similarity group is
visually separated from the rest of the batch, as illus-
trated in Fig. 8. The idea is that when the group is
displayed in this way, it is easy for the subject to visual-
ize how similar the images are. As the procedure moves
on and the subject is presented with different images in
the database, the subject converges to a stable group.
The trial does not end until the subject has seen all the
images in the database and is satisfied with the current
similarity group.

The choice of the initial batch of images shown to
the subject greatly influences the final group formation.
Therefore, for each trial, the initial batch presented to

Fig. 7. Snapshot of ViSiProG interface: This is the first
batch, before the subject has selected any images.

the subject is randomly chosen from the database, so
that the chance of obtaining a different group in each
trial is increased.

Although the focus of our experimental results is on
grayscale textures, ViSiProG can be applied to similar-
ity grouping according to other criteria, such as color
composition.

6.A. Detailed ViSiProG Testing Procedure

Recall that N is the total number of images in the
database, Nb the number of images shown to subjects
in a batch, and Ng the number of images that are cho-
sen to be in the group. In each round the subject has to
pick Ng images out of Nb presented. Typical values are
N = 500, Nb = 36, and Ng = 9.

A trial begins by randomly selecting a batch of Nb im-
ages from the N images in the database. Initially, all the
images have the same probability of being selected. The
subject then selects Ng images from the batch to form a
group (of images that are as similar as possible) in a sep-
arate box, colored green and labeled “GROUP,” using
the mouse to drag the images into the box. Figs. 7 and
8 show the snapshots before and after the user forms the
group. As we discussed, visually separating the group
within the green box from the remainder of the batch
enables the subject to better visualize the similarity of
the images. Once an initial group is formed, the sub-
ject has the option to replace individual images in the
group with other images in the batch, until she/he is
satisfied that the group represents the Ng most similar
images in the batch. The subject can then press a (blue)
button to start a new round, i.e., to request a new set
of Nb images, out of which Ng are the ones previously
selected to form the group, and Nb −Ng images are ran-
domly selected from the remaining N−Ng images in the
database. This new set of images is shuffled before it is
presented to the subject. This process is repeated sev-
eral times. However, after the first round, the selection
process is not uniform; the probability that an image
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Fig. 8. Snapshot of ViSiProG interface: This is after a group
has been formed and the subject is ready to ask for a new
batch of textures.

will show up in the new batch is inversely proportional
to the number of times it was selected to show up in a
batch, i.e., the number of times the subject has seen and
rejected it. This holds for all the subsequent rounds, en-
suring that the subject will be able to see all N images
without going through too many steps in the procedure.

From the second round on, every step is essentially
the same. The subject is presented with a batch of Nb

images, Ng from the previous group and Nb −Ng newly
selected ones, and she/he can use any of the Nb to form
the current group. There is no restriction on the num-
ber of images from the previous group the subject has
to keep, i.e., she/he can completely change the groups
between two rounds if she/he can find a more similar
set of images. However, if the groups in two consecu-
tive rounds overlap by more than 50%, in the following
round the chosen group will stay together in the green
group box. Otherwise, if the overlap is less than 50%,
in the following round all of the Nb images will be shuf-
fled before they are presented to the subject, and the
green group box will be emptied, so that the grouping
will start from scratch. This feature exists to ensure
that the subject does not feel forced to refine the group
she/he selected in the first round but is allowed to drift
until converging to a stable group.

Figure 9 shows a sequence of (partial) snapshots of the
ViSiProG interface. Note how the group is progressively
refined with textures that blend visually, and how the
cohesiveness of the group increases from left to right.
In fact, the green border between images facilitates the
visual blending by masking discontinuities that would be
apparent if the images were adjacent. Here, we should
point out that for illustrative purposes the textures in
Fig. 9 have been kept in the same place in the green
group box; this is not guaranteed by the interface.

