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We address the problem of extending the lifetime of wireless sensor networks using multi-path routing
based on a family of flexible routes with soft quality of service guarantees in terms of the packets’
delivery latency. We introduce a methodology based on Bezier curves as guiding trajectories in the
routing process and we address the balancing of the workload among neighboring nodes. An added
benefit, due to the flexibility of the Bezier curves, is that the shapes of the (alternate) routes can be
constructed in a manner that prolongs the lifetime of the nodes in the vicinity of a given source/sink.
We describe a forwarding algorithm, where the relay nodes can determine locally the Bezier curve
they belong to and which requires only the transmission of the so-called control points that determine
the shape of one (boundary) curve. We also show how our forwarding algorithm can be adapted to
incorporate the sleep-schedule of the individual nodes, thereby further prolonging the networks’
lifetime. Our simulations demonstrate that the Bezier-based routing algorithms can yield significant

improvements in the networks’ overall lifetime.
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1. INTRODUCTION AND MOTIVATION

A wireless sensor network (WSN) represents a distributed
monitoring environment which typically consists of a large
collection of sensor nodes, that is, devices characterized by
limited energy resources, computational power, memory space
and communication capabilities [1, 2], that are able to form a
communication network in an ad hoc manner and coordinate
their activities in order to achieve a particular task. In order
for the WSN to provide a satisfactory level of a Quality of
Service (QoS) (e.g. in terms of data latency, accuracy etc.)
for a particular task, careful algorithmic designs are needed at
the application, routing and media access layer [3]. However,
given the limited power-resources of the individual nodes, an
important parameter is the time-extent during which a WSN is
operational, namely, the network’s lifetime [4, 5].

There is no universal definition of the lifetime of a WSN and,
typically, it is dictated by the specifics of the application of
a given WSN. Several lifetime definitions have been given in
[4, 5], such as the interval of time until a certain percentage of
the network’s nodes fail to operate, or the interval of time during

which the network maintains connectivity. Various techniques
have been proposed to reduce the energy-costs associated
with particular network tasks, e.g. in-network data aggregation
[6], filtering [7], compression [8] and optimal-path routing
[9]—each one considering the energy-efficiency aspect as part
of the lifetime maximization problem. However, it has been
recognized that lifetime maximization and energy-consumption
minimization are correlated but distinct problems [4, 5] and,
in addition, it has already been demonstrated that, in general
settings, the network lifetime optimization problems are NP
hard (cf. [10]).

The goal of this work is the development of a novel multi-
routing approach that aims at extending the lifetime of a WSN
while ensuring soft guarantees regarding the timely delivery of
data-packets. In typical scenarios, long-term continuous queries
require periodic sampling/readings of the desired values from
a set of nodes (sources) and their transmission to the nodes
where these particular queries originate (sinks). In the simplest
form of a continuous query, a sink node requires readings from
a single source, which may be either the sole producer of the

The Computer Journal, 2010

 The Computer Journal Advance Access published April 9, 2010
 at N

orthw
estern U

niversity Library, S
erials D

epartm
ent on January 12, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


2 O. Ghica et al.

(b) In-network energy distribution
Region A

Region
B

E
ne

rg
y 

(%
)

(a) Scenario illustrating three source-to-sink
data-streams

E
ne

rg
y 

(%
)

(c) Energy distribution in the vicinity of the sink node
Region B

Sink

Region A

Source

Source

Sink

Source

Y
Y

X
X

FIGURE 1. The effect of long-term queries over the energy distribution in a sensor network.

data, or represent aggregate values from a region of interest.
Such queries tend to exploit a subset of the nodes in the network
which, in turn, may yield a large discrepancy in the distribution
of the overall available energy which, in extreme cases, may
even cause disconnectivity. Due to the disconnectivity, the
network’s lifetime may be rendered as ‘expired’, although there
may be a significant amount of energy left in its constituent
nodes.

The scenario depicted in Fig. 1a illustrates three long-term
queries dispatched in a WSN, for which three distinct routes
are constructed for transmitting the data-streams toward the
common sink. Figure 1b illustrates part of the effects over time
of the long-lived data-streams routing in the ‘transit’ region A

of the network, namely an energy ‘gap’ that developed due to
extended usage of a subset of relay nodes located in that area.
As mentioned, this may lead to the appearance of holes in the
network and loss of connectivity. Energy depletion is likely to be
even more severe in the vicinity of the sink node, as illustrated
in Fig. 1c. When multiple routes are related to a single sink, the
nodes in its vicinity tend to deplete at a higher rate than other,
more distant nodes due to their increased utilization, since they
may need to serve more than one data-stream. In addition, those
nodes are subject to increased packet collisions and subsequent
retransmissions due to the spatial proximity of the routes from
different data-streams [11, 12].

