
Chapter 4

Efficient Data-Reduction
Methods for On-Line
Association Rule Discovery

Hervé Brönnimann∗, Bin Chen×, Manoranjan Dash†, Peter
Haas‡, Yi Qiao†, Peter Scheuermann†

∗
Computer and Information Science, Polytechnic University, Six Metrotech Center, Brooklyn,

NY 11201
×Currently at Exelixis Inc., 170 Harbor Way, South San Francisco, CA 94083

†Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, IL 60208

‡IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Abstract:
Classical data mining algorithms require one or more computationally intensive passes
over the entire database and can be prohibitively slow. One effective method for deal-
ing with this ever-worsening scalability problem is to run the algorithms on a small
sample of the data. We present and empirically compare two data-reduction algorithms
for producing such a sample; these algorithms, calledFAST and EA, are tailored to
“count” data applications such as association-rule mining. The algorithms are similar
in that both attempt to produce a sample whose “distance” — appropriately defined —
from the complete database is minimal. They differ greatly, however, in the way they
greedily search through the exponential number of possible samples.FAST, recently
developed by Chen et al., uses random sampling together with trimming of “outlier”

190

BRÖNNIMANN ET AL . 191

transactions. On the other hand, theEA algorithm, introduced in this chapter, repeat-
edly and deterministically halves the data to obtain the final sample. UnlikeFAST,
the EA algorithm provides a guaranteed level of accuracy. Our experiments show that
EA is more expensive to run thanFAST, but yields more accurate results for a given
sample size. Thus, depending on the specific problem under consideration, the user
can trade off speed and accuracy by selecting the appropriate method. We conclude
by showing how theEA data-reduction approach can potentially be adapted to provide
data-reduction schemes for streaming data systems. The proposed schemes favor re-
cent data while still retaining partial information about all of the data seen so far.

Keywords: Sampling, Distance function, Association mining, Streaming data, Data
reduction

4.1 Introduction

The volume of electronically accessible data in warehouses and on the Internet is grow-
ing faster than the speedup in processing times predicted by Moore’s Law [Winter
& Auerbach1998]. Consequently, classical data mining algorithms that require one
or more computationally intensive passes over the entire database are becoming pro-
hibitively slow, and this problem will only become worse in the future. The scalability
of mining algorithms has therefore become a major research topic. One approach to
the scalability problem is to run mining algorithms on a small subset of the data, some-
times called asynopsisor sketch. This strategy can yield useful approximate results in
a fraction of the time required to compute the exact solution, thereby speeding up the
mining process by orders of magnitude.

A number of synopses have been proposed in the literature [?] but many of them
require one or more expensive passes over all of the data. Using a sample of the data as
the synopsis is a popular technique that can scale well as the data grows. Another nice
property of sampling methods is that it is often possible to explicitly trade off process-
ing speed and accuracy of results. Recent work in the area of approximate aggregation
processing [Acharya, Gibbons, & Poosala2000], [Manku & Motwani2002] shows that
the benefits of sampling are most fully realized when the sampling technique is tailored
to the specific problem at hand. In this spirit we investigate sampling methods that are
designed to work with mining algorithms for “count” datasets, that is, datasets in which
there is a base set of “items” and each data element is a vector of item counts — here
“items” may correspond to physical items, responses on a survey, income levels, and so
forth. As a first step, we present and compare two novel data-reduction methods in the
context of the most well-studied mining problem defined on count data: the discovery
of association rules in large transaction databases.

The two algorithms that we consider are similar in that both attempt to produce a
sample whose “distance” from the complete database is minimal. The algorithms dif-
fer greatly, however, in the way they greedily search through the exponential number
of possible samples. As discussed below, the choice of which algorithm to use de-
pends on the desired tradeoff between speed of computation and accuracy of results,
the amount of available memory, and other factors. The first algorithm,FAST (Finding

192 EFFICIENT DATA REDUCTION METHODS

Association rules fromSampledTransactions) was recently presented in [Chen, Haas,
& Scheuermann2002].FAST starts with a large random sample and trims away “out-
lier” transactions to produce a small final sample that more accurately reflects the entire
database. The second algorithm,EA (Epsilon Approximation), is new. TheEA algo-
rithm repeatedly and deterministically halves the data to obtain the final sample. Unlike
FAST, theEA algorithm provides a guaranteed upper bound on the distance between the
sample and the entire database.

After presenting and comparing theFAST andEA algorithms, we then show how the
EA approach can potentially be adapted to provide data-reduction schemes for stream-
ing data systems. The proposed schemes favor recent data while still retaining partial
information about all of the data seen so far.

The chapter is organized as follows. TheFAST andEA algorithms are described and
compared in Section 4.2, and guidelines are given for their usage. In Section 4.3 we
discuss a possible approach for applying theEA data-reduction method to streaming
data. Section 4.4 contains our conclusions and directions for future work.

4.2 Sampling-Based Association Rule Mining

Agrawal, et al. [Agrawal, Imielinski, & Swami1993] proposed association rules as a
means of identifying relationships among sets of items, which can be used to evalu-
ate business trends, identify purchasing patterns, and classify customer groups. Two
measures, calledsupportand confidence, are introduced in [Agrawal, Imielinski, &
Swami1993] in order to quantify the significance of an association rule. The mining
of association rules from a set of transactions is the process of identifying all rules
having support and confidence greater than specified minimum levels; such rules are
said to have “minimum confidence and support.” We focus on the problem of finding
the “frequent” itemsets, i.e., the itemsets having minimum support, because this oper-
ation is by far the most expensive phase of the mining process. We assume that the
reader is familiar with the basic Apriori algorithm, introduced in [Agrawal, Imielin-
ski, & Swami1993], for identifying frequent itemsets. A variety of modifications have
been proposed to reduce the computational burden — see, for example, [Agarwal, Ag-
garwal, & Prasad2000, Han, Pei, & Yin2000] and references therein — but with few
exceptions all current algorithms require at least one expensive pass over the data.

