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Abstract—We develop new metrics for texture similarity that
account for human visual perception and the stochastic nature
of textures. The metrics rely entirely on local image statistics
and allow substantial point-by-point deviations between textures
that according to human judgment are essentially identical.
The proposed metrics extend the ideas of structural similarity
(SSIM) and are guided by research in texture analysis-synthesis.
They are implemented using a steerable filter decomposition
and incorporate a concise set of subband statistics, computed
globally or in sliding windows. We conduct systematic tests to
investigate metric performance in the context of “known-item
search,” the retrieval of textures that are “identical” to the query
texture. This eliminates the need for cumbersome subjective tests,
thus enabling comparisons with human performance on a large
database. Our experimental results indicate that the proposed
metrics outperform PSNR, SSIM and its variations, as well
as state-of-the-art texture classification metrics, using standard
statistical measures.

Index Terms—natural textures, perceptual quality, statistical
models

I. I NTRODUCTION

T HE development of objective metrics for texture sim-
ilarity differs from that of traditional image similarity

metrics, which are often referred to as quality metrics, because
substantial visible point-by-point deviations are possible for
textures that according to human judgment are essentially
identical. Employing metrics that are insensitive to such
deviations is particularly important for natural textures, the
stochastic nature of which requires statistical models that
incorporate an understanding of human perception. In this
paper, we present newstructural texture similarity (STSIM)
metrics for image analysis and content-based retrieval (CBR)
applications. We then conduct systematic experiments to
evaluate the performance of these metrics and compare to
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that of existing metrics. For that we focus on a particular
CBR application, which facilitates testing on a large texture
database, and allows the use of different metric performance
statistics, which emphasize different aspects of performance
that are relevant for many other image analysis applications.

Traditional similarity metrics evaluate the similarity be-
tween two images on a point-by-point basis. Such metrics
include mean squared error (MSE) and peak signal-to-noise
ratio (PSNR), as well as metrics that make use of explicit
low-level models of human perception [1], [2]. The latter
are typically implemented in the subband/wavelet domain
and are aimed at the threshold of perception, whereby two
images, typically an original and a distorted image, are vi-
sually indistinguishable. In contrast, our goal is to assess the
similarity of two textures, which may have visible point-by-
point differences, even though neither one of them appears to
be distorted and both could be considered as original images.

The interest in metrics that deviate from point-by-point
similarity was stimulated by the introduction of thestructural
similarity metrics (SSIM)[3], a class of metrics that attempt
to incorporate “structural” information in image comparisons.
Such metrics have been developed in both the space domain
(S-SSIM) [3] and the complex wavelet domain (CW-SSIM)
[4], and make it possible to assign high similarity scores
to pairs of images with significant pixel-wise deviations that
do not affect the structure of the image. However, as we
discuss below, SSIM metrics still rely on point-by-point cross-
correlations between two images or their subbands, and thus
retain enough point-by-point sensitivity that they will generally
not give high similarity values to textures that are structurally
similar. In order to overcome such constraints, Zhaoet al.
[5] proposed astructural texture similarity metric,which
we will refer to as STSIM-1, that relies entirely on local
image statistics, and thus completely eliminates point-by-point
comparisons; while Zujovicet al. [6] included additional
statistics to obtainSTSIM-2.The goal of this paper is to expand
on and systematically explore this idea. We present a general
framework for STSIMs whose key elements are a multiscale
frequency decomposition, a set of subband statistics, formulas
for comparing statistics, and pooling to obtain an overall sim-
ilarity score. An additional goal is to test metric performance
on a large database of natural textures.

We develop a number of STSIMs that utilize both intra- and
inter-subband correlations, and different ways of comparing
statistics. The development of texture similarity metricshas
been motivated and guided by recent research in the area
of texture analysis and synthesis. Our interest is in texture
analysis/synthesis techniques that rely on multiscale frequency
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Fig. 1. Constructing a database of identical textures: original and cutouts

decompositions [7]–[11]. The most impressive and complete
results were presented by Portilla and Simoncelli [11], who
developed a technique based on an elaborate statistical model
for texture images that is consistent with human perception. It
is based on the steerable filter decomposition [12] and relies
on a model with several hundred parameters to capture a very
wide class of textures. While in principle a direct comparison
of the model parameters can form the basis for a texture sim-
ilarity metric, our goal is to show that a successful similarity
metric can be based on significantly fewer parameters.

A number of applications can make use of STSIMs, and
each application imposes different requirements on metric
performance and testing procedures. For example, in image
compression it is important that the metric exhibit a monotonic
relationship between measured and perceived distortion, while
in image retrieval applications it may be sufficient for the
metric to distinguish between similar and dissimilar images
without a need for precise ordering. The focus of this paper
is on CBR, and in particular, on the recovery of textures
that are identical to a query texture, in the sense that they
could be patches from a large perceptually uniform texture,
as shown in Figure 1. However, these metrics have also been
used in image compression [13]. Note that the patches at the
bottom of Fig. 1 have visible point-by-point differences, but
to a human observer there is no doubt that they are the same
texture. The zebra example was chosen to emphasize the point;
typical textures are not as coarse as this. Retrieval of identical
textures is important in CBR when one may be seeking images
that contain a particular texture (material, fabric, pattern, etc.),
as well as in some near-threshold coding applications. The
problem of searching for a known target image in a database
has been extensively studied by the text retrieval community
and is referred to asknown-item search[14]. It has also been
addressed by the image processing community for texture
retrieval applications [15]–[17].

The evaluation of image similarity metrics, in general,
requires extensive subjective tests, with several human sub-
jects and a large number of image pairs. It also requires
appropriate statistical measures of performance. Depending
on the performance requirements, a number of traditional
statistical measures can be used. For example, Spearman’s

rank correlation coefficient and Kendall’s tau rank correlation
coefficient can be used when a monotonic relationship between
subjective similarity scores and metric values is desired [6],
while Pearson’s correlation coefficient can be used when a
linear relationship is important [18]. In [5], the performance
criterion was whether a metric can distinguish between similar
and dissimilar pairs, irrespective of the ordering within each
group. This idea was further explored in [19], where we argued
that the combination of testing procedure and statistical per-
formance measure is critical for obtaining meaningful results.

