Efficient Parallel Hierarchical Clustering

Manoranjan Dash! and Simona Petrutiu? and Peter Scheuermann?

! Department of Information Systems, School of Computer Engineering,
Nanyang Technological University, Singapore 639798
2 Department of Electrical & Computer Engineering,
Northwestern University, Evanston, IL 60208 **

Abstract. Hierarchical agglomerative clustering (HAC) is a common
clustering method that outputs a dendrogram showing all N levels of
agglomerations where N is the number of objects in the data set. High
time and memory complexities are some of the major bottlenecks in its
application to real-world problems. In the literature parallel algorithms
are proposed to overcome these limitations. But, as this paper shows,
existing parallel HAC algorithms are inefficient due to ineffective parti-
tioning of the data. We first show how HAC follows a rule where most
agglomerations have very small dissimilarity and only a small portion to-
wards the end have large dissimilarity. Partially overlapping partitioning
(POP) exploits this principle and obtains efficient yet accurate HAC al-
gorithms. The total number of dissimilarities is reduced by a factor close
to the number of cells in the partition. We present pPOP, the parallel
version of POP, that is implemented on a shared memory multiprocessor
architecture. Extensive theoretical analysis and experimental results are
presented and show that pPOP gives close to linear speedup and out-
performs the existing parallel algorithms significantly both in CPU time
and memory requirements.

Keywords: hierarchical agglomerative clustering, partitioning, parallel algo-
rithm, shared memory architecture

1 Introduction

Hierarchical agglomerative clustering (HAC) is often used in various applications
due to its capability to output a dendrogram showing all agglomerations. Unlike
K-means and other types of clustering where objects are clustered into a given
number of clusters, a dendrogram can be used to get any number of clusters.
HAC algorithms are non-parametric, natural and simple in grouping objects,
and capable of finding clusters of different shapes by using different similarity
measures. However, they are limited in their application to real-world problems
mainly due to high CPU time and memory complexities. Existing algorithms
take O(N?log N) CPU time and require O(N?) memory. Parallel algorithms

** Research of the third author on this project was supported by NSF grant IIS-
0325144.

are proposed to alleviate this limitation. Existing parallel algorithms either par-
allelize other clustering methods such as K-means (Dhillon and Modha [1]) and
subspace clustering (Nagesh et al. [2]), or are not very efficient due to lack of
performance enhancing partitioning [3].

In [4] we have shown that complexities of the existing sequential HAC algo-
rithms can be reduced significantly by an efficient partitioning scheme without
losing accuracy. The proposed methods are based on an observation that in
HAC most iterations agglomerate very small clusters separated by very small
dissimilarity. Only a small number of iterations towards the end agglomerate
the large clusters. Using this observation a structure called partially overlapping
partitioning (POP) divides the data into a number of overlapping cells. Analy-
sis and experiments showed that POP-based sequential HAC algorithms reduce
existing time and memory complexities by a factor close to the number of cells
c.

In this paper we present parallel versions of POP, called pPOP. Due to the
independent nature of each partitioned cell, parallelization is able to achieve
similar reduction in time and memory complexities as POP, i.e., by a factor close
to the number of cells c. We implement pPOP over a shared memory architecture.
Experimental evaluations show that for large data sets pPOP obtains near linear
speedup. In addition, for stored matrix implementations, pPOP results in a two
order of magnitude improvement in computation time over the existing parallel
HAC algorithms.

2 Background

Let us assume that there are N objects each with M attributes. We use real
type data and Euclidean (L2) distance to measure dissimilarity. Other distance
measures, e.g. Manhattan, can be used (see [4]).

The 90-10 Rule : In an experiment we ran the centroid type HAC method
over a 2-D data set with 100 clusters and some noise. In the centroid type, each
cluster is represented by a centroid and the pair with the closest centroids is
merged in each iteration. In Figure 1, we plot the closest pair distance for each
iteration. Notice that most agglomerations except for a small portion towards
the end have very small closest pair distance compared to the maximum closest
pair distance. This maximum distance is taken over all agglomerations. If we
plot the size of clusters merged in an iteration it also shows a similar plot. We
experimented with many data sets having varying characteristics. For varying
M, N (typically large — at least a few thousand objects), and K (number of
clusters), the general trend is as follows: if a majority of the objects are inside
clusters then the shape of the distance plot is as shown in Figure 2. We name
this as ‘90-10 rule’ to convey the idea that in a dendrogram, most levels from the
bottom merge pairs of very small clusters separated by a very small portion of the
mazximum closest pair distance. The 90-10 rule extends to other HAC algorithms
beyond the centroid method for both the geometric and the graph metrics. For