Throughout this section, we assume that the contents of the transactional database
do not change during the mining process. We also assume that the database is very
large. Denote byD the database of interest, byS a simple random sample drawn
without replacement fromD, and byI the set of all items that appear inD. Also
denote byI(D) the collection of itemsets that appear inD; a set of itemsA is an
element ofI(D) if and only if the items inA appear jointly in at least one transaction
t ∈ D. If A contains exactlyk (≥ 1) elements, thenA is sometimes called ak-itemset.
The collectionI(S) denotes the itemsets that appear inS; of course,I(S) ⊆ I(D).
For k ≥ 1 we denote byIk(D) andIk(S) the collection ofk-itemsets inD andS,
respectively. Similarly,L(D) andL(S) denote the frequent itemsets inD andS, and
Lk(D) andLk(S) the collection of frequentk-itemsets inD andS, respectively. For an
itemsetA ⊆ I and a set of transactionsT , letn(A;T) be the number of transactions in

BRÖNNIMANN ET AL . 193

T that containA and let|T | be the total number of transactions inT . Then the support
of A in D and inS is given byf(A;D) = n(A;D)/|D| andf(A;S) = n(A;S)/|S|,
respectively.

4.2.1 FAST

Given a specified minimum supportp and confidencec, the FAST algorithm for data
reduction proceeds as follows:

1. Obtain a simple random sampleS from D.

2. Computef(A;S) for each 1-itemsetA ∈ I1(S).

3. Using the supports computed in Step 2, obtain the final small sampleS0 from S.

4. Run a standard association-rule mining algorithm againstS0 — with minimum
supportp and confidencec — to obtain the final set of association rules.

Steps 1, 2, and 4 are straightforward. The drawing of a sample in Step 1 can
be performed with a computational cost ofO(|S|) and a memory cost ofO(|S|). The
computational cost of Step 2 is at mostO(Tmax · |S|), whereTmax denotes the maximal
transaction length. From a computational point of view, because the cost of Step 2 is
relatively low, the sampleS can be relatively large, thereby helping to ensure that the
estimated supports are accurate. Step 4 computes the frequent itemsets using a standard
association rule mining algorithm such as Apriori [Agrawal & Srikant1994].

The crux of the algorithm is Step 3. Two approaches (trimming and growing) for
computing the final small sampleS0 from S are given in [Chen, Haas, & Scheuer-
mann2002]. In this chapter, we discuss only the trimming method, which removes the
“outlier” transactions from the sampleS to obtainS0. In this context an outlier is de-
fined as a transaction whose removal from the sample maximally reduces (or minimally
increases) the difference between the supports of the 1-itemsets in the sample and the
corresponding supports in the databaseD. Since the supports of the 1-itemsets inD
are unknown, we estimate them by the corresponding supports inS as computed in
Step 2. To make the notion of difference between 1-itemset supports precise we define
a distance function, based on the symmetric set difference, by setting

Dist1(S0, S) =
|L1(S)− L1(S0)|+ |L1(S0)− L1(S)|

|L1(S0)|+ |L1(S)|
(4.1)

for each subsetS0 ⊆ S. In accordance with our previous notation,L1(S0) andL1(S)
denote the sets of frequent1-itemsets inS0 andS. Observe thatDist1 takes values
in [0, 1], and that it is sensitive to both false frequent 1-itemsets and missed frequent
1-itemsets. Our goal is to trim away transactions fromS so that the distance from
the final sampleS0 to the initial sampleS is as small as possible. Other definitions
of distance are possible, for example based on theL2 metric between the frequency
vectors:

Dist2(S0, S) =
∑

A∈I1(S)

(
f(A;S0)− f(A;S)

)2
. (4.2)

194 EFFICIENT DATA REDUCTION METHODS

obtain a simple random sampleS from D;
computef(A;S) for each itemA in S;
setS0 = S;
while (|S0| > n) { //trimming phase

divideS0 into disjoint groups ofmin(k, |S0|)
transactions each;

for each groupG {
computef(A;S0) for each itemA in S0;
setS0 = S0 − {t∗}, where

Dist(S0 − {t∗}, S) = mint∈G Dist(S0 − {t}, S);
}

}
run a standard association-rule algorithm againstS0

to obtain the final set of association rules;

Figure 4.1: TheFAST-TRIM Algorithm

The basicFAST-TRIM algorithm is given in Figure 4.1. By choosing a value ofk
between 1 and|S|, the user can strike a balance between ineffective but cheap “oblivi-
ous” trimming and very effective but very expensive “pure greedy” trimming. For more
details on different aspects ofFAST such as distance functions, variants ofFAST, stop-
ping criteria, detailed algorithm, and complexity analyses see [Chen, Haas, & Scheuer-
mann2002]. In addition, the Appendix gives some previously unpublished implemen-
tation details and complexity analyses for the trimming step.

4.2.2 Epsilon Approximation

The epsilon approximation method is similar toFAST in that it tries to find a small
subset having 1-itemset supports that are close to those in the entire database. The
“discrepancy” of any subsetS0 of a supersetS (that is, the distance betweenS0 andS
with respect to the 1-itemset frequencies) is computed as theL∞ distance between the
frequency vectors:

Dist∞(S0, S) = max
A∈I1(S)

∣∣∣f(A;S0)− f(A;S)
∣∣∣ (4.3)

whereA is an 1-itemset. The sampleS0 is called anε-approximation ofS if its discrep-
ancy is bounded byε. Obviously there is a trade-off between the size of the sample and
ε: the smaller the sample, the larger the value ofε. For literature onε-approximations,
see e.g. the book by Chazelle [Chazelle2000, Ch.4].