The advantage of evaluating metric performance in the
context of retrieving identical textures is that the groundtruth
is known, and therefore no subjective tests are required. Of
course, the ground truth is known to the extent that the texture
from which the identical patches are obtained is perceptually
uniform. Another advantage of evaluating a metric in this
context is the availability of a number of well-establishedsta-
tistical performance measures, which includeprecision at one
(measures in how many cases the first retrieved document is
relevant),mean reciprocal rank(measures how far away from
the first retrieved document is the first relevant one),mean
average precision,and receiver operating characteristics.

In evaluating the similarity of two textures, one has to
take into account both the color composition and the spatial
texture patterns. In [6] we proposed a new structural texture
similarity metric that separates the computation of similarity
in terms of grayscale texture and color composition, and then
combines them into a single metric. However, our subjective
tests indicate that the two attributes are quite separate and
that there are considerable inconsistencies in the weightsthat
human subjects give to the two components [6], [19]. Thus,
for the present study, we focus only on grayscale textures.
We present a general framework for STSIMs that includes the
metrics proposed in [5] and [6], as well as a new metric that
relies on the Mahalanobis distance between vectors of subband
statistics (STSIM-M).

Initial experiments with STSIM-2 were performed on a
database of 748 natural textures [20]. In this paper, we present
experimental results with two databases with a total of1363
distinct texture images, extracted from486 larger texture
images. Our results indicate that the proposed metrics substan-
tially outperform existing metrics in the retrieval of identical
textures, according to all of the standard statistical measures
mentioned above, each of which emphasizes different aspects
of metric performance.

The paper is organized as follows. Section II reviews
grayscale texture similarity metrics, including SSIM metrics.
The proposed STSIM metrics are discussed in Section III.
Section IV presents the experimental results. Our conclusions
are summarized in Section V.

II. REVIEW OF GRAYSCALE SIMILARITY METRICS

In this section, we review grayscale image similarity metrics
and discuss their applicability to texture images. Such metrics
can easily be extended to color by applying the grayscale
metric to each of three color components in a trichromatic
space, as is sometimes done in compression applications.
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Original PSNR: 8.2dB PSNR: 9.0dB PSNR: 11.3dB

Fig. 2. Illustration of inadequacy of PSNR for texture similarity. Subjective
similarity increases left to right, while PSNR indicates theopposite.

However, as we have argued in [6], [21], it is more effective
to decouple the grayscale and color composition similarityof
an image. So, we restrict our discussion – and this paper – to
the grayscale case.

Image similarity metrics can be broadly grouped into two
categories: (1) image quality or fidelity metrics that attempt to
quantify the (ideally perceptual) difference between an original
and a distorted image, and (2) image similarity metrics that
compare two images without any judgment about quality. The
former are aimed at image compression and the latter at CBR
applications. The texture similarity metrics we propose inthis
paper fall somewhere between these two categories, and are
intended for both applications, even though the focus of our
experimental results will be on their retrieval abilities.Note
that most of the metrics we discuss do not meet the formal
definition of a metric, but we will refer to them as metrics
anyway.

Another broad categorization of grayscale texture similarity
metrics is into statistical and spectral metrics [22], [23].
Spectral analysis (subband decomposition) is essential ifa
metric is going to emulate human perception, while statistical
analysis is necessary for embodying the stochastic nature of
textures. It should thus not be surprising that the best metrics
combine both attributes.

A. Point-by-point Similarity Metrics

Traditional metrics evaluate image similarity on a point-by-
point basis, and range from simple mean squared error (MSE)
and peak signal-to-noise ratio (PSNR) to more sophisticated
metrics that incorporate low-level models of human perception
[1], [2]; we will refer to the latter asperceptual quality metrics.
Note that even though the former are implemented in the image
domain and the latter in the subband domain, in both cases
the computation is done on a point-by-point basis. Figure 2
illustrates the failure of point-by-point metrics when evaluating
texture similarity. Note that PSNR decreases with increasing
texture similarity.

Note also that perceptual quality metrics that are aimed at
near-threshold applications, whereby the original and recon-
structed images are perceptually indistinguishable, are very
sensitive to any image deviations that can be detected by
the eye, as for example when comparing the identical texture
patches of Fig. 1 and the two textures on the left of Fig. 2.

B. Texture Similarity Metrics

As we mentioned above, image similarity metrics can be
grouped into statistical and spectral methods. The statistical

methods are based on calculating statistics of the gray levels
in the neighborhood of each pixel (co-occurrence matrices,
first and second order statistics, random field models, etc.)and
then comparing the statistics of one image to those of another,
while the spectral methods utilize the Fourier spectrum or a
subband decomposition to characterize and compare textures.

We review statistical methods first. One of the best-known
methods is based on co-occurrence matrices [24]–[26], which
rely on relationships between the gray values of adjacent
pixels, typically within a2× 2 neighborhood. However, given
the small size of the neighborhood, such methods are not well-
suited for computing similarity of textures other than the so-
called microtextures [27].

Another approach is to rely on first and second order statis-
tics. Chenet al. [28] used the local correlation coefficients
for texture segmentation applications. However, as Juleszet
al. [29], [30] have shown, humans can easily discriminate
some textures that have the same second-order statistics. Thus,
simple second order statistics of image pixels are not adequate
for the evaluation of perceptual texture similarity.

Another class of statistical methods rely on Markov random
fields (MRF) to model the distribution of pixel values in a
texture [31], [32]. In combination with filtering theory, the
MRF models can also be used for texture synthesis [33]. The
main drawback of MRF-based approaches is that MRFs can
only model a subset of textures.

Ojala et al. [16] utilize local binary patterns (LBP) to
characterize textures, mainly for retrieval applications. Their
method constructs binary patterns that describe the relative
value of a pixel to image values in circles of different radii.
It then constructs histograms of such patterns for each circle,
on the basis of which it computes a log-likelihood statistic
that two images come from the same class. This method is
very simple yet effective for the task of texture classification.
However, as we show in Section IV, it does not provide metric
values that are comparable across different texture content.

The main advantage of these statistical approaches is their
simplicity and computational efficiency for obtaining the tex-
ture features and carrying out comparisons. However, their
simplicity is also their main drawback, as is their failure to
incorporate models of human perception. Most of these meth-
ods have been applied to limited data sets and applications,
and are likely to fail in more general problem settings.

The spectral methods provide a better link between pixel
image representations and human perception. Initially, spectral
methods were based on the Fourier transform, but given
that the basis functions for Fourier analysis do not provide
efficient localization of texture features [34], they were quickly
replaced by wavelet/subband analysis methods, which provide
a better tradeoff between spatial and frequency resolution.