Distance Plot

2.5 3
2 2

1.5 96% it’er’atior’lsrmerrge' clrurstersr 7

with distance less than 6%6 of
maximum merging distance

Closest Far Lidance —»

0.5*7777 o o &

*
o 20 40 60 809620100
Iteration Number (206)

Fig. 1. An important property of HAC: the distance plot shows that the closest pair
distance is very small even until last stage of agglomeration.

space constraints, we restrict all discussions in this paper to centroid method.
See [4] for detailed discussion on the 90-10 rule and other metrics. Next we show
how to exploit this inherent characteristic of HAC.

2.1 Partially Overlapping Partitioning (POP)

An axis-parallel POP divides the data-space uniformly into ¢ number of over-
lapping cells. The overlapping region is called d-region where ¢ is the overlap-
ping distance between two cells. Figure 2 depicts the axis-parallel POP. For the
centroid metric (and other geometric metrics), if the representative point of a
cluster falls in a d-region then each affected cell that contains this d-region holds
it, otherwise only one cell holds it.

Before discussing POP any further, we very briefly describe some existing
HAC algorithms. HAC algorithms are mainly of two types: stored matrix (e.g.,
dissimilarity matrix and priority queues) and stored data (e.g., nearest neigh-
bor). The dissimilarity matriz method stores dissimilarities between each pair of
clusters. When a pair is merged dissimilarities are computed for the new cluster
and the matrix is updated. The memory complexity of this method is O(N?)
and the time complexity is O(N?). In the priority queue method a heap-based
priority queue is maintained for each cluster. Because a priority queue requires
O(logn) time for each insert and delete operation for n elements, the time com-
plexity reduces to O(N?log N) although the memory complexity stays at O(N?).
The nearest neighbor array method maintains nearest neighbors for each clus-
ter in an array. If after each iteration the average number of clusters whose
nearest neighbors need to be changed is «, then the time complexity reduces
to O(aN?) and the memory complexity reduces to O(N). An upper bound for
a is 2(3M — 2). When memory is enough to store O(N?) dissimilarities, stored

Partially Overlapping Partitioning (POP)
5

S S
T
|
|
|

Fig. 2. The 90-10 rule is exploited by POP for efficient HAC.

matrix algorithms are preferred as they do fewer computations. Otherwise, the
stored data type is preferred.

2-Phase Algorithm : In [4] we proposed a new 2-phase algorithm for HAC
based on the axis-parallel POP. In phase 1 clusters are partitioned into ¢ over-
lapping cells. The basic idea is that in each iteration the closest pair is found for
each cell and from those the overall closest pair is found. If the overall closest
pair distance is less than ¢ then the pair is merged and the priority queues (or
the dissimilarity matrix or the nearest neighbor array) of only the container cell
are updated. If the closest pair or the merged cluster is in a d-region then the
priority queues of the affected cells are also updated. Phase I terminates when
the closest pair distance exceeds . Phase 2 merges the remaining clusters of
phase 1 using the existing algorithm, thus completing the dendrogram. Accu-
racy: POP in phase 1 ensures that any pair with distance less than § must reside
together in at least one cell. Hence, as phase 2 is the existing algorithm itself, the
2-phase algorithm guarantees the correct dendrogram. Complexity Analysis:
By setting § to the closest pair distance at the turning point of the distance plot
(see Figure 1), a large number of small clusters are merged in phase 1 while only
a small number of larger clusters are merged in phase 2. Recall that phase 1 uses
POP which is very efficient whereas phase 2 uses the existing algorithm which
is not so efficient. In Figure 1, if § is set to the turning point of the distance
plot, 96% agglomerations from the beginning are merged in phase 1 and the
remaining 4% in phase 2. Therefore, the overall computational time is reduced
drastically. So, we see that when § is set to the turning point, the number of
clusters remaining (k) for phase 2 is very small and the total number of clusters
in the d-region (|d|)is also very small. For simplification of the complexity anal-
ysis, we consider &k’ and |d| to be negligible. This is reasonable because the 90-10
rule holds for all data sets that have clusters in it. We assume equal cell size and