The halving method. We now explain how we compute the approximations. At the
heart of the epsilon approximation method is a method that computes a subsetS0 of ap-
proximately half the size. We use a variant due to Chazelle and Matoušek of the hyper-
bolic cosine method (see e.g. Alon and Spencer’s book [Alon & Spencer1992, Ch.15]

BRÖNNIMANN ET AL . 195

or [Chazelle2000, Ch.1]). To start with,S is D, the entire database. The method scans
sequentially through the transactions inS, and for each one makes the decision to color
that transaction blue or red. At the beginning all transactions are grey (i.e., uncolored);
at the end, all the transactions are colored, with the red transactions forming a setSr

and the blue a setSb. Both sets have approximately the same size, so choosing either
one asS0 will do. Repeated iterations of this halving procedure results in the smallest
subsetS0 for whichDist∞(S0, S) ≤ ε. Thus, whileFAST terminates when it reaches
a sample of a desired size, the epsilon approximation terminates when it detects that
further subdivision will cause the distance to exceed the upper boundε.

Specifically, letm = |I1(S)| be the number of items. For each itemAi we define a
penaltyQi as follows. Intuitively this penalty will shoot up when the item is under- or
over-sampled; how quickly depends on a constantδi ∈ (0, 1), whose value is given by
(4.6) below. Denote bySi the set of all transactions that contain itemAi and suppose
that we have colored the firstj transactions. Then the penaltyQi is given by

Qi = Q
(j)
i = (1 + δi)ri(1− δi)bi + (1− δi)ri(1 + δi)bi (4.4)

whereri = r
(j)
i and bi = b

(j)
i are the numbers of red and blue transactions inSi.

Initially, ri = bi = 0 for eachi, and soQi = Q
(0)
i = 2. In order to decide how to color

transactions, we introduce the global penaltyQ =
∑

1≤i≤m Qi. Assuming that the
colors of the firstj transactions have been chosen, there are two choices for the(j+1)th

transaction. Coloring it red yieldsQ(j‖r)
i = (1+δi)ri+1(1−δi)bi+(1−δi)ri+1(1+δi)bi

while coloring it blue yieldsQ(j‖b)
i = (1 + δi)ri(1− δi)bi+1 + (1− δi)ri(1 + δi)bi+1.

It is readily verified thatQ(j)
i = 1

2 (Q(j‖r)
i + Q

(j‖b)
i). Summing over all items, we

getQ(j) = 1
2 (Q(j‖r) + Q(j‖b)), whereQ(j‖r) andQ(j‖b) denote the global penalties

incurred for coloring a transaction red or blue, respectively. Hence, there is one choice
of colorc for (j + 1)th transaction such thatQ(j‖c) ≤ Q(j), and this is the color chosen
for the transaction. At the end of the coloring, we haveQfinal ≤ Qinit = 2m. Since
all theQi’s are positive, this implies that, for each item, we have alsoQfinal

i ≤ 2m. If

ri = r
(n)
i andbi = b

(n)
i denote the final numbers of red and blue transactions inSi, we

haveri + bi = |Si|. Hence

2m ≥ (1 + δi)ri(1− δi)bi

≥ (1 + δi)ri−bi(1− δ2
i)|S

i|

and the same bound holds when exchangingri andbi, from which it follows that

|ri − bi| ≤
ln(2m)

ln(1 + δi)
+
|Si| ln

(
1/(1− δ2

i)
)

ln(1 + δi)
. (4.5)

We can choose the value ofδi to make the right side of (4.5) small. The first (resp.,
second) term in the sum is decreasing (resp. increasing) inδi, and so a reasonable
choice is to balance the two terms, leading to

δi =

√
1− exp

(
− ln(2m)

|Si|

)
. (4.6)

196 EFFICIENT DATA REDUCTION METHODS

Sincex = ln(2m)/|Si| is typically very small whenever|Si| is reasonably large, sub-
stituting the approximations1− exp(−x) ≈ x into (4.6) andln(1 + x) ≈ x into (4.5)

implies that|ri− bi| = O
(√

|Si|log(2m)
)

. Note that if|Si| is not too small, the latter

quantity is much less than|Si|. Hence, there are about as many red as blue transactions
in Si for each item. Sinceri + bi = |Si|, this also means that∣∣ri − |Si|/2

∣∣ = O
(√

|Si|log(2m)
)
. (4.7)

In order to guarantee that there are about as many transactions inSr as inSb, we can
add a (fictitious) itemA0 that is contained in all transactions. In that case,|Sr| −
|Sb| is alsoO

(√
nln(2m)

)
, and this implies that|Sr| = n/2 + O

(√
nln(2m)

)
.

Dividing (4.7) bySr (or byn/2), we get that for eachi,

|f(Ai;Sr)− f(Ai;S)| ≤ ε(n, m) = O
(√

ln(2m)/n
)
.

In practice, the halving method will work with any choice ofδi, but the bounds on
|f(Ai;Sr) − f(Ai;S)| will not necessarily be guaranteed. In the implementation, we
have found that setting

δi =

√
1− exp

(
− ln(2m)

n

)
is very effective. The advantage is that if the defining parameters of the database,
i.e., the numbern of transactions and numberm of items, are already known then the
halving method requires a single scan of the database.

The implementation works as follows: first it initializes all theri, bi, δi andQi as
indicated. Then it performs the scan, for each transaction deciding whether to color
it red or blue as given by the penalties. In order to update the penalties, it is better to
store both terms ofQi separately into two termsQi,1 andQi,2. The penalties are then
updated according to (4.4) and the color chosen for the transaction. The red transac-
tions are added to the sample, and the blue are forgotten. The memory required by the
halving method is proportional only to the numberm = |I1(S)| of 1-itemsets, in order
to store the penalties.

A further improvement in performance is obtained if we realize that only the penal-
ties for the items contained in the current transaction need to be recomputed, not all
m of them. Hence the halving method processes a transaction in time proportional to
the number of items that it contains, and the entire halving takes time proportional to
the size of the database (number of transactions), so that the worst-case total time com-
plexity isO(Tmax · |S|), which is much smaller thanO(|I1(S)| · |S|). TheEA-halving
method sketched above is summarized in Figure 4.2; we assume in the figure thatn
andm are known.