The rounds continue until the subject has been ex-
posed to all the images in the database. When every im-
age in the database has been displayed at least once, the

subject is given the option to end the procedure. This
is indicated by the appearance of a special (magenta)
button, which can be seen in the rightmost picture in
Fig. 9, and which the subject may click to finish the
procedure. However, the subject is allowed to continue
the rounds indefinitely, until she/he is satisfied with the
similarity group or loses hope of improving it. In the
latter case, the subject can always replace the images
in the group with a new set and start over. Thus, in
effect, the test has only a lower bound on duration – it
may not end until the subject has seen all the images.
Note that toward the later stages of the test, before or
after the red button appears, when the similarity group
has stabilized, the subject is more or less “hunting” for
textures to refine the group.

6.B. Modified ViSiProG to Obtain “MacAdam” El-
lipses

The ViSiProG procedure can be easily modified to ob-
tain the similar texture ellipses of the MacAdam analogy
we discussed in Section 3. These ellipses encompass all
the textures that are similar in every perceptual dimen-
sion to the texture at the center of the ellipse. Given
such a seed texture, we can build the cluster of similar
textures by asking the subjects to form groups of tex-
tures similar to the given one. That is, the given texture
stays in (the middle of) the green “GROUP” box, while
the subject selects textures to form a visually cohesive
group. This process can be run for any given texture, as
is assumed in the classical MacAdam ellipses.

The advantage of this process is that if all the subjects
start with the same seed texture as they form groups,
the chances that the seed texture will end up at the
center of the cluster are very high. Thus, when com-
paring the seed texture with the textures in the cluster,
the subjective similarities will be (most certainly) higher
than the similarity of the seed to any other texture in
the database. In contrast, in the original ViSiProG de-
scribed in Section 6.A, two textures at the opposite ends
of the ellipse may be less similar than two textures near
the border of the ellipse, one inside and one outside.
On the other hand, we must limit the texture queries
in the metric evaluation tests to the seed of each clus-
ter, whereas any texture of the cluster can be used as
query in the original ViSiProG. In addition, if the goal
is to form well separated clusters, this process would re-
quire that the seeds are well separated, while the original
ViSiProG automatically results in well-separated clus-
ters.

6.C. Cluster Formation

To construct the desired similarity clusters from the
groups produced by the subjects, we first form a graph
whose vertices are the texture images, and whose edges
(connecting vertices) have weights proportional to the
number of times the adjacent images were placed by a
user in the same group. These weights can be stored in
a weighted graph adjacency matrix, which is essentially
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Fig. 9. Sequence of snapshots of ViSiProG interface showing how the formation of a group evolves until the user is given
permission to end the test.

the same as what is often referred to as the similarity
matrix.

In order to eliminate noise and to obtain clearly sep-
arated clusters, we set to zero the edge weights that are
below a certain threshold. The thresholded weighted
graph adjacency matrix can then be analyzed using the
spectral clustering algorithm, whose detailed description
is given in [30]. This algorithm identifies the discon-
nected components of the graph, corresponding to non-
overlapping clusters of images, or, if all the images are
connected, it can partition the data into a desired num-
ber of clusters.

Alternatively, the similarity matrix can be analyzed
by multidimensional scaling [31, 32], which places the
texture images in a multidimensional space, in which
distances are inversely proportional to image similarity.

7. Experimental Results

In this section, we present experimental results with a
database of textures and the use of ViSiProG to form
clusters of subjectively similar textures. We then present
the use of these clusters as the ground truth for test-
ing a number of texture similarity metrics. For that we
used a number of standard statistical tests, information
retrieval statistics and ROC curves, to evaluate metric
performance. We first discuss the construction of the
database.

7.A. Database Construction

To construct the database, we collected 505 color texture
images, from the Corbis website [33]. The resolution var-
ied from 170 × 128 to 640 × 640 pixels. Out of each of
those images we extracted one 128 × 128 pixel patch to
form a database of equally-sized texture images. As was
explained in [1], the images were carefully selected to
meet some fundamental assumptions about texture sig-
nals. For that we used the following commonly used def-
inition of texture (e.g., by Portilla and Simoncelli [2]):
an image that is spatially homogeneous and that typi-
cally contains repeated structures, often with some ran-
dom variation (e.g., random positions, size, orientations
or colors). The textures we collected met the require-
ment of repetitiveness (at least five repetitions, horizon-
tally or vertically, of a basic structuring element) and
spatial homogeneity. In some cases, in order to meet
the repetitiveness requirement, we had to downsample

the image, typically by a factor of 2. All of the textures
are photographic, mostly of natural or man-made ob-
jects and scenes. No synthetic textures were included.
The database includes a wide variety of textures and a
wide range of similarities between texture pairs. In con-
trast to the experiments described in [1], our database
did not include any identical texture matches. Finally,
for the texture metric experiments, the 505 test images
were converted to grayscale.