equal d-region size for each cell. In [4] we give the detailed complexity analysis
comparison between the existing and the 2-phase algorithms. Following is a brief
overview of that. Stored matrix type that requires O(N?) memory now requires
O(NTQ) in the 2-phase algorithm. Hence memory is reduced by a factor close to
c. Because of this reduction, the 2-phase dissimilarity matrix algorithm, whose
time complexity is dominated by the time required to create the matrix, enjoys
a reduction by a factor close to c¢. The time complexity of the priority queue
algorithm is dominated by the update effort required to maintain the priority
queues. After each agglomeration of the closest pair, the priority queues of all
other clusters are updated. But in the 2-phase algorithm this effort is restricted
only to the cell that holds the closest pair, and if it happens to be in a d-region
then it is restricted only to the affected cells. So after simplification the reduc-
tion factor is log% N X ¢, i.e., the time complexity reduces from O(N?1log N) to

O(NT2 log &¥). In stored data type there is no reduction in the memory complex-
ity of O(N). The time complexity is dominated by the time required to update
the nearest neighbors of the affected clusters. For the existing algorithm the time
required to find the nearest neighbor of one affected cluster is O(N) but for the
2-phase algorithm it is O(Z). So, the overall reduction factor is close to c.

Setting 6 and ¢ — Nested Algorithm : The performance of the 2-phase
algorithm depends on ¢ and §. As shown in the distance plot of Figure 1, there
exists an ideal § at the turning point at which the total time taken by the 2-phase
algorithm is minimum. But it is not straightforward to compute. So, we adopted
a nested approach where in the beginning POP partitioning starts with a very
small § and gradually increases it until a few or just one cluster remain. As ¢
increases, ¢ which is set initially to a high value, is gradually reduced. Accuracy
of this nested algorithm is assured from the accuracy of the 2-phase algorithm.
Experiments show that the nested algorithm is more efficient than the 2-phase
algorithm even when ¢ is set ideally for the 2-phase algorithm. For example, for
the data set described in Section 2, the minimum time for the 2-phase algorithm
is 125.4 cpu sec while the nested algorithm takes only 57.8 cpu sec.

Higher Dimenstional Data : The above discussion focuses on 2-D data. For
higher dimensions we proposed a very efficient data structure as a replacement
for the axis-parallel partitioning. Due to space constraint we limit the scope of
this paper to 2-D and refer the interested reader to [4].

3 pPOP Algorithms

Parallel HAC algorithms have been studied by Li [5], Li and Fang [6], Olson [3],
and Wu et al. [7]. The common feature of these algorithms is: for ‘stored matrix’
type the task of computing and maintaining O(N?) dissimilarities is divided
among the processors, whereas for ‘stored data’ type the task of computing
and maintaining the O(N) nearest neighbors is divided among the processors.

For example, Olson used p processors to reduce the time complexity of the dis-
3

similarity matrix method to O(NT) and that of the priority queue method to

N2xlog N

O(ip

reduces to O(

) [3]. The time complexity for the nearest neighbor array method
%{VQ). These algorithms are not very efficient because they still
require O(N?) total memory for ‘stored matrix’ type, and in each iteration they
require to update all the priority queues or dissimilarity matrix. For ‘stored
data’ type the existing methods need to check all the clusters after each ag-
glomeration to determine whether the newly merged cluster is nearer than the
previous nearest. So, the reduction in these parallel algorithms is mostly because
of parallelization, but not due to efficient partitioning.

The advantage of pPOP is that each cell is sufficient by itself, and hence
parallelization benefits by dividing the task of creating and maintaining the
dissimilarities or priority queues or nearest neighbors of each cell among the
processors. This reduces the total computation of searching for the closest pair
and maintaining the data structure drastically. Below we give the complexities
of sequential, existing parallel and pPOP algorithms. For complexity analysis
we select the 2-phase algorithm of the stored matrix type since, as we shall
show later, this algorithm achieves larger speedups compared to the existing
algorithms. As before, we assume equal cell sizes, negligible ||§|| size, and negli-
gible phase 2 time. Among existing algorithms, those described by Olson [3] are
selected. The number of processors is denoted by p.