Most of the recent spectral techniques extract the energies
of different subbands, and use them as features for texture
segmentation, classification, and CBR [27], [35]–[38]. Oneof
the most effective classification techniques has been proposed
by Do and Vetterli [38]; they use wavelet coefficients as
features and show that their distribution can be modeled as
a generalized Gaussian density, which requires the estimation
of two parameters. They then base the classification on the
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Kullback-Leibler distance between two feature vectors.
Some spectral techniques rely on subband decompositions

(filter banks) that explicitly model early processing stages of
the human visual system (HVS). In addition to different spa-
tial frequency channels, such decompositions are orientation-
sensitive, mimicking the orientation selectivity of simple re-
ceptive fields in the visual cortex of the higher vertebrates
[39]. One example of such decompositions are Gabor filters
[40], [41]. Several authors have used features extracted from
such decompositions for a variety of applications (e.g., in[8],
[35], [36], [42]–[45]). Manjunath and Ma [36] have utilized
the mean and the standard deviation of the magnitude of the
transform coefficients as features for representing the textures
for classification and retrieval applications. Then, a measure
of dissimilarity between two texture images is the normalized
ℓ1 distance between their respective two feature vectors.

Some methods for evaluating texture similarity combine the
statistical and the spectral approaches. For example, Yanget
al. [46] combine Gabor features and co-occurrence matrices
for CBR applications. One of the MPEG-7 texture descrip-
tors [47], thehomogeneous texture descriptoralso combines
spectral and statistical techniques. It consists of the means
and variances of the absolute values of the Gabor coefficients.
Since these statistics are computed over the entire image,
this descriptor is useful in characterizing images that contain
homogeneous texture patterns. For non-homogeneous textures,
the edge histogram descriptorpartitions the image into 16
blocks, applies edge detection algorithms and computes local
edge histograms for different edge directions. Thetexture
browsing descriptor, attempts to capture higher-level percep-
tual attributes such as regularity, directionality, and coarseness,
and is useful for crude classification of textures. These three
types of MPEG-7 texture descriptors of MPEG-7 are described
in detail in [48]. Ojalaet al. [16] have shown that the MPEG-7
descriptors are rather limited and provide only crude texture
retrieval results. A number of variations of the MPEG-7
techniques have also been developed, e.g., in [49].

Some of the techniques we have reviewed in this section
have been shown to be quite effective in evaluating texture
similarity in the context of clustering and segmentation tasks.
However, there has been very little work towards evaluat-
ing their effectiveness in providing texture similarity scores
that are consistent across texture content, agree with human
judgments of texture similarity, and can be used in different
applications. In Section III, we proposed metrics that attempt
to achieve these goals, while in Section IV, we present
systematic methods for evaluating metric performance.

C. Structural Similarity Metrics

For supra-threshold applications, such as CBR and percep-
tually lossy compression, there is a need for metrics that can
accommodate, i.e., give high similarity scores to, significant
(visible) point-by-point differences as long as the overall
quality and structure does not change from one image to the
other. This was the primary motivation in the development of
the SSIMs [3], a class of metrics that attempt to – implicitly
– incorporate high-level properties of the HVS. The goal is

to allow non-structural contrast and intensity changes, aswell
as small translations, rotations, and scaling changes, that are
detectable but do not affect the perceived quality of an image.
The main approach for accomplishing this goal is to compare
local image statistics in corresponding sliding windows (for
example,7 × 7) in the two images and to pool the results
of such comparisons. SSIMs can be applied in either the
spatial or transform domain. When implemented in the image
domain, the SSIM metric is invariant to luminance and contrast
changes, but is sensitive to image translation, scaling, and
rotation, as shown in [4]. When implemented in the complex
wavelet domain, it is tolerant of small spatial shifts up to a
few pixels, and consequently also small rotations or zoom [4].

The remainder of this subsection provides a brief review
of SSIM in the spatial domain (S-SSIM) [3] and the complex
wavelet domain (CW-SSIM) [4]. The main difference between
the two implementations is that the former is applied directly
to two images,x = [x(i, j)] and y = [y(i, j)], whose
similarity we wish to assess, while in the latter the images
are first decomposed into subbands,x

m = [xm(i, j)] and
y

m = [ym(i, j)], using the complex steerable filter bank [12],
and includes an extra subband pooling step. Otherwise, the
two implementations are the same.

The SSIM metric can thus be applied to the imagesx and
y or the subband imagesxm and y

m. The two cases are
differentiated by the presence ofm. SSIM fixes a window
size and shape (usually square), as well as a set of window
positions within the images (typically increments of some
sliding stepsize such as the window width). Then for each
window position, it performs the following three steps.

First, it computes the mean and variance for each image
within that window. For example, forxm, these are

µm
x

= E {xm(i, j)} (1)

(σm
x

)2 = E
{

[xm(i, j) − µm
x

] [xm(i, j) − µm
x

]
∗}

. (2)

where, although the notation does not show it,x
m refers to

the portion of the image within the current window, and where
E {xm(i, j)} denotes the empirical average ofx

m over spatial
locations(i, j) within the window. SSIM also computes the
covariance ofxm andy

m within corresponding windows:

σm
xy

= E

{

[

xm(i, j) − µm
x

] [

ym(i, j) − µm
y

]∗
}

. (3)

Second, it compares the corresponding means and variances
for the given window position by computing theluminance
term:

lm
x,y =

2µm
x

µm
y

+ C0

(µm
x

)2 + (µm
y

)2 + C0

, (4)

and thecontrastterm:

cm
x,y =

2σm
x

σm
y

+ C1

(σm
x

)2 + (σm
y

)2 + C1

, (5)

whereC0 andC1 are small positive constants that are included
so and that when the statistics are small the term will be close
to 1. In addition, the covariance and variances for the window
position are used to determine thestructureterm:

sm
x,y =

σm
xy

+ C2

σm
x

σm
y

+ C2

. (6)
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(a) (b)

Fig. 3. (a) Steerable filter decomposition. (b) Crossband correlations

which, apart from the small constantC2, is the cross-
correlation coefficient of the two patches.