The main motivation for this work is based on the observa-
tion that, typically, when long-running queries are executed, the
nodes in the proximity of a designated route maintain higher
energy reserves than the ones involved in servicing that par-
ticular route. Hence, if one could use these otherwise dormant
nodes for routing purposes, then the variance of the energy
levels in the proximity of the designated route over time will
be reduced. Moreover, if carefully used, routing along these
alternative nodes will not add significant delay to the packet
delivery, when compared with the original route. Using multiple
paths for routing in WSN settings has already been investigated
from a 2-fold perspective: (i) load-balancing which, in turn,
prolongs the lifetime of the network and (ii) robustness of the
transmission [13–19]. In this sense, our work belongs to the
first category—balancing the loads of the participating nodes,

for the purpose of minimizing the energy-level discrepancies
among the neighboring nodes, while providing a soft QoS
guarantees in terms of the latency of delivering the sensed data.

Specifically, in this work we propose to construct multiple
routes based on Bezier curves [20, 21], which have been
extensively studied in graphics and CAD/CAM applications.
One of the most important properties of the Bezier curves is
that they have a high degree of flexibility in the construction
of their shape, which can be achieved with a set of control
points. As an example, Fig. 2a illustrates a family of four
Bezier curves that can be used as alternate routes for a given
(sink, source) pair, in addition to the shortest path, i.e. the
direct line segment between the source and the sink. Each
of these curves is actually a rational polynomial of a third
degree, it requires only four control points to construct it. More
importantly, the coordinates of those four control points are
the only overhead in terms of transmission cost, because every
sensor node can decide locally, in a distributed manner, whether
it should participate in the transmission along a particular route
or not. As we will demonstrate, the construction of the entire
family can be done based on the set of initial locations of
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FIGURE 2. Motivation: routing with Bezier curves.
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the control points determining the outermost boundary, that is,
the route with the longest delay, plus a few other parameters.
Regarding our observation about the utilization of the nodes in
the vicinity of the source/sink nodes, Fig. 2a shows how one
can utilize a larger area of the nodes on those regions by a
careful selection of the control points. To further illustrate the
flexibility of the Bezier curves, Fig. 2b shows how, in the case
where the locations and shapes of existing holes are known, one
can construct a route based on Bezier curves with seven control
points (P0, . . . , P6) that bypasses them. Observe that it would
not be possible to construct such a route.

This work builds upon the results presented in [22], by
introducing the concept of stream-pipes constructed around the
Bezier curves of a given family, for the purpose of forwarding
node selection. In addition, we address various run-time aspects
and present a detailed performance evaluation of the proposed
methodologies. Specifically, the main contributions of this work
can be summarized as follows:

(i) We present a methodology which, in response to a
request for data values from a given source, creates a
family of routes anchored at the (source, sink) nodes.
These can be used to perform an alternating multi-path
routing of data-packets, in a controlled manner, while
ensuring soft QoS guarantees in terms of bounded end-
to-end communication delay. Since each route is based
on Bezier curves, we present a distributed algorithm
that performs the mapping of locations along the given
route into the actual sensor nodes, in order to enable
a trajectory-based forwarding (TBF) [23] of the data
packets. An important added benefit of our approach is
that we can manipulate the area (equivalently, balance
the load) of the active nodes in the vicinity of the source
and the sink.

(ii) We extend our routing methodology, in the sense that
it not only alternates among different routes, but it also
considers inter-route alternation among the nodes in the
vicinity of a particular route. In addition, we exploit the
capability of coordinating the sleep-scheduling among
the nodes from different routes.

(iii) We provide an experimental evaluation of the benefits
of our proposed techniques, which demonstrate that
significant extensions of the lifetime can be achieved
while incurring a small increase of the overall energy
consumption.

The rest of this article is organized as follows. In Section 2,
we present the necessary background. Section 3 describes
how a family of alternating routes can be generated based
on Bezier curves. Section 4 introduces the fundamentals of
multi-path routing using ‘stream-pipes’ and presents policies
for alternating among established pipes. In Section 5, we
address some system-wide aspects of the real-time awareness
of the Bezier-based routing model. In Section 6, we present
the experimental evaluation of the proposed routing techniques.

Section 7 positions our work with respect to the related
literature. Finally, Section 8 concludes the article and Section 9
outlines directions for future work.