Priority Queues Sequential Existing Parallel|pPOP RF

1. Create priority queues O(N?) O(NTZ) O(]Z—;)

2. forn = N to 2 O(N) O(N) O(N)

3. find smallest distance O(n) o(%) o(3)

4. merge and update P O(nxlogn) |O("*lsg") O(n*lzg <

Overall O(N? xlog N) O(Nz*;ogN) O(Nz*:g%) %
’Overall (Dissimilarity Matrix)‘O(NS) ‘O(N—S) ‘O(N—g) ‘c ‘

p
Table 1. Comparison of time complexities of sequential, existing parallel, and pPOP

algorithms. RF - Reduction Factor (= %&im”d)

In Table 1 (priority queues) step 1 of pPOP computes priority queues in
O(]Z—;) time. Recall that pPOP reduces the memory by a factor of ¢, i.e., O(N72)
pPOP divides the total computation for the ¢ cells among p processors, and
hence, assuming no synchronization delays the complexity becomes O(J;[—pz). Step
4 updates the priority queues of the affected clusters. In pPOP a priority queue

holds % elements in the beginning. Hence, due to parallelization the total time

log N

nxlog & . .
——=<). So, the overall reduction factor is s X

complexity of this step is O(

Table 1 shows the overall complexities for the dissimilarity matrix type as well.

It has a reduction factor close to ¢. The memory requirement for priority queues
and dissimilarity matrix types is reduced by a factor close to c. For the nearest
neighbor type, the gain of pPOP over the existing parallel algorithms cannot be
obtained directly from the complexity analysis. For the step where each cluster
is checked to find whether it is affected by the agglomeration, pPOP needs to
do it for one (or a few, if in |§|-region) cell whereas the existing algorithm needs
to do it for all clusters. Similarly, the existing algorithm needs to check all the
clusters to find the new nearest neighbor of each affected cluster. But pPOP
requires only the container cell to be checked. Experimental results in the next
section show that pPOP outperforms the existing algorithms substantially for
all the above three types of HAC.

4 Experimental Results

We performed a number of experiments to study the performance and scala-
bility of our proposed pPOP algorithms. Both stored matrix (priority queues)
and stored data (nearest neighbors) types of pPOP were implemented using
the 2-phase algorithm. For comparison purposes we implemented the corre-
sponding existing parallel algorithms, hereby denoted as existing algorithms.
These are described in [3]. The performance was measured in terms of CPU
time, memory space and speedup. We experimented using several real, bench-
mark, and artificial data sets. Due to space constraint we show the results
over an artificial data set that is used in [8]. Other results are available from
www.ece.northwestern.edu/~manoranj/research.html. The experiments were run
on the SGI Origin2000 multiprocessor system which is a shared memory machine
consisting of 8 R10000 CPUs running at clock rate of 195MHs. The secondary
cache size is AMB. We used OpenMP which is an API for directed based parallel
programming applications in a shared memory environment [9]. We decided to
use it because it is designed for fine-grained parallelism, which was predominant
in our algorithm.

The pPOP implementation in OpenMP uses guided self scheduling clause in
the assignment of iterations to threads, i.e., processors. During each iteration of
HAC each processor is assigned in turn a chunk of cells to work on, with the
chunk size being reduced as we proceed with the iteration. After an iteration
is finished, a critical region is established in order to find the overall closest
pair of clusters and merge them. The priority queues of the cells affected by the
agglomeration can be updated in parallel.

In Figure 3 we show the results over the synthetic data set whose size varies
from 3K to 60K. The existing stored matrix algorithms require O(N?) memory,
hence we could experiment only with a data size up to 5K; on the other hand for
pPOP we report results for data sets up to 30K. The number of processors varies
from 1 to 8. In Figure 3 (a-b) we report the speedups of pPOP. Although the
speedup of pPOP is small for smaller data sets, we observe that for larger data
sets (30K or higher) the speedup of pPOP improves substantially and approaches
linear speedup for data sets of 60K. Figure 3 (c-d) gives the relative speedup

(a)

Stored Matrix pPOP Algorithm

(b)

Stored Data pPOP Algorithm

8 T T T T , T 8 T T T T , T
‘dealSpeedup’ —+— ‘IdealSpeedup’
*3K-points’ ---- "10k-points’ -
‘5k-points’ - ‘15k-point
*10k-points’ *30k-points
"15k-points’ - *60k-points’
2L 30k-points 2L i
6 [6 [o B
5 L 5+ ‘ 4
s - s
3 - Z g
g - g i
& o - & g
a - - - a4 ’ 4
e - -
- -
3 o 3
2+ 2+
1 1
1 2 3 a 5 6 7 1 2 3 a 5 6 7 8
Number Of Processors Number Of Processors
Stored Matrix Relative Speedup = (CPU Time Existing / CPU Time pPOP) Stored Data Relative Speedup = (CPU Time Existing/ CPU Time pPOP)
500 T T T T T 55 T T T T