Finally, it combines these three terms into the similarity
value

qm
SSIM(x,y) = (lm

x,y)α(cm
x,y)β(sm

x,y)γ , (7)

for some choice of positive numbersα, β, and γ, typically
all set to1. Note that CW-SSIM assumes thatµm

x
= 0 for all

subbands except the lowpass; it also uses the magnitude ofσm
xy

to make sure that all the terms in (7) are real. Note also that all
of these terms take values in the interval[0, 1], except for the
“structure” term of S-SSIM, which takes values in[−1, 1]. The
similarity values computed for all window positions are then
pooled by averaging to obtain the SSIM valueQm

SSIM(x,y)
over all spatial locations.

In the complex wavelet version of SSIM (CW-SSIM) [4],
the imagesx andy are first decomposed intoNb = Ns ·No+2
subbands using the complex steerable filter bank [12]. Here,
Ns denotes the number of scales,No the number of orien-
tations, and the “+2” accounts for the (innermost)lowpass
and outermosthighpassbands, which are not subdivided into
different orientations and which have real-valued coefficients,
in contrast to the complex coefficients of theNs · No other
bands. Figure 3(a) illustrates the passbands of the steerable
filter decomposition withNs = 3 scales andNo = 4
orientations. The similarity values are computed for each
subband as in (7) and then pooled across subbands, typically
by averaging.

Note that SSIM metrics incorporate implicit contrast mask-
ing – as opposed to explicit contrast masking in perceptual
quality metrics – as the luminance (4) and contrast (5)
terms are scaled by the values of the mean and variance,
respectively, and are thus weighted by how visible they are.
On the other hand, subband noise sensitivities – for a given
display resolution and viewing distance – are not implicit
but can be easily incorporated into the CW-SSIM metric to
obtain a perceptually weighted metric (WCW-SSIM) [50].
Such perceptual weighting is useful for measuring distortions
that are dependent on viewing distance, such as white noise
and DCT compression [50].

III. STRUCTURAL TEXTURE SIMILARITY METRICS

As mentioned in Section II, spectral (subband) analysis is
needed to model early processing in the HVS, while statistical

analysis is necessitated by the stochastic nature of textures.
The steerable filter SSIM implementations [4] seem to provide
the right ingredients for a perceptual approach to texture
similarity. First, steerable filters, like Gabor filters, are inspired
by biological visual processing. Second, the most important
idea behind the SSIM approach [3] for image quality is the fact
that it replaces point-by-point comparisons with comparisons
of region statistics. However, the “structure” term of (6),which
gives SSIM its name, is actually a point-by-point comparison.
This follows from the fact that the cross-correlation between
the patches of two images in (3) is computed on a point-by-
point basis. Moreover, Reibman and Poole [51] have shown
that the image domain SSIM has a direct connection to MSE.
This does not hold for CW-SSIM, which is tolerant of small
shifts since such perturbations produce consistent phase shifts
of the transform coefficients, and thus do not change the
relative phase patterns that characterize local image features
[4]. However, the amount of shifts the CW-SSIM can tolerate
is small and independent of metric parameters. On the other
hand, pairs of texture images can have large point-by-point
differences and pixel shifts, while still preserving a highdegree
of similarity.

Thus, in order to fully embrace the SSIM idea of relying on
local image statistics, and to develop a metric that can address
the peculiarities of the texture similarity problem, we need to
completely eliminate point-by-point comparisons by dropping
the “structure” term, and to replace it with additional statistics,
and comparisons thereof, that reflect the most discriminating
texture characteristics. This paper proposes a general frame-
work for STSIM metrics that take the following form:

1) A multiscale frequency decomposition: Such decom-
positions can be real or complex. In the following, we
will use the three-scale, four-orientation steerable filter
decomposition of Figure 3(a) – as in CW-SSIM.

2) A number of subband statistics: Each statistic corre-
sponds to one image and is computed within one window
in that image. Statistics are computed within a subband
or across subbands.

3) The window over which the statistics are computed can
be local (sliding window) orglobal (the entire image).

4) A means for comparing (corresponding) subband
statistics, one from each image whose similarity we wish
to assess: The particular formula depends on the range
of values that the statistic takes, and yields a nonnegative
number that represents the similarity or dissimilarity of
the two statistics.

5) Three types of pooling to obtain an overall
(dis)similarity score: One that combines (dis)similarity
scores for all statistics that correspond to a given
subband, one that pools across subbands, and one that
pools across window positions. As we will see, pooling
can be done additively or multiplicatively. The order of
the pooling can be selected to provide similarity scores
for a particular subband or window location.

Note that the “structure” term of SSIM does not fit the above
description, because the statistic it computes involves two
images, and because it is not a comparison of two statistics.
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Moreover, in S-SSIM, it can take negative values.
We now discuss different choices for each of these elements

that result in different metric embodiments. Note that all of
the metric embodiments we discuss are not scale or rotation
invariant. However, if required by an application, they canbe
modified to account for such invariances, in combination with
a scale or orientation detector.

A. STSIM-1

The first structural texture similarity metric was proposed
by Zhao et al. [5], who replaced the “structure” term of
(6) in the CW-SSIM with terms that compare first-order
autocorrelations of neighboring subband coefficients in order
to provide additional structural and directionality information.
We refer to this metric as STSIM-1.

The first-order autocorrelation coefficients can be computed
as empirical averages, in the horizontal direction as

ρm
x

(0, 1) =
E

{

[xm(i, j) − µm
x ] [xm(i, j + 1) − µm

x ]
∗}

(σm
x )2

(8)

and in the vertical direction as

ρm
x

(1, 0) =
E

{

[xm(i, j) − µm
x ] [xm(i + 1, j) − µm

x ]
∗}

(σm
x )2

(9)

Diagonal and anti-diagonal terms could be computed in a
similar fashion. However, STSIM-1 did not use them because
they did not contribute to any significant improvements in
metric performance.

Note that there is no need to consider adding higher
order autocorrelations, because this would be equivalent to
computing first-order autocorrelations of decimated images.
However, this is effectively done when we compute the first-
order autocorrelations of the lower frequency subbands, which
are lowpass filtered and decimated, which (lowpass filtering)
also eliminates aliasing. Thus, by computing first-order auto-
correlations on a multi-scale frequency decomposition, weare
effectively computing higher-order autocorrelations.