Computing the approximation. Having fixedε, we compute anε-approximation
as follows. Note that the halving method computes anε(n, m)-approximation of size
n/2, whereε(n, m) = O(

√
ln(2m)/n). (Note:O(

√
ln(2m)/n) is a very small value

whenm is polynomially bounded inn andn is large). There is a key structural property

BRÖNNIMANN ET AL . 197

for eachi = 1 to m {
setδi =

(
1− exp(− ln(2m)/n)

)1/2

setQi,1 = Qi,2 = 1
}
for each transactionj do{

for each itemi contained inj {
computeQ(r)

i,1 = (1 + δi)Qi,1, Q
(r)
i,2 = (1− δi)Qi,2;

computeQ(b)
i,1 = (1− δi)Qi,1, Q

(b)
i,2 = (1 + δi)Qi,2;

}
setQ(r) =

∑
i Q

(r)
i,1 + Q

(r)
i,2 andQ(b) =

∑
i Q

(b)
i,1 + Q

(b)
i,2

with the sum taken over those itemsi contained inj;
if Q(r) < Q(b) then

color j red, and setQi,1 = Q
(r)
i,1 andQi,2 = Q

(r)
i,2

else

color j blue, and setQi,1 = Q
(b)
i,1 andQi,2 = Q

(b)
i,2 ;

}
returnS0 = Sr, the set of red transactions;

Figure 4.2: TheEA-HALVING Algorithm

that we can use to reduce the size of approximations [Chazelle2000, Lem.4.2]: ifS1 is
anε1-approximation ofS andS2 anε2-approximation ofS1, thenS2 is an(ε1 + ε2)-
approximation ofS. Thus approximations can becomposedby simply adding the
discrepancies.

The repeated halving method starts withS, and applies one round of halving (as de-
scribed in EA-HALVING) to getS1, then another round of halving toS1 to getS2, etc.
The sizesn1 ≥ n2 ≥ . . . of these samples decrease roughly geometrically by a factor
of two — specifically,n1 ≤ n

(
0.5 + ε(n, m)

)
andni+1 ≤ ni

(
0.5 + ε(ni,m)

)
. Note

that by the above observation,St is anεt-approximation, whereεt =
∑

k≤t ε(nk,m).
We stop the repeated halving for the maximumt such thatεt ≤ ε.

Implemented naively, the repeated halving method would requiret passes over
the database. However, observe that the halving process is inherently sequential in
deciding the color of a transaction, and that either color may be chosen as the sample.
Say we always choose the red transactions as our sample. In a single pass, we may store
all the penalties of each halving method and proceed for each transaction as follows:
based on the penalties of the first halving method, we decide whether to color that
transaction red or not in the first sample. Should this transaction be red, we again
compute the penalties of the second halving method, etc. until either the transaction
is colored blue in a sample, or it belongs to the sampleSt. (Since the samples are
expected to decrease by half at each level, settingt = log n will do.) Thus all the
repeated halving methods can be run simultaneously, in a single pass. The memory
required by this algorithm is thusO(m log n) = O(|I1(s)| log |S|).

198 EFFICIENT DATA REDUCTION METHODS

4.2.3 Comparison of FAST and EA

In this section we present an experimental comparison betweenFAST andEA. To com-
pareFAST andEA, we used both synthetic and real-world databases in our experiments;
we restrict ourselves here to reporting the results for the synthetic database and the trim-
ming version ofFAST. The synthetic database was generated using code from the IBM
QUEST project [Agrawal & Srikant1994]. The parameter settings for synthetic data
generation are similar to those in [Agrawal & Srikant1994]: the total number of items
was set to 1000, the number of transactions was set to 100,000, the number of maximal
potentially frequent itemsets was set to 2000, the average length of transactions was
10, and the average length of maximal potentially frequent itemsets was 4. We used
a minimum support value of 0.77%, at which level there are a reasonable number of
frequent itemsets, and the length of the maximal frequent itemset is 6.

In addition toEA andFAST, we also performed experiments with simple random
sampling (denotedSRS in the figures) in order to relate the current results to those
previously reported in [Chen, Haas, & Scheuermann2002]. These latter results showed
thatFAST achieves the same or higher accuracy (between 90-95%) using a final sample
that is only a small fraction (15 -35%) of a simple random sample.

In order to make a fair comparison between the three algorithms we used Apri-
ori in all cases to compute the frequent itemsets and used a common set of functions
for performing I/O. We used a publicly available implementation of Apriori written by
Christian Borgelt.1 This implementation, which uses prefix trees, is reasonably fast and
has been incorporated into a commercial data mining package.FAST was implemented
using distance functionsDist1 andDist2. A 30% simple random sample was chosen
asS. For the parameterk, the group size in theFAST-TRIM algorithm, we chose a
value of 10 since this was shown to be a reasonable choice in [Chen, Haas, & Scheuer-
mann2002]. AsEA cannot achieve all the sample sizes (because the halving process
has a certain granularity), in each iteration we first ranEA with a givenε value, and
then used the obtained sample size to runFAST andSRS. EA is not independent of the
input sequence, so to account for any difference due to the particular input sequence
the results ofEA are computed as an average over 50 runs, each one corresponding to
a different shuffle of the input. In order to estimate the expected behavior ofFAST and
SRS, the results of these algorithms are also averaged over 50 runs, each time choosing
a different simple random sample from the database.

Our primary metrics used for the evaluation are accuracy and execution time. Ac-
curacy is defined as follows:

accuracy = 1− |L(D)− L(S)|+ |L(S)− L(D)|
|L(S)|+ |L(D)|

(4.8)

where, as before,L(D) andL(S) denote the frequent itemsets from the databaseD
and the sampleS, respectively. Notice that this metric is similar toDist1, except that
accuracy is based on the set difference between all frequent itemsets generated from
D andS, while Dist1 is based only on frequent 1-itemsets. The execution time is the
total time that includes the time required for I/O, and that for finding the final sample
and running Apriori.