2. PRELIMINARIES

We assume settings in which we are given a set SN =
{sn1, sn2, . . . , snN } of N sensor nodes that are deployed over
a given area of interest. Each node sni ∈ SN has a unique,
fixed physical location in the 2D geographic space, represented
as a pair (xi, yi) corresponding to the X and Y coordinates in
the reference system. We assume that each node is capable of
determining its location (xi, yi) at run-time, either by means of
location hardware, such as a GPS device, which, for example,
is present on the MTS420CA Mica Mote board from Crossbow
Technology Inc, or by implementing a location discovery
algorithm [24–27].

Each node is also equipped with a small omnidirectional
radio device that can be used to establish communication links
with other nodes. Let R denote the communication range of
each radio device. In practice, the effective communication
range is smaller than R due to various medium-perturbations,
such as physical obstacles or interference. Hence, we denote
as R∗ = τR, where τ ∈ (0, 1], the effective communication
range of a sensor node. The parameter τ may be obtained by
analyzing the average one-hop length of the communication
links in the network. Due to the limited spatial coverage of
the radio device, each node sni ∈ SN can communicate
directly with only a subset of nodes from the network, which
form its set of neighbors (with known locations) NB(sni ) =
{snj | d(sni , snj ) ≤ R∗, i �= j, snj ∈ SN}, where d(sni , snj )

represents the Euclidean distance ‖(xi, yi)− (xj , yj )‖ between
the locations of the two nodes sni and snj . We also assume
that the nodes are behaving in a cooperative manner [28], in
the sense that no node will maliciously refuse to forward any
packets.

2.1. Bezier curves

The routing methodology presented in this article relies on
the concept of Bezier curves. Developed by P. Bezier in the
1970s for CAD/CAM operations [21], these curves have been
used in many areas of engineering and computer graphics, and
there are many algorithms for their generation [20]. Without
loss of generality, the following analysis is restricted to the 2D
Euclidean space.

In its general form, a Bezier curve is defined over a set of
n+1 points: P0, P1,…, Pn, called control points and a parameter
u ∈ [0, 1], and is specified using a nth degree polynomial:

−−→
C(u) =

i=n∑
i=0

Bi,n(u) · −→
Pi , u ∈ [0, 1], (1)
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FIGURE 3. Basic step of the de Casteljau algorithm.

where
−→
Pi denotes the vector1 initiating at the origin (0,0), and

with a terminus at the 2D point Pi . Each Bi,n(u) denotes the
so-called Bernstein polynomials [20], defined as follows:

Bi,n(u) =
{(

n

i

)
ui(1 − u)n−i for i ∈ {0, 1, . . . , n},

Bi,n(u) = 0, otherwise
(2)

and
(
n

i

)
stands for the standard binomial coefficient [29].

Bezier curves are a special kind of the general class of curves
called splines, used in computer graphics and computer-aided
geometric modeling of curves and surfaces [30].

2.1.1. Construction of Bezier curves
Given a set of n + 1 control points that are defining a
Bezier curve, it is important to find the actual geometrical
representation of the curve in the deployment region of the
sensor network, such that individual nodes can evaluate their
proximity to the curve. Since Bezier curves are parametric
curves, every point pertaining to these curves is ‘indexed’ by
a normalized parameter u ∈ [0, 1]. The mapping is performed
through the evaluation of the Bezier polynomial C(u), with
C(0) being mapped to one end of the curve, which coincides
with P0, and C(1) to the other end of the curve, which coincides
with Pn. The rest of the values u ∈ (0, 1) map the remaining
points of the curve between its two ends. From a practical
perspective, however, the direct evaluation of C(u) through
Equation (1) is not numerically stable, and a better alternative—
the de Casteljau [31] algorithm, which uses a recursive method
to evaluate the Bernstein polynomials, is often used in practice.

Given a line segment AB, the fundamental concept of de
Casteljau’s algorithm is to find a point C on AB that divides it
into two segments AC and CB whose ratio is u/(1 − u), for
a particular u ∈ [0, 1] (cf. Fig. 3).The vector corresponding to
the location of the point C of can be expressed as

−→
C = −→

A + u · −→
AB = (1 − u) · −→

A + u · −→
B . (3)

Based on relation (3), de Casteljau’s algorithm is
implemented as shown in Algorithm 1 (cf. [31]).

1Without loss of generality, we assume the vector space to be the Euclidean
2-space R2. When there is no ambiguity, we omit the vector (→) symbol.