Note also that in contrast to the variances, which are
unbounded and nonnegative, the correlation coefficients are
bounded and their values lie in the unit circle of the complex
plane. Thus, the statistic comparison terms cannot take the
form of (4) and (5). Hence, new terms were suggested in [5]:

cm
x,y(0, 1) = 1 − 0.5|ρm

x
(0, 1) − ρm

y
(0, 1)|p (10)

cm
x,y(1, 0) = 1 − 0.5|ρm

x
(1, 0) − ρm

y
(1, 0)|p. (11)

We will refer to these ascorrelation terms.Typically, p = 1.
Note that the means, variances, and autocorrelations are

calculated on theraw, complex subband coefficients. Since the
subband decomposition (apart from the lowpass subband) does
not include the origin of the frequency plane, the subbands
will ordinarily havezero-meanover theentire image; however,
within small windows, e.g., of size7 × 7, this does not have
to be true; thus, the meansµm

x
have to be computed in each

sliding window, and used in the variance calculations.
For each window, the similarity scores corresponding to the

four statistics are combined into one score for each subband

and window location:

qm
STSIM-1(x,y)= (lm

x,y)
1

4 (cm
x,y)

1

4 (cm
x,y(0, 1))

1

4 (cm
x,y(1, 0))

1

4

(12)
Note that the exponents were selected to sum to1 in order
to normalize the metric values so that metrics with different
numbers of terms are comparable [5]. The overall metric value
is obtained by pooling over all subbands and spatial locations.

For spatial pooling, Zhaoet al. [5] considered two ap-
proaches. In the “additive” approach, the metric values are
averaged across all subbands. In the “multiplicative” approach,
the metric values are multiplied across the subbands. In both
cases, the final metric is calculated as the spatial average over
all the sliding window locations.

In [5], the STSIM-1 was shown to outperform SSIM and
CW-SSIM, in the sense that it provides texture similaritiesthat
are closer to human judgments.

B. Selection of Subband Statistics

In the remainder of this section, we develop metrics that
extend the ideas of [5] by including a broader set of image
statistics. The motivation comes from the work of Portilla and
Simoncelli on texture analysis/synthesis [11], who have shown
that a broad class of textures can be synthesized using a set
of statistics that characterize the coefficients of a multiscale
frequency decomposition (steerable filters). Based on extensive
experimentation, they claim that the set of statistics they
proposed are necessary and sufficient. Now, if a set of statistics
is good for texture synthesis, then these statistics shouldalso
be suitable as features for texture comparisons. However,
while texture synthesis requires several hundred parameters,
we believe that many fewer will suffice for texture similarity.

Among the various statistics that Portilla and Simoncelli
proposed, the proposed metrics adopt the mean and variance
of the original SSIM metrics, the correlations coefficientsof
the STSIM-1 metric, and addcrossbandcorrelations (between
subbands). The argument for adding crossband correlations
lies in the fact that the image representation by steerable
filter decomposition is overcomplete, and thus, the subband
coefficients are correlated. More importantly, we compute
the crossband-correlation statistics on themagnitudesof the
coefficients. The raw complex coefficients may in fact be
uncorrelated, since phase information can lead to cancella-
tions. As shown by Simoncelli [52], the magnitudes of the
wavelet coefficients arenot statistically independent and large
magnitudes in subbands of natural images tend to occur at
the same spatial locations in subbands at adjacent scales
and orientations. The intuitive explanation may be that the
“visual” features of natural images do give rise to large local
neighborhood spatial correlations, as well as large scale and
orientation correlations [11].

The crossband-correlation coefficient between subbandsm

andn (excluding the lowpass and highpass bands) is computed
as:

ρ
m,n

|x| (0, 0) =
E

{[

|xm(i, j)| − µm
|x|

] [

|xn(i, j)| − µn
|x|

]}

σm
|x|σ

n
|x|

(13)
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Among all subband combinations, we have decided to include
the correlations between subbands at adjacent scales for a
given orientation and between all orientations for a given scale;
an example is shown in Figure 3(b). This is in agreement with
the findings of Hubel and Wiesel [53] that spatially close sim-
ple cells in the primary visual cortex exhibit amplificationof
the responses of cells whose preferred orientations are similar.
Note that for computing crossband correlations, it is important
that the subbands have the same sampling rates (number of
coefficients); this can be achieved if in the steerable filter
decomposition we just filter without subsampling. However,all
other statistics can be computed using subsampled coefficients,
provided they are normalized for pooling.

The total number of crossband correlations is equal to:

Nc = Ns ·

(

No

2

)

+ No · (Ns − 1),

where the first term comes from the correlations across all
possible orientation combinations for a given scale and the
second term comes from the correlations of adjacent scales
for a given orientation. (Note that each subband in the first
and last scales has only one adjacent subband.) Thus, if we
use a steerable filter decomposition withNs = 3 scales and
No = 4 orientations, as shown in Figure 3(b), there are26
new subband statistics. Overall, the proposed STSIM metrics
incorporate the following statistics, which are computed over
the complex subband coefficients or their magnitudes. For each
of the Nb subbands we compute:

• mean value|µm
x
| (to make it real) orµm

|x|,
• variance(σm

x
)2 or (σm

|x|)
2,

• horizontal autocorrelationρm
x

(0, 1) or ρm
|x|(0, 1),

• vertical autocorrelationρm
x

(1, 0) or ρm
|x|(1, 0),

and for each of theNc pairs of subbands we compute

• crossband correlationρm,n

|x| (0, 0).

for a total ofNp = 4 · Nb + Nc = 82 statistics.

C. Local Versus Global Processing

In SSIM, CW-SSIM, and STSIM-1 the processing is done
on a sliding window basis. This is essential when comparing
two images for compression and image quality applications,
where we want to ignore point-by-point differences, but want
to make sure that local variations on the scale of the window
size are penalized by the metric. Note that the window size de-
termines the texture scale that is relevant to our problem. Thus,
if the window is large enough to include several repetitionsof
the basic pattern of the texture, e.g., several peas, then the peas
are treated as a texture; otherwise, the metric will focus on
the surface texture of the individual peas. On the other hand,
when the goal is overall similarity of two texture patches, then
the assumption is that they constitute uniform (homogeneous)
textures and the global window produces more robust statistics,
unaffected by local variations. Thus, in the following, we will
consider both global and local metric implementations (forall
metrics except the SSIM, for which the global implementation
does not provide much information [3], [50]).