1http://fuzzy.cs.uni-magdeburg.de/b̃orgelt/software.html

BRÖNNIMANN ET AL . 199

(a) Accuracyvs.Sampling Ratio

(b) Timevs.Sampling Ratio

Figure 4.3: Results for synthetic dataset

Results All the experiments were performed on a SUN Sparc Ultra workstation with
a 333 MHz processor and 256MB memory. The sampling ratios output byEA were
0.76%, 1.51%, 3.02%, 6.04%, 12.4%, and 24.9%. Figure 4.3 (a) displays the accuracy
of FAST-TRIM, EA and SRS on the synthetic database as a function of the sampling
ratio, and Figure 4.3 (b) depicts the execution time of the above mentioned algorithms
vs. the sampling ratio.

From Figure 4.3 (a) we observe thatEA achieves very good accuracy even for small
sample sizes. Thus, even for a sample size of 1.51% it could achieve close to 89%
accuracy, whileFAST-TRIM with distance functionsDist2 andDist∞ achieves only
82% and 79.4% accuracies respectively. For larger sample sizes, the differences in
accuracy betweenEA andFAST-TRIM are smaller. For example, for a sample size of
12.4%,EA achieves close to 99% accuracy, versus 96.9% and 96.7% forFAST-TRIM

with Dist2 andDist∞ respectively. On the other hand, as shown in Figure 4.3 (b),
EA is more time-consuming thanFAST. When using a final sample size of 12.4%, for
example,FAST-TRIM has an execution time about 1.5 times longer thanSRS, while EA’s
time is approximately 4 times that ofSRS. The trimming operation performed inFAST

is substantially faster than the repeated halving method. Of course, the performance
gains for either data-reduction method are more pronounced if the cost of producing
the sample is amortized over multiple mining tasks.

We have not reported execution results forFAST-TRIM with Dist∞, because use
of this distance function instead ofDist1 or Dist2 causesFAST-TRIM to run 8 times
slower. The reasons for this discrepancy are detailed in the Appendix.

We observe here that Toivonen’s sampling-based association rule algorithm [Toivo-
nen1996] requires a complete database scan like theEA algorithm. But while theEA

algorithm examines each transaction only so far as to decide how to color it, Toivonen’s
algorithm uses each scanned transaction to update a large number of count statistics and
in addition requires an expensive step to eliminate false itemsets. In [Chen, Haas, &
Scheuermann2002] we have shown that Toivonen’s method is very accurate, but 10
times slower thanFAST.

4.3 Data Stream Reduction

4.3.1 Streaming Data Analysis

Unlike finite stored databases, streaming databases grow continuously, usually rapidly,
and potentially without bound. Examples include stock tickers, network traffic moni-

200 EFFICIENT DATA REDUCTION METHODS

tors, point-of-sale systems, and phone conversation wiretaps (for intelligence analysis).
Unlike data processing methods for stored datasets, methods for analyzing streaming
data require timely response and the use of limited memory to capture the statistics
of interest. In addition, network management and stock analysis demand the real-time
processing of the most recent information.

Manku and Motwani [Manku & Motwani2002] investigated the problem of ap-
proximately counting frequencies on streaming data. They proposed two algorithms,
called Sticky Sampling and Lossy Counting, to identify frequent singleton items over a
stream. They mention many applications, including Iceberg Queries [Fanget al.1998],
Iceberg Cubes [Beyer & Ramakrishnan1999, Hanet al.2001], Apriori [Agrawal &
Srikant1994], and network flow identification [Estan & Verghese2001].

Sticky Sampling uses a fixed-size buffer and a variable sampling rate to estimate
the counts of incoming items. The firstt incoming items are sampled at rater = 1 (one
item selected for every item seen); the next2t items are sampled at rater = 2 (one item
selected for every two items seen); the next4t items are sampled at rater = 4, and
so on, wheret is a predefined value based on frequency threshold, user specified error,
and the probability of failure. The approach is equivalent to randomly selecting the
same number of items from an enlarging moving window that keeps doubling itself to
include twice as many items as before. While Sticky Sampling can accurately maintain
the statistics of items over a stable data stream in which patterns change slowly, it
fails to address the needs of important applications, such as network traffic control and
pricing, that require information about the entire stream but with emphasis on the most
recent data. Indeed, the enlarging window and the increasing sampling rate make the
statistics at hand less and less sensitive to the changes in recent data.

Lossy Counting is deterministic, and stores the observed frequency and the esti-
mated maximal frequency error for each frequent (or potentially frequent) item in a set
of logical buckets. New items are continually added to the buckets while less frequent
items are removed. Although the worst-case space complexity of Lossy Counting ex-
ceeds that of Sticky Sampling, experiments showed that the former algorithm performs
much better than the latter one when streams have random arrival distributions. The
authors have extended Lossy Counting Algorithm to identify frequent itemsets. The
idea is to virtually divide a stream into chunks based on the order of the arrival data
and then identify the frequent itemsets from each chunk. Similarly to Sticky Sampling,
Lossy Counting and its extension can be effective when the goal is to find frequent
itemsets over a stable data stream. These algorithms, however, may not be effective
for drastically changing data. Moreover, the computation of frequent itemsets from
each chunk in the extension of Lossy Counting can be prohibitively expensive for high
speed data streams, such as network traffic and words in phone conversations.

4.3.2 DSR: Data Stream Reduction

In this section, we propose anEA-based algorithm,DSR (DataStreamReduction), to
sample data streams. Our goal is to generate a representative sample of a given data
stream such that the sample carries information about the entire stream while favoring
the recent data. Unlike static databases, a data stream,DS , can be constantly chang-
ing. Therefore, its sample,SS , should also be regularly adjusted to reflect the changes.

BRÖNNIMANN ET AL . 201

Moreover, maintaining a dynamically changing sample of a data stream, rather than
merely tracking count statistics, offers users more flexibility in choosing the informa-
tion to be summarized from the sample, such as frequent itemsets, joint distributions
or moments, principal component analysis and other statistical analysis, and so forth.

We discuss the data reduction problem for streaming data within a relatively simple
context: each element of the data stream is a transaction consisting of a set of items
and represented as a 0-1 vector. The resulting algorithm,DSR, is potentially applicable
to other more complicated data streams.