Algorithm 1

INPUT: P = [P0, P1, . . . , Pn] an array of n+1 control points;
u ∈ [0, 1]
OUTPUT: The point on curve, C(u)

1. for (i = 0; i ≤ n; i++) do
2. Q[i] = P [i]; //save input.
3. end for
4. for (k = 1; k ≤ n; k++) do
5. for (i = 0; i ≤ n − k; i++) do
6. Q[i] = (1 − u)Q[i] + u · Q[i + 1]
7. end for
8. end for
9. return Q[0] // which corresponds to C(u)

Figure 4 illustrates the geometrical interpretation of the de
Casteljau’s algorithm for a cubic Bezier curve and a specific
instance of u (in this example, u = .3). In the first iteration,
given the line segments P0P1, P1P2 and P2P3 that result from
connecting consecutive pairs of control points, the algorithm
finds the locations of the points that split these line segments
in the u/(1 − u) ratio. These split-locations are interpreted as
another set of control points that are used in the subsequent
iteration. The algorithm stops when there is only one split
possible and it guarantees [31] that the location of the last split
is also on the curve, which coincides with C(u = .3).

2.1.2. Properties of Bezier curves
Bezier curves have a number of important properties that have
been identified in the literature [30], which we will use when
designing the routing algorithms. Below we discuss some well-
known properties:

(i) Convex hull—all the points on the curve are contained
in the convex hull of the control points. This property is
useful when calculating an approximation of the spatial
span of a particular Bezier curve.

(ii) Pseudo-local control—moving one control point has
predictable effects over the changes of the curve’s shape
and the impact of those effects is larger to the section
of the curve in the vicinity of that particular control
point. This is illustrated in Fig. 5a, where the original
control point P2 has been moved to a new location—
P ′

2, and the modified Bezier curve is depicted with
dashed lines. Observe how the location of the point P

from the original curve, corresponding to C(u) for a
particular value u ∈ [0, 1], did not change drastically
on the modified curve, where the same value of u

generates C(u) corresponding to the point P ′. This is
due to the fact that P is in the region that is not heavily
influenced by the value of the second control point, P2.
This property implies that when local adjustment of a
given route are needed, one can manipulate the position
of only those control points that most heavily influence
the spatial locality in question, knowing that shape of the
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FIGURE 4. Graphical interpretation of de Casteljau’s algorithm for n = 3 and u = .3.
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curve will not be affected too much in spatially distant
locations.

(iii) End-point interpolation—the curve always passes
through the end-control points P0 and Pn and, moreover,
the segments P0P1 and Pn−1Pn are tangents to the
curve. (cf. Fig. 5). As we will demonstrate, this property
enables utilization of the nodes in a wider area around
the source/sink.

(iv) Affine invariance—in order to apply a particular
affine transformation to all the points on a curve,
corresponding to all values of u, it suffices to apply
the transformation to the control points and apply any
standard (e.g. de Casteljau) algorithm using the new set
of control points for a given value of u. In general, if the
mth control point Pm is translated by a vector 	vm, then for
each value of the parameter u, the corresponding point
on the curve will be translated by a collinear vector,
properly scaled at the mth Bernstein polynomial:

Cnew(u) = C(u) + Bm,n(u) · 	vm. (4)

In particular, as illustrated in Fig. 5b, if the control points P1

and P2 corresponding to an initial location of a Bezier curve
are translated to new locations P ′

1 and P ′
2 by vectors 	v1 and

	v2, respectively, any point P on the curve is moved to its new
location P ′ on the new dashed-line curve. For a given value of
u, the effect of the deformation is actually a translation by a
vector that is a linear combination B1,3(u)	v1 + B2,3(u)	v2. This
property enables a family of routes, based on a given initial
Bezier curve, to be constructed locally.

2.2. Approximating a Bezier curve

The methodology that we present in this article relies on a
discrete approximation of the Bezier curves, which can be
obtained as follows [32]. Let j ∈ {0, 1, 2, . . . , k} and let
uj = jδ, where kδ = 1, i.e. we discretize the interval [0, 1]
into k equal subintervals of size δ = 1/k. Using the values of
uj ’s only and approximating the rest of the curve by straight
line-segments between two consecutive discrete values (e.g.
uj and uj+1), the approximation can be specified as the set of
points:

Ĉ(u) =
i=n∑
i=0

B̂i,n(u) · Pi, u ∈ [0, 1]

where

B̂i,n(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bi,n(u) for u = uj ,

Bi,n(uj ) + (u − uj )

Bi,n(uj+1) − Bi,n(uj )

uj+1 − uj

for u ∈ (uj , uj+1).