D. Complex Versus Real Steerable Filter Decomposition

The complex steerable filters decompose the real imagex

into complex subbandsxm. The real and the imaginary parts
of such subbands are not independent of each other, in fact,
the imaginary part is the Hilbert transform of the real part,
that is, they are in quadrature. Quadrature filters are used for
envelope detection and for local feature extraction in images.
By applying filters in quadrature, we are able to capture the
local phase information, which is consistent with receptive
field properties of neurons in mammalian primary visual cortex
[54].

However, Aachet al. [55] have shown that the spectral
energy signatures from the subbands obtained with quadrature
filters are linearly related to the energies obtained by the
“texture energy transform,” which performs local variance
estimation on the image filtered with the in-phase filter. This
is true when we perform the calculations over the windows
that are the same size as the filter support. Thus, the same
performance is expected when using either complex or real
steerable pyramids when a global window is applied. For a
local window, which may be different than the filter support,
the conclusions from [55] no longer hold and the complex
transform is favorable, given its invariance to small rotations,
translations and scaling changes, as shown by Wanget al. [4].

E. Comparing Subband Statistics and Pooling – STSIM-2

We are now ready to define STSIM-2, a metric that incorpo-
rates the statistics we defined in Section III-B. The metric will
use the mean value|µm

x
|, variance(σm

x
)2, and autocorrelations

ρm
x

(0, 1) andρm
x

(1, 0), computed on the complex subband co-
efficients, and the crossband correlationρ

m,n

|x| (0, 0), defined on
the magnitudes. If we adopt the SSIM approach for comparing
image statistics, all we need to do is add a term for comparing
the crossband-correlation coefficients to the STSIM-1 metric.
Like the STSIM-1 comparison terms in (10) and (11), this
term should take into account the range of the statistic values
and should also produce a number in the interval[0, 1]:

cm,n
x,y (0, 0) = 1 − 0.5|ρm,n

|x| (0, 0) − ρ
m,n

|y| (0, 0)|p (14)

Again, typically,p = 1.
Note that since the crossband correlation comparison terms

involve two subbands, it does not make sense to multiply them
with the other STSIM-1 terms in (12). We thus need a separate
term. For a given window, the overall STSIM-2 metric can
then be obtained as a sum of two terms: one that combines
the STSIM-1 values over all subbands, and one that combines
all the crossband correlations.

qSTSIM-2(x,y) =

Nb
∑

m=1

qm
STSIM-1(x,y) +

Nc
∑

i=1

cmi,ni
x,y (0, 0)

Nb + Nc

. (15)

When the metric is applied on a sliding window basis,
spatial pooling is needed to obtain an overall metric value
QSTSIM-2(x,y). As we saw above, spatial pooling can be done
before or after the summation in (15).
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F. Comparing Subband Statistics and Pooling – STSIM-M

Another approach for comparing image statistics, that is
better suited for comparing entire images or relatively large
image patches, is by forming a feature vector that contains all
the statistics we identified in Section III-B over all subbands,
and computing the distance between the feature vectors. We
found that it is most effective when the statistics are computed
on themagnitudes of the subband coefficients.

One of the advantages of this approach is that we can
add different weights for different statistics, dependingon
the application and database characteristics. For example, we
could put a lower weight on statistics with large variance
across the database, thus de-emphasizing differences thatare
expected to be large and paying more attention to differences
that are not commonly occurring. This can be accomplished
by computing theMahalanobis distance[56] between the
feature vectors, which if we assume that the different features
are mutually uncorrelated, is a weighted Euclidean distance
with weights inversely proportional to the variance of each
feature. We refer to the resulting metric as STSIM-M, where
“M” stands for Mahalanobis. Note that as a distance this is a
dissimilarity metric that takes values between0 and∞.

The feature vector for image or image patchx has a total
of Np = 4 · Nb + Nc terms and can be written as:

Fx = [fx,1, fx,2, . . . , fx,Np
]

The STSIM-M metric forx and y, is then given by the
Mahalanobis distance between their feature vectorsFx and
Fy:

QSTSIM-M(x,y) =

√

√

√

√

Np
∑

i=1

(fx,i − fy,i)2

σ2

fi

. (16)

whereσfi
the standard deviation of theith feature across all

feature vectors in the database. Thus, unlike the other SSIM
and STSIM metrics, computation of the distance between two
texture images using STSIM-M requires statistics based on the
entire database.

IV. EXPERIMENTS

As we discussed in the introduction, one of our goals was
to conduct systematic experiments over a large image database
that will enable testing different aspects of metric performance.
We have chosen to test metrics in the context of retrieving
identical textures (known-item search), which as we argued,
essentially eliminates the need for subjective experiments, thus
enabling comparisons with human performance on a large
database. While this seems to restrict testing to a very specific
problem, we will argue that the conclusions transcend the
particular application and have important consequences for
other image analysis applications, including compression.

As we pointed out in Section III, the metrics we proposed
in this paper are not scale or rotation invariant. Accordingly,
in the experimental results, textures with different scales and
orientations will be considered as dissimilar.

A. Database Construction

For our experiments, we collected a large number of color
texture images. The images were carefully selected to (a) meet
some basic assumptions about texture signals, and (b) facilitate
the construction of groups of identical textures.

To address the first point, we need a definition of texture.
The precise definition of texture is not widely agreed on
in the literature. However, several authors (e.g., Portilla and
Simoncelli [11]) define texture asan image that is spatially
homogeneous and that typically contains repeated structures,
often with some random variation (e.g., random positions, size,
orientations or colors).The textures we collected had to meet
the requirement of spatial homogeneity and repetitiveness; the
latter we defined as at least five repetitions, horizontally or
vertically, of a basic structuring element. We also made sure
that there is a wide variety of textures and a wide range of
similarities between pairs of different textures.

To address the second point, we collected images of what we
considered to be perceptually uniform textures, from whichwe
cut smaller patches of identical textures – each of which met
the basic texture assumptions. The group of patches originating
from the same larger texture are considered to be identical
textures, and thus consideredrelevant to each other in a
statistical sense.

Our subjective experiments were conducted on two different
texture databases, obtained from theCorbis [57] andCUReT
databases [58], [59], respectively.