First consider the following idealized algorithm for generating anNS-element sam-
ple, SS , of a data stream,DS , where the sampling mechanism puts more weight on
recent data. To constructSS , temporarily “freeze” the data stream after observing
ms · (NS/2) transactions. Assign the transactions intoms logical buckets of size
NS/2 such that bucket 1 contains the oldestNS/2 transactions, bucket 2 contains the
next oldestNS/2 transactions, etc., so that bucketms contains the most recent data.
Next, fork = 1, 2, · · · ,ms, halve bucketk exactlyms−k times as in theEA algorithm,
and denote the resulting subset of bucketk by sk. As discussed in Section 4.2.2, each
sk is a reasonably good representative of the original contents of bucketk. The union⋃

k sk can therefore be viewed as a good reduced representation of the data stream;
this representation contains approximatelyNS transactions in total and favors recent
data. In contrast to Sticky Sampling, which samples less and less frequently as time
progresses, our approach samples more and more frequently, selecting, e.g., all of the
NS/2 transactions from the most recent bucket.

In reality, it can be prohibitively expensive to map the transactions into logical
buckets and compute the representative subset of each bucket whenever a new transac-
tion arrives. The idea behindDSR is to approximate the preceding idealized algorithm
while avoiding frequent halving. To this end, a working buffer that can holdNS trans-
actions is utilized to receive and generate the reduced representative of the data stream.
The buffer sizeNS should be as large as possible. Initially, the buffer is empty. If one
or more new data items arrive when the buffer containsNS transactions, then the buffer
is halved usingEA and the new data items are inserted to the buffer. Observe that the
older the data in the buffer, the more halvings byEA they have experienced. Whenever
a user requests a sample of the stream, all of the transactions in the buffer are returned
to the user.

4.3.3 Discussion of DSR

The advantages ofDSR include the following:

1. Representative tuples are selected from a data stream at variable rates that favor
recent data. ThereforeDSR is more sensitive to recent changes in the stream than
Sticky Sampling or Lossy Counting.

2. Unlike traditional tools on streaming data,DSR maintains a representative sam-
ple, rather than merely a collection of summary statistics such as counts. In this
way, we offer more flexibility since users can decide what operations they would
like to perform on the representative subset.

202 EFFICIENT DATA REDUCTION METHODS

3. When applyingDSR to frequent-itemset identification, it suffices to generate fre-
quent itemsets only when specifically requested by the user, thereby avoiding the
need for ongoing periodic generation of frequent itemsets as in the extension of
Lossy Counting.

4. Since the data is more represented in the recent past,DSR supports well queries
that deal with the recent past, such as slide-window queries. But unlike other
sliding-window schemes, since the entire stream is represented, the size of the
window is not fixed and the user can query further into the past as required by
the data. Intuitively, the accuracy degrades as the size of the window increases.

A potential problem withDSR concerns the stability of analytical results computed
from the sample. After the working buffer is halved, the number of transactions in the
buffer changes fromNS to NS/2. Two users who request data immediately prior to
and after the halving operation, respectively, could receive data that vary dramatically
and hence get very different analytical results even when the actual data stream remains
stable. We can use a variant ofDSR, calledcontinuousDSR, to solve this problem. Un-
like DSR, where the buffer is halved when it is filled, continuousDSR halves a smaller
chunk of the buffer at a time, as follows. After the buffer is filled withNS transactions,
the transactions are sorted in increasing order of arrival and divided intoNS/(2ns)
chunks, with each chunk containing2ns transactions. Afterns new transactions ar-
rive, wherens � NS and is a predefined fixed number,EA is called to halve the chunk
containing the oldest2ns transactions. Thens new transactions then replace thens

old transactions that are evicted. When anotherns new transactions come, the second
chunk is halved and the new transactions replace the newly evicted transactions. The
procedure continues until allNS/(2ns) chunks are halved. At this time,NS/2 of the
transactions in the buffer have been replaced by new transactions. Then all transactions
in the buffer are re-assigned evenly and in arrival order toNS/(2ns) chunks. This cy-
cle continues so that, except for the initial warm-up period, the buffer is always full.
Becausens � NS , no matter how close in time two users request the data, their results
will not be drastically affected by the fluctuations caused by halving operations.

There are some open issues surrounding the choice of discrepancy function to use
in the DSR context. On a static database, our experiments have indicated that in many
cases the discrepancy function based on single item frequencies leads to acceptable
error on the frequencies of higher level itemsets. However, in the case of streaming
data, it is also not entirely clear how to evaluate the goodness of a representative subset
obtained byDSR. Recall that our goal is to favor recent data, hence recent data is well
represented, while old data is sampled more coarsely. How to approximate frequencies
in that case? An intuitive way is to introduce a weight per element of the sample
(initially 1), and double this weight each time the sample undergoes a halving; thus the
weight roughly represents the number of elements of the stream that the sample stands
for. Let us call that the “doubling weighted” scheme. But the error introduced byEA

will likely accumulate and therefore theε-bound degrades with the size of the data
stream. More generally, we might want to put continuously decreasing weights on the
data (say exponentially decreasing with age, of which the doubly weighted scheme is a
coarse discretization). The measurement of the error associated with the reduced data

BRÖNNIMANN ET AL . 203

stream should reflect the weighting scheme. We are currently investigating appropriate
measurements for such weighted stream reduction.

If the user is allowed to limit the query to the recent past, or to a given time window
as suggested in item number 4 in the above discussion, then the error bound of the
doubly weighted scheme actually depends on the size of the window and may be quite
reasonable for queries into the recent past.

4.4 Conclusion and Future Directions

In this chapter we have proposed and compared two algorithms for sampling-based
association mining. Both algorithms produce a sample of transactions which is then
used to mine association rules, and can be engineered to perform a single pass on the
data. There are more accurate algorithms for solving this particular problem (e.g.,
Toivonen’s algorithm which is probabilistic and has a higher accuracy, or Manku and
Motwani’s adaptation of Lossy Counting which makes one pass and identifies all the
frequent itemsets), but our sampling approach is computationally less expensive (we
only construct the higher-level itemsets for the sample, not for the original data as is the
case for both Toivonen’s and Manku and Motwani’s algorithms) and has nevertheless
a good accuracy.