7.B. Cluster Formation

The goal of our experiment was to form clusters of sim-
ilar textures. This experiment was carried out using the
ViSiProG procedure, explained in detail in Section 5. As
we saw above, the dataset contained a total of N = 505
grayscale texture images. The users were presented with
Nb = 36 different texture images in a batch, and their
task was to form a group of Ng = 9 similar textures in
each run of the test. A graphical user interface (GUI)
was developed using Qt application program interfaces
(APIs).

The selection of the number of textures in a batch
(Nb = 36) was determined by the number of textures
of a certain quality that can be displayed on the screen.
The actual number is not very important because the
user sees all the textures during the cluster formation
and is free to pick the ones that form the tightest clus-
ter. Moreover, even if a huge screen were available, look-
ing at a large number of textures can be overwhelming,
and would not necessarily make going through the entire
database faster.

The number of textures in a group (Ng = 9) was se-
lected to be large enough to facilitate the building of the
similarity matrix in a reasonable number of trials. On
the other hand, a smaller number makes the formation
and refinement of a similarity group easier. Again, the
actual number is not very important. What is important
is that the number is fixed. Allowing the user to collect
an arbitrary number of textures in the group may result
in different users having different cutoff criteria for de-
termining the size of the group. Forcing them to pick
a relatively small number of textures (Ng = 9) ensures
that they pick the most similar textures. In this sense,
this is analogous to, or a generalization of, forced al-
ternate choice. Note that there is no guarantee that the
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collection of textures in the groups formed in all trials by
all users will not miss any textures of a particular sim-
ilarity cluster. However, the procedure guarantees that
the formed clusters will be different from each other.

The subjects were instructed to form the similarity
groups based on the overall similarity of the images. The
emphasis was on “visual blending” of the images in the
similarity group, which implies similarity in all percep-
tual dimensions, in agreement with our conclusions of
Section 3. The subjects were instructed to ignore any
semantic information they could extract from the im-
ages, e.g., images of flowers that look different should
be classified as dissimilar, and images of different things
that look similar should be classified as similar. Such
emphasis on appearance rather than semantics can also
be found in Balas’s texture similarity study [8].

The total number of subjects was 33. Each subject
was asked to perform four trials of the ViSiProG test,
each resulting in one subjective similarity group. How-
ever, not all the subjects performed four runs of the
test. The total number of runs (and resulting groups)
was 126. In order to increase the number of candidates
for the similarity groups, the subjects were allowed to
rotate the images by increments of 90◦ to align textures’
rotations in order to find more matches.

Regarding the influence of the initial batch on the final
group formed by a user in a trial, we calculated that the
average number of texture images belonging both to the
first batch and the final group was 1.46 out of 9, while
the average number of texture images belonging both
to the first group and the final group was 1.38 out of
9. In addition, in 24% of the trials, no image from the
first batch ended up in the final group, while in 30%
of the trials, no image from the the first group ended
up in the final group. These numbers indicate that the
first batch has an influence on, but does not determine,
the final group. Note also that even though the random
selection of the initial batch of textures presented to the
user usually leads to different groups in different trials,
there is no requirement or guarantee that a user cannot
form groups that are similar to each other.

After collecting all the groups from all the subjects,
we formed the weighted graph adjacency matrix. For the
construction of the weighted graph adjacency matrix, we
discarded the rotational information and formed clusters
regardless of the chosen rotations of the images; after the
clusters were formed, the images were rotated to match
the user data. The matrix was then thresholded, elimi-
nating links between images that had weights less than
three, resulting in only 120 “active” images, i.e., images
with at least one adjacent edge whose weight is not zero.
The thresholded weighted graph adjacency matrix was
then analyzed using the spectral clustering algorithm
[30]. In this case, the spectral clustering algorithm re-
sulted in 11 non-overlapping clusters. The images in the
clusters have no edges connecting them to images that
are outside of their own cluster. The 11 extracted clus-
ters are shown in Figs. 10 through 19.