To construct the first database, we downloaded around1000
color images from theCorbiswebsite [57]. All of the textures
were photographic, mostly of natural or man-made objects and
scenes. No synthetic textures were included. The resolution
varied from170 × 128 to 640 × 640 pixels. Roughly300 of
those were discarded, as they did not represent perceptually
uniform textures. Of the remaining700 images, we selected
425 for the known-item-search experiments. To obtain groups
of identical textures, each of the425 images were cut into a
number of128 × 128 patches. Depending on the size of the
original image, the extracted images had different degreesof
spatial overlap, but we made sure that there were substantial
point-by-point differences, such as those shown in Figure 1.
The idea was to minimize overlap while maintaining texture
homogeneity. In some cases – when the original image was
large enough – we downsampled the image, typically by a
factor of two, in order to meet the repetitiveness requirement.
A minimum of two and a maximum of twelve patches were
obtained from each original texture. Overall, we obtained1180
texture patches originating from425 original texture images.

The second database was constructed in similar fashion
using61 images from theCUReTdatabase [58], [59], which
contains images of real-world textures taken at different view-
ing and illumination directions. We selected images from
lighting and viewing condition 122 [59]. From each of the
61 images, we cut out three128 × 128 patches at random
positions, making sure that the entire patch overlapped the
texture portion of the image. The total number of test images
was thus183. The advantage of theCUReTdatabase is that
the textures were carefully chosen and photographed under
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Fig. 4. Samples from theCorbis database

Fig. 5. Samples from theCUReTdatabase

controlled conditions. More importantly for our experiments,
all textures are more or less perceptually uniform. On the other
hand, the variety of materials is limited. Since our primary
interest is on the variety of textures rather than the detailed
effects of viewing conditions, theCorbis database is better
suited to the goals of this paper.

Figures 4 and 5 show examples of images from the two
databases. In both cases, we used the grayscale component of
the images. From now on, we will refer to the selected textures
from the two databases as theCorbis andCUReTdatabases.

B. Performance Based on Information Retrieval Statistics

We treat the known-item search experiment as a retrieval
task: an image is queried and the similarity scores between
the query and the rest of the database are ordered according
to decreasing similarity. The first retrieved document is the
image with highest similarity to the query; the second retrieved
document is the one with the second-highest similarity, etc.

One informative measure of performance is the number of
times the first retrieved image isrelevant,i.e., it comes from
the same original image and has the same label as the query.
This is commonly referred to asprecision at one. Another
way of assessing metric performance is to compute themean
reciprocal rank (MMR), i.e., the average value of the inverse
rank of the first relevant retrieved image [60]. This measure
tells us, on average, how far down the list the first relevant
image is.

When there is more than one relevant image for a given
query, as is the case for many of the entries of our database,
the usual value to report ismean average precision (MAP)

Corbis Database CUReTDatabase
Metric P@1 MRR MAP P@1 MRR MAP
PSNR 0.04 0.07 0.06 0.11 0.17 0.17
S-SSIM 0.09 0.11 0.06 0.06 0.11 0.10
CW-SSIM 0.39 0.46 0.40 0.69 0.77 0.72
CW-SSIM global 0.27 0.36 0.28 0.31 0.45 0.35
STSIM-1 0.74 0.80 0.72 0.81 0.85 0.80
STSIM-1 global 0.86 0.90 0.81 0.93 0.94 0.90
STSIM-2 0.74 0.80 0.74 0.81 0.86 0.81
STSIM-2 global 0.93 0.95 0.89 0.97 0.97 0.95
STSIM-M 0.96 0.97 0.92 0.96 0.97 0.95
Gabor features 0.92 0.94 0.88 0.96 0.96 0.95
Wavelet features 0.84 0.89 0.80 0.92 0.95 0.93
LBP 0.90 0.92 0.86 0.93 0.94 0.89

TABLE I
INFORMATION RETRIEVAL STATISTICS

[61]. The MAP is calculated as follows: for each query and
positive integern less than or equal to the size of the database,
we compute the fraction of then highest ranked images that
are relevant (precision), and then average these fractionsover
all values ofn for which thenth highest ranked image was
actually relevant, to obtain the MAP for that query. Finally,
we average these values across all images.

In our experiments, we compared the following metrics:
• PSNR
• S-SSIM with7 × 7 local window
• CW-SSIM with 7 × 7 local window
• CW-SSIM over the entire image (global)
• STSIM-1 with 7 × 7 local window
• STSIM-1 over the entire image (global)
• STSIM-2 with 7 × 7 local window
• STSIM-2 over the entire image (global)
• STSIM-M over the entire image (global)
• Normalizedℓ1 distance on Gabor features [36]
• Kullback-Leibler distance on wavelet features [38]
• Local Binary Patterns (LBP) [62]

The implementation of the texture similarity algorithms of
Manjunath and Ma [36] and of Do and Vetterli [38] were
downloaded from the respective authors’ websites. For sim-
plicity, we will refer to them in tables and plots asGabor
features[36] and Wavelet features[38]. The implementation
of the LBP method [62] was downloaded from the authors’
website and uses theLBP riu2

8,1 + LBP riu2

24,3 combination of
features. Additionally, to avoidlog 0 terms causing the LBP
metric to produce undefined values, any such term was re-
placed bylog 10−8.

The results are summarized in Table I for the two databases.
The highest value for each statistic is highlighted. Even though
the databases are quite different, the results are qualitatively
the same. Based on these results, and according to all three
statistics, the global STSIM-M and STSIM-2 metrics outper-
form all other metrics. Note that including the extra statistics
results in a substantial gain over STSIM-1. Note how poor
is the performance of the point-by-point metrics (PSNR and
S-SSIM). Another observation is that, with the exception of
CW-SSIM, the global methods have a significantly higher
performance than the local, sliding window-based ones. This
can be explained by the fact that we are comparing more
or less homogeneous texture images and it is in our interest
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Metric p-values
STSIM-1 local & STSIM-2 local 0.692
STSIM-1 global & Wavelet features 0.098
STSIM-2 global & Gabor features 0.269
LBP & Gabor features 0.061

TABLE II
COCHRANE’ S Q TEST P-VALUES > 0.01 (Corbis)

to capture their global, overall image statistics, rather than
comparing the images on a window-by-window basis. The
small sliding windows may in fact not include enough of
the texture image to capture its statistical regularities.This is
particularly true for higher scale (coarser) textures, forwhich
the image in a small window may not qualify as a texture.
Thus, an implicit assumption is that the smallest window
over which the texture statistics are computed qualifies as a
texture, as we defined it earlier in this section. When this is
true, the STSIM metrics are very tolerant of non-structural
deformations, but when it is violated, then the performance
of the metric deteriorates. To avoid such cases, the scale of
the textures can either be knowna priori or the application of
STSIMs can be coupled with with a texture scale detector, so
that the metric can be chosen adaptively.