We are currently modifyingEA so that it need keep in memory at any time only the
transactions that belong to the final sample. Such a modification would makeEA an
even more attractive alternative for extremely large databases. We are also exploring
other modifications that would give the user finer control over the final sample size.

Overall, theFAST andEA data-reduction methods provide powerful, complemen-
tary tools for scaling existing mining algorithms to massive databases. Our results
provide the user with new options for trading off processing speed and accuracy of
results.

We conclude this chapter with a short list of challenges and future directions in
sampling and data reduction.

Future directions in sampling Data reduction is concerned with reducing the vol-
ume of the data while retaining its essential characteristics. As such, sampling provides
a general approach which scales well and offers more flexibility than merely tracking
count statistics. Moreover, the sample can later be used for training purposes or for
further statistical analysis.

For the full benefit of sampling, however, it is best to taylor the sampling procedure
to the problem at hand. For instance, we have adapted our sampling to reflect the accu-
racy (FAST) or 1-itemset frequencies (EA). A challenging problem is to adapt sampling
to perform well with other subsequent processing of the data. High-level aggregates
(such as frequencies, sums or averages, and higher moments) are especially suitable
and have been well explored. Computing samples for more expensive processing (such
as association rules, correlated attributes, data cube queries, or even more involved
statistical analyses) is still in need of more theory (both lower and upper bounds).

Sampling has its limitations, and does not perform well for some problems (notably,
estimating join sizes) and other techniques may perform far better as shown in [?].

204 EFFICIENT DATA REDUCTION METHODS

Nevertheless, sampling serves a general purpose which is useful when the subsequent
processing of the reduced data is not known or simply would be not feasible on the
original data. Integrating both approaches (keep a sample as well as other synopses,
and use all in conjunction to speed up a problem more efficiently or more accurately)
is a subject for future research.

Future directions in data stream reduction A number of data mining operations
become more challenging over data streams. In addition, there are challenges in han-
dling novel query types (e.g., various aggregates over a sliding window, continuous
queries) and distributed data streams (e.g., large web sites like Yahoo! may gather
statistics coming from many servers). The algorithm community has responded very
well to this new problematic. See the surveys [?,?] for models and challenges.

We have proposed some extensions of theEA algorithm to permit maintenance of
a sample of streaming data. The resulting algorithm,DSR is able to answer queries
in windows in the past, where the size of the window is variable and determines the
accuracy of the answer. The sample is well suited to frequency estimation and associ-
ation rules, but there are other problems that are highly relevant for data streams. For
instance, identifying and sampling extreme or unusual data has application to network
intrusion detection. Sensor data streams introduce new problems, such as calibration,
recovering from missing values, etc. Adapting the sampling approach for these prob-
lems should lead to much exciting research.

Bibliography

[Acharya, Gibbons, & Poosala2000] Acharya, S.; Gibbons, P. B.; and Poosala, V. 2000. Con-
gressional samples for approximate answering of group-by queries. InProceedings of ACM
SIGMOD International Conference on management of Data.

[Agarwal, Aggarwal, & Prasad2000] Agarwal, R. C.; Aggarwal, C. C.; and Prasad, V. V. V.
2000. Depth first generation of long patterns. InProceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[Agrawal & Srikant1994] Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining asso-
ciation rules. InProceedings of International Conference on Very Large Databases (VLDB).

[Agrawal, Imielinski, & Swami1993] Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases. InProceedings of ACM SIGMOD
International Conference on Management of Data.

[Alon & Spencer1992] Alon, N., and Spencer, J. H. 1992.The probabilistic method. New York:
Wiley Interscience.

[Beyer & Ramakrishnan1999] Beyer, K., and Ramakrishnan, R. 1999. Bottom-up computation
of sparse and iceburg cubes. InProceedings of ACM SIGMOD International Conference on
Management of Data.

[Chazelle2000] Chazelle, B. 2000.The discrepancy method. Cambridge, United Kingdom:
Cambridge University Press.

[Chen, Haas, & Scheuermann2002] Chen, B.; Haas, P.; and Scheuermann, P. 2002. A new two-
phase sampling based algorithm for discovering association rules. InProceedings of ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[Estan & Verghese2001] Estan, C., and Verghese, G. 2001. New directions in traffic measure-
ment and accounting. InACM SIGCOMM Internet Measurement Workshop.

[Fanget al.1998] Fang, M.; Shivakumar, N.; Garcia-Molina, H.; Motwani, R.; and Ullman, J.
1998. Computing iceburg queries efficently. InProceedings of International Conference on
Very Large Databases (VLDB).

[Hanet al.2001] Han, J.; Pei, J.; Dong, G.; and Wang, K. 2001. Efficient computation of iceburg
cubes with complex measures. InProceedings of ACM SIGMOD International Conference
on Management of Data.

[Han, Pei, & Yin2000] Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns without
candidate generation. InProceedings of ACM SIGMOD International Conference on Man-
agement of Data.

[Manku & Motwani2002] Manku, G. S., and Motwani, R. 2002. Approximate frequency counts
over data streams. InProceedings of International Conference on Very Large Databases
(VLDB).

205

206 EFFICIENT DATA REDUCTION METHODS

[Toivonen1996] Toivonen, H. 1996. Sampling large databases for association rules. InPro-
ceedings of International Conference on Very Large Databases (VLDB).

[Winter & Auerbach1998] Winter, R., and Auerbach, K. 1998. The big time: 1998 winter
VLDB survey. Database Programming Design.

APPENDIX

A. Implementation of Trimming in FAST

In this appendix, we provide a detailed description of the trimming step inFAST. Both
the trimming computations and the resulting computational cost of the trimming step
depend critically on the choice of distance function. We give implementation details
and complexity results for the three distance functionsDist1, Dist2, andDist∞.