Fig. 10. Grayscale cluster 1

Fig. 11. Grayscale cluster 2

Based on these clusters, we obtained 758 pairs of simi-
lar textures (they belong to the same cluster) and 6, 382
pairs of dissimilar textures (they belong to different clus-
ters), which form the ground truth for the metric testing
experiments we discuss next. For the remaining images
that do not belong to any cluster we cannot reliably draw
any conclusions.

In summary, out of a total of 505 images, 120 ended
up in clusters. Thus, out of 127, 260 possible pairs, only
7, 140 were rated (about 6%). Yet, we have meaning-
ful results; that is, we obtained a good mix of similar
and dissimilar pairs. Achieving such results with ratings
of randomly selected texture pairs would require a very
large number of trials. Moreover, running ViSiProG is
easy and fast and can be fun to run as a game.

7.C. Statistical Analysis of Metric Performance

Given the labeled set of texture pairs, we used them
as ground truth for evaluating the ability of objective
metrics to distinguish perceptually similar and dissim-
ilar textures. As in the retrieval of identical textures
[1], the metric evaluation was based on two types of sta-
tistical tests, information retrieval statistics and ROC
curves. The former measure the ability of a metric to
distinguish similar and dissimilar textures in a relative
sense, that is, without reference to an absolute thresh-
old, whereas the latter is based on an absolute threshold
[1]. In our experimental results, we compared the fol-
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Fig. 12. Grayscale cluster 3

Fig. 13. Grayscale cluster 4

Fig. 14. Grayscale cluster 5

Fig. 15. Grayscale cluster 6

lowing similarity metrics: PSNR; SSIM, with a 7 × 7
window; CW-SSIM, with a 7 × 7 window and a global
window; STSIM-2, with a 7 × 7 window and a global
window; STSIM-M; Do and Vetterli [15]; and Ojala et
al. [16].

7.C.1. Information Retrieval Statistics

The metric evaluation experiment can be treated as a
retrieval task. We treated as queries only the 120 images
that belong to a cluster, as images that do not belong to
any cluster do not have any similar images to retrieve.
For each of the query images, the remaining 119 images
were ordered according to decreasing similarity to the
query image.

We used the following performance metrics. Precision
at one (P@1) is the number of times the first retrieved
image is similar. The mean reciprocal rank (MMR) is
the average value of the inverse rank of the first similar
retrieved image [34], and provides an estimate of how

Fig. 16. Grayscale cluster 7

Fig. 17. Grayscale cluster 8

Fig. 18. Grayscale clusters 9 (left) and 10 (right)

Fig. 19. Grayscale cluster 11

far down the list the first similar image is. Finally, the
mean average precision (MAP) [35] takes into account
all the similar images for each query (average precision
of all queries of length n where the nth image is similar,
averaged over all images).

The results are presented in the first three columns of
Table 1. We also calculated the statistical significance of
the differences in the performance of the various metrics
with significance level set to α = 0.05 using the appropri-
ate tests (Cochrane’s Q test [36] for P@1, and Friedman
test [37, 38] followed by the Tukey-Kramer honestly sig-
nificant difference test [39] for MRR and MAP). Among
the three top performing metrics (STSIM-2, CW-SSIM,
and STSIM-2 global), there are no statistically signifi-
cant differences in performance. However, there are sig-
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Algorithm P@1 MRR MAP ROC-AUC

PSNR 0.14 0.23 0.17 0.50

SSIM 0.41 0.49 0.24 0.52

CW-SSIM 0.84 0.90 0.64 0.87

CW-SSIM global 0.72 0.82 0.54 0.86

STSIM-2 0.86 0.90 0.69 0.88

STSIM-2 global 0.84 0.88 0.65 0.85

STSIM-M 0.84 0.89 0.62 0.80

Do and Vetterli 0.79 0.85 0.56 0.79

Ojala et al. 0.57 0.68 0.39 0.54

Table 1. Information retrieval statistics and area under ROC
curves for clustering experiment

nificant differences between the bottom two (PSNR and
SSIM) and the other metrics. The statistical significance
of the remaining comparisons is mixed.