C. Statistical Significance Tests (For Corbis Database)

To test whether the differences in performance based on the
information retrieval statistics are due to chance, we performed
standard statistical tests with significance levelα = 0.01.

1) Precision at One:Since there are only two possible
outcomes for each query – the first retrieved image is relevant
or not – we performed the Cochrane’s Q test [63] to determine
the significance of the results. The test was applied to each
pair of metrics, and found that all differences are statistically
significant except the ones listed in Table II, for which the
p-values are greater thanα = 0.01. Thus, the global STSIM-
2 and STSIM-M metrics significantly outperform all other
metrics, based on precision at one.

2) Mean Reciprocal Rank and Mean Average Precision:
Since the MRR statistic is ordinal and MAP is non-Gaussian,
we performed the Friedman test [64], [65] followed by the
Tukey-Kramer Honestly Significant Difference test [66] to
determine the significance of the results. The results are
represented by the plots of Figs. 6 and 7, which show the
mean performance ranks for each metric and the confidence
intervals, forα = 0.01. When the confidence intervals of two
particular metrics overlap, the difference in their performance
scores is not considered statistically significant. These statis-
tical tests confirm that, based on these retrieval statistics, the
superior performance of STSIM-2 and STSIM-M is not by
chance due to the limited size of the database.

D. Performance Based on Receiver Operating Characteristic

Another approach for comparing metric performance is to
treat the known-item search problem as a binary classification
problem, where the task is to determine whether two images
are identical textures (null hypothesis) or not (alternatehy-
pothesis). The test variable is the similarity value that a metric
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Fig. 6. Friedman’s test on mean reciprocal rank values (Corbis)
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Fig. 7. Friedman’s test on mean average precision values (Corbis)

produces for a pair of images. The system should then decide
whether the two images correspond to identical textures by
comparing the probability of the given similarity value under
each of the hypotheses. The probability density functions for
the two hypotheses are modeled by the histograms of metric
values, one for the pairs of identical textures and one for
the pairs of non-identical textures. Figure 8 (top) shows an
example of well-separated distributions, that correspondto
the STSIM-2 metric over theCorbis database. Note that the
distribution for identical textures is peaky, which tells us
that the metric provides similar values for similar textures
irrespective of content. This is a much stronger indicator of
metric performance than the retrieval statistics of Section IV-B
because it establishes that there is an absolute threshold
for metric values above which textures can be considered
identical. On the other hand, the distribution for non-identical
textures is much broader, which is expected given the variety
of textures in the database. Figure 8 (bottom) shows an
example of distributions with a lot of overlap; these correspond
to PSNR over theCorbisdatabase. Note that in addition to the
overlap, the distribution for identical textures is fairlybroad.

Given the probability density functions, we can compare
metric performances by plotting the receiver operating charac-
teristic (ROC) curve for each metric. The ROC curve plots the
true positives rate (TPR) as a function of the false positives rate
(FPR). The ROC curves obtained when the different metrics
were tested on theCorbis database are plotted in Figure 9.
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The area under the curves can be used as a measure of
performance. Ideally, the area is equal to1. The areas under
the curves are given in Table III. Again, note that the global
STSIM metrics outperform all other metrics, and that the
global metrics outperform the local ones. These results are
consistent with the results based on the information retrieval
statistics, with one notable exception. The LBP algorithm has
very poor performance. This is because while it has relatively
good classification performance, it does not result in consistent
similarity values, that is, it cannot be used to determine an
absolute threshold for metric performance.

E. Points of Failure and Future Research

The results presented so far are quite good. However, a close
study of the cases where the STSIM metrics fail to retrieve
the correct image are quite revealing, as they can point to
both weaknesses of the proposed metrics and strengths of the
proposed approaches to texture similarity. Figure 10 shows
different failure examples. It shows the query image, the best
match and the first correct match. The most benign type of

Metric Area Metric Area
PSNR 0.753 STSIM-2 0.963
S-SSIM 0.446 STSIM-2 global 0.986
CW-SSIM 0.921 STSIM-M 0.985
CW-SSIM global 0.910 Gabor features 0.979
STSIM-1 0.967 Wavelet features 0.836
STSIM-1 global 0.985 LBP 0.625

TABLE III
AREA UNDER THEROC CURVE FORCorbisDATABASE

failure is when the metric (STSIM-M) retrieves a texture that
is quite similar to the query, like the one shown in Example A
of Figure 10. Another type of failure is shown in Example B,
where the retrieved image has similar statistics to the query,
with the only difference being that one is quasi periodic and
the other is more random. This is a common type of failure and
difficult for the proposed metrics to handle. In Example C, the
images have more or less the same underlying texture except
for weak edges that are too sparse to be captured by high-
frequency subbands and have too little contrast to be captured
by the low-frequency subbands. This type of failure is also
difficult for the proposed metrics to handle. In Examples D
and E, the differences are more substantial, but it does not
help that the orientations of the textures of the identical pairs
are not well matched. Finally, some failures come from the fact
that images in our database have different scales. This can be
seen in Example F, where the retrieved image is a texture at a
larger scale than the query image. Note that our metric weights
similarity equally across scales. In general, the metric inits
current form has difficulties handling textures of larger scales.
There are a number of possibilities for improvement, e.g., by
explicitly detecting the scale of each image.

V. CONCLUSIONS

We developed structural texture similarity metrics, which
account for human visual perception and the stochastic nature
of textures. The metrics allow substantial point-by-pointde-
viations between textures that according to human judgment
are essentially identical. They are based on a steerable filter
decomposition and rely on a concise set of subband statistics,
computed globally or in sliding windows. We investigated the
performance of a progression of metrics (STSIM-1, STSIM-
2, STSIM-M) in the context of known-item search, the re-
trieval of textures that are identical to the query texture.This
eliminates the need for cumbersome subjective tests, thus
enabling comparisons with human performance on a large
database. We compared the performance of the STSIMs to
PSNR, SSIM,CW-SSIM, as well as state-of-the-art texture
classification metrics in the literature, using standard statistical
measures. We have shown that global metrics perform best for
texture patch retrieval, and that the STSIM-2 and STSIM-M
metrics outperform all other metrics.
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