“Jk-points’

= Existing / pPOP

Relative Speedup

"5K-points’ --->---

= Existing / pPOP

Relative Speedup

*10k-points’ —+—
"15k-points’ -
*30k-points’ %

1 2 3 a B 6 7
Number Of Processors

1 2 3 a 5 6 7 8

Number Of Processors

Fig. 3. Synthetic data results: For stored matrix and stored data types, and for
varying #processors (1 to 8), (a-b) show performance of pPOP, and (c-d) show

RelativeSpeedUp = %.

of pPOP over the existing algorithm. pPOP is always superior over the existing
algorithm because of its efficient partitioning, and independent nature of each
cell. The relative speedup increases with data size. Among stored matrix and
stored data types, pPOP’s performance is much better for stored matrix. It
achieves a two order of magnitude improvement in computation time over the
existing algorithm.

As shown in Figures 3 (c-d) the relative speedup, %, decreases
as the number of processors increases. This is due to the fact that for a small
number of cells, when the number of processors is increased, some processors end
up working on cells containing a very small number of clusters, and will therefore
spend a lot of time being idle when they are done with the computation in a given
iteration. However, as the data set size increases and/or the number of clusters
increases, load balancing among the processors becomes better. This phenomena
can be observed in our figures. Although for both 3K and 5K sizes for stored
matrix type the relative speedup drops by approximately the same amount (285)
when the number of processors increased from 1 to 8, the noticeable fact is that
relative speedup for 1 processor for 3K size is 375, but that for 5K size is 460.
That is to say as the number of processors increased, with increasing size of
data the rate of drop in speedup decreased. Although due to the high memory
requirement of the existing parallel algorithms we could not test for higher data
sizes, we postulate that for larger data sets this trend of reduction in relative
speedup for more processors will continue to slow down further.

We compared the memory for stored matrix type. For 3K and 5k pPOP
reduced the memory requirement by a factor of 97 and 189 respectively. For
stored data type both algorithms require similar amount of memory.

5 Conclusion and Future Directions

In this paper we proposed pPOP for efficient parallel HAC. Analysis and ex-
periments showed that, for both stored matrix and stored data types, pPOP
outperforms the existing algorithms significantly both in CPU time and mem-
ory requirements. This is achieved by exploiting a 90-10 rule of HAC which states
that in a dendrogram, most levels from the bottom merge pairs of very small
clusters separated by a very small portion of the maximum closest pair distance.
The data space was partitioned by partially overlapping cells each of which could
be processed independent of other such cells without affecting accuracy. Future
work includes parallelizing the high-dimensional data structure.

References

1. Dhillon, I.S., Modha, D.M.: Large-scale parallel data mining. Lecture Notes in
Artificial Intelligence 1759 (2000) 245-260

2. Nagesh, H., Goil, S., Choudhary, A.: PMAFIA: A scalable parallel subspace cluster-
ing algorithm for massive datasets. In: Proc. International Conference on Parallel
Processing. (2000) 21-24

. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Computing 21
(1995) 1313-1325

. Dash, M., Liu, H., Scheuermann, P., Tan, K.L.: Fast hierarchical clustering and its
validation. Data and Knowledge Engineering 44(1) (2003) 109-138

. Li, X.: Parallel algorithms for hierarchical clustering and cluster validity. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 1088-1092

. Li, X., Fang, Z.: Parallel clustering algorithms. Parallel Computing 11 (1989)
275-290

. Wu, C.H., Horng, S.J., Tsai, H.R.: Efficient parallel algorithms for hierarchical
clustering on arrays with reconfigurable optical buses. Journal of Parallel and Dis-
tributed Computing 60 (2000) 1137-1153

. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering
method for very large databases. In: Proceedings of ACM SIGMOD Conference
on Management of Data, Montreal, Canada (1996) 103-114

. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R., eds.:
Parallel Programming in OpenMP. Morgan Kaufmann Publishers (2000)