Note that, in contrast to the experiments reported in
[1], the local metrics seem to outperform the global ones.
This means that the local metrics provide more accu-
rate estimates of texture similarity in general, while in
the special case of the retrieval of identical textures, the
robustness of the global metrics becomes more impor-
tant. Thus, different metrics must be used in different
applications.

7.C.2. Receiver Operating Characteristic curves

An alternative approach is to treat the evaluation ex-
periment as a binary classification problem. Given two
texture images, the metric value is the test variable that
will determine whether they are similar (null hypothe-
sis) or not (alternate hypothesis). For each hypothesis,
we estimated the probability density functions as the
histograms of metric values for every pair of textures in
the database for which both textures belong to a clus-
ter. If they belong to the same cluster, then they are
similar; if they belong to different clusters, they are dis-
similar. Figure 20 (top) shows distributions that corre-
spond to the STSIM-2 metric. Note that the distribu-
tion for similar textures is peaky, an indication that the
metric provides comparable values for similar textures
irrespective of content. On the other hand, the distribu-
tion for dissimilar textures is broader, due to the variety
of textures in the database. Figure 20 (bottom) shows
distributions that correspond to PSNR. Note the almost
complete overlap of the two distributions.

The receiver operating characteristic (ROC) is then
a plot of the true positive versus the false positive rate
for different values of the threshold. The area under
the ROC curve is a good indicator of overall perfor-
mance. ROC curves are stronger indicators of metric
performance than the retrieval statistics in the sense
that they are based on an absolute threshold for met-
ric values above which textures can be considered to be
similar.

The ROC curves are plotted in Fig. 21. The areas un-
der the ROC curves are summarized in the last column of
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Table 1; the closer the area is to 1.0, the better the per-
formance. By utilizing the method of DeLong et al. [40]
for comparing the areas under ROC curves, and setting
α = 0.05, the performance difference between STSIM-
2 and all the other metrics is statistically significant.
Again, the local metrics outperform the global ones, as
was the case with the information retrieval statistics.

8. Conclusions

We proposed a new way of looking at the evaluation of
objective texture similarity metrics. Based on the ca-
pabilities of human perception and the requirements of
different applications, we identified three operating do-
mains for texture similarity metrics: (1) the ability to
retrieve identical textures; (2) the top of the similarity
scale, where a monotonic relationship is desired; and (3)
the ability to distinguish between similar and dissimilar
textures. Each of these domains imposes different per-
formance goals for similarity metrics and requires differ-
ent metric testing procedures. Identifying these domains
is essential for obtaining meaningful results, and at the
same time results in sizable reductions in the amount of
subjective testing that is required for metric evaluation.

We then focused on the third domain, for which we
presented ViSiProG, a new procedure for conducting
subjective experiments to organize a texture database
into clusters of visually similar images. These clusters
can be used to obtain ground truth for testing a texture
metric in the similar-dissimilar domain. ViSiProG sub-
stantially reduces the length of the subjective tests for
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obtaining similar and dissimilar texture pairs compared
to traditional approaches. In ViSiProG, the subjects
form similarity groups one at a time, in a step-by-step
fashion, progressively refining the similarity group by se-
lecting images from sequentially presented small subsets
of the database. A key element of ViSiProG is that the
grouping is based on visual blending.

Experimental results demonstrate that ViSiProG col-
lects subjective data in an efficient and effective manner,
using a relatively large database of textures to obtain a
large number of similar/dissimilar pairs. Using these
pairs as ground truth, we then evaluated the perfor-
mance of a number of texture similarity metrics based on
standard statistical tests. Our results demonstrate that
recently developed structural texture similarity metrics
are effective in discriminating between similar and dis-
similar textures, outperforming other metrics.
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