Denote byS the initial sample and byS0 the current sample. Suppose thatS0 con-
tainsN0 + 1 transactions and we are about to trim a specified group of transactions
G = {T1, T2, . . . , TK } ⊆ S0 by removing an outlier, that is, by removing the transac-
tion that will lead to the greatest decrease (or least increase) in the distance function.2

Formally, we remove transactionTi∗ , where

i∗ = argmin
1≤i≤K

Dist(S′
0,i, S).

In the above expression,S′
0,i = S0 − {Ti } andargminx∈U f(x) denotes the element

of the setU that minimizes the functionf . We now discuss methods for identifyingi∗

whenDist is equal toDist1, Dist2, orDist∞. With a slight abuse of notation, we use
the symbol “A” to denote both an itemA and the 1-itemset that contains itemA. At
each step, theFAST algorithm maintains the quantityN0 + 1 standing for the number
of transactions inS0, andN standing for the number of transactions inS. FAST also
maintains the quantitiesMA = n(A;S) andM ′

A = n(A;S0) for eachA ∈ I1(S),
where, as before,n(A;U) denotes the number of transactions in the setU that contain
itemA.

A.1 Trimming With Dist1

WhenDist = Dist1, we have

i∗ = argmin
1≤i≤K

Dist1(S′
0,i, S)

= argmin
1≤i≤K

|L1(S)− L1(S′
0,i)|+ |L1(S′

0,i)− L1(S)|
|L1(S′

0,i)|+ |L1(S)|
. (4.9)

2For ease of exposition, we assume that there is a unique outlier transaction. In general, if there are
multiple outlier transactions, then we arbitrarily select one of them for removal.

BRÖNNIMANN ET AL . 207

Exact determination ofi∗ is expensive, because we need to calculateDist1(S′
0,i, S)

for eachTi ∈ G. Calculation ofDist1(S′
0,i, S) requires that we determine for each

A ∈ I1(S) whetherA is frequent inS′
0,i; depending on this determination, we may

then increment one or more of three counters that correspond to the terms|L1(S) −
L1(S′

0,i)|, |L1(S′
0,i) − L1(S)|, and |L1(S′

0,i)| that appear in (4.9). Thus the cost of
trimming the outlier isO

(
K · |I1(S)|

)
, where typically|I1(S)| � 0.

To alleviate this cost problem, we observe that both|L1(S′
0,i)| and |L1(S)| are

typically very large, and compute

i∗∗ = argmin
1≤i≤K

|L1(S)− L1(S′
0,i)|+ |L1(S′

0,i)− L1(S)|
|L†

1(S0)|+ |L1(S)|

as an approximation toi∗. In the above formula,L†
1(S0) is the set of 1-itemsets that are

frequent inS0 when the support of each 1-itemsetA is computed asn(A;S0)/(|S0|−1)
rather than by the usual formulan(A;S0)/|S0|. Using the fact that, in general,

argmin
x∈U

f(x) = argmin
x∈U

cf(x) + d (4.10)

for any positive constantc and real numberd, we can write

i∗∗ = argmin
1≤i≤K

∆(1)
i + ∆(2)

i ,

where
∆(1)

i = |L1(S)− L1(S′
0,i)| − |L1(S)− L†

1(S0)|
and

∆(2)
i = |L1(S′

0,i)− L1(S)| − |L†
1(S0)− L1(S)|].

For eachi, the quantities∆(1)
i and∆(2)

i can be calculated as follows:

set∆(1)
i = ∆(2)

i = 0;
for each itemA ∈ Ti {

if A ∈ L†
1(S0) andA /∈ L1(S′

0,i) {
if A ∈ L1(S)

set∆(1)
i = ∆(1)

i + 1
else

set∆(2)
i = ∆(2)

i − 1;
}

}

It is easy to see that the worst-case cost of computingi∗∗ is O(K · Tmax) which is
usually much less thanO

(
K · |I1(S)|

)
.

A.2 Trimming With Dist2

In this case, we need to compute

i∗ = argmin
1≤i≤K

Dist2(S′
0,i, S) = argmin

1≤i≤K

∑
A∈I1(S)

(M ′′
A,i

N0
− MA

N

)2

,

208 EFFICIENT DATA REDUCTION METHODS

whereM ′′
A,i = n(A;S′

0,i). Observe that

M ′′
A,i =

{
M ′

A − 1 if A ∈ Ti;
M ′

A if A 6∈ Ti.

As with Dist1, a naive computation incurs a cost ofO
(
K · |I1(S)|

)
. Appealing to

(4.10), however, we can write

i∗ = argmin
1≤i≤K

∑
A∈I1(S)

((
M ′′

A,i −
MA

N
N0

)2

−
(
M ′

A − MA

N
N0

)2
)

= argmin
1≤i≤K

∑
A∈Ti

(
1− 2M ′

A + 2
MA

N
N0

)
.

It is clear from the above representation ofi∗ that the worst-case cost can be reduced
from O

(
K · |I1(S)|

)
to O(K · Tmax).

A.3 Trimming With Dist∞

We need to compute

i∗ = argmin
1≤i≤K

Dist∞(S′
0,i, S) = argmin

1≤i≤K
max

A∈I1(S)

∣∣∣∣M ′′
A,i

N0
− MA

N

∣∣∣∣ .
As with the other distance functions, a naive approach to trimming incurs a cost of
O
(
K · |I1(S)|

)
. Denote byG1 the collection of 1-itemsets having positive support in

G. It is not hard to show that computingi∗ is equivalent to computing

i′ = argmin
1≤i≤K

max
A∈G1

∣∣∣∣M ′′
A,i

N0
− MA

N

∣∣∣∣ .
Since|G1| ≤ K ·Tmax, the worst-case cost is reduced toO(K2 ·Tmax). Although this
cost is typically much less thanO

(
K · |I1(S)|

)
, the cost incurred by usingDist∞ is

clearly much greater than the worst-case cost ofO(K · Tmax) that is incurred by using
eitherDist1 or Dist2.