(5)
Observe that, in order to calculate the corresponding points on

the approximated Bezier curve, we actually run de Casteljau’s
algorithm only on the discrete values of uj , and the points
on the curve whose values are in between two consecutive
discretization points (e.g. ∀u ∈ (uj , uj+1)) are approximated
using linear interpolation. Hence, instead of the actual Bezier
curve, we have a sequence of consecutive line segments
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(polyline), whose end-points belong to the Bezier curve
obtained by the given control points. Lemma 1 in [32] ensures
that, in this case, the maximum distance from the point on the
curve and its corresponding (with respect to the value of u)
point on the polyline, is bounded by (1/δ2)n(n−1)�(n + 1)/2�
diam(P ), where diam(P ) is the diameter of the set of control
points, n is the degree of the curve (n + 1 control points) and δ

is the discretization step of the interval [0, 1].

3. BEZIER-BASED ROUTING MODEL

We introduce now the multi-path routing model based on Bezier
curves.

We reiterate that our goal is to balance the load among the
sensor nodes in a given geographic region, while not exceeding
certain QoS constraints. Essentially, we construct a collection
(family) of routes for a particular request; each individual
route relies on TBF, introduced in [23], which is based on the
following principle: packets are to be delivered by following
as closely as possible a specified trajectory which originates
at the source of the data-stream and terminates at the sink.
One of the advantages of the TBF-based approach is that no
complex routing structures need to be built and maintained
globally. Although the goal of the TBF-based routings is to
ensure that the data-packets follow a particular trajectory as
closely as possible, in reality, the packets may flow within a
bounded area around that trajectory, as we shall explain in more
detail in Section 4. In the rest of this section, we cast our work—
using Bezier curves to construct the family of parametric curves,
in the TBF framework. As we will demonstrate, one specific
advantage of using Bezier curves is the additional flexibility in
terms of exploiting the nodes in the vicinity of the source/sink,
when compared with other types of curves such as, for example,
ellipses [33].

3.1. Establishing Bezier-based trajectories

The first question that needs to be addressed when constructing
a Bezier-based trajectory to be used for packet-forwarding
between a given source and sink nodes, concerns the selection
of the control points. One can obviously assume that the end-
points of a Bezier curve will correspond to the source node (P0)
and to the sink node (Pn).

When it comes to the rest of the control points
P1, P2, . . . , Pn−1, a number of desiderata of long-running
queries need to be considered. One important parameter which,
in realistic scenarios, is likely to be specified by the user is:

(i) �, the maximum admissible end-to-end communication
delay of the packets forwarded along any of the existing
Bezier trajectories.

Two additional parameters constrained by � can be specified
as follows:

(i) κ , the admissible distance that the curve should have
from the P0Pn which, in a sense, bounds the geographic-
deviation of the location of the nodes that can be used
for transmitting a given packet. Note that this is, in a
sense, proportional to the delay that the transmission of
a packet can have with respect to its routing along the
shortest path from P0 to Pn.

(ii) �, the allowable ‘curvature’ in the nearby vicinity of the
source and sink nodes, which determines the acceptable
locations of the sink/source neighboring nodes that may
be used for forwarding purposes.

Observe that the selection of both κ and � are aimed at
maximizing the number of overall nodes that can be used to
relieve the load of the nodes along the shortest path.

The end-to-end communication delay can be linked to the
length of a particular Bezier curve which, if we discretize it,
can be approximated as follows:

LBC =
j=k∑
j=1

C(uj )C(uj−1)

=
j=k∑
j=1

⎛
⎝[

i=n∑
i=0

(
Bi,n(uj )Pix − Bi,n(uj−1)Pix

)]2

+
[

i=n∑
i=0

(
Bi,n(uj )Piy − Bi,n(uj−1)Piy

)]2
⎞
⎠

1/2

(6)

Now, considering that the length of the shortest-trajectory
path between the source and the sink (LSS) is given by the
segment P0Pn as follows:

LSS =
√

(P
(x)
0 − P

(x)
n )2 + (P

(y)

0 − P
(y)
n )2, (7)

where P
(x)
0 , P

(y)

0 , P (x)
n , P

(y)
n represent the components of P0

and Pn along the X and Y axes, and assuming that the time
delay is proportional to the length of the route, we can estimate
the relative increase factor of the end-to-end communication
delay along a particular Bezier trajectory (BC) as LBC/LSS.
Consequently, the length of the Bezier curve needs to be
restricted to satisfy the constraint:

� < �SS · LBC/LSS, (8)

where �SS is the average delay experienced by data-packets
along the shortest trajectory path.

In order to control the degree of the ‘curvature’ around
the end-control points, we refer to the end-point interpolation
property of Bezier curves, which states that the segments P0P1

and Pn−1Pn are tangents to the curve. Thus, we can now define
more formally the curvature around the sink (respectively, the
source), as the value of the angle formed between P0P1 and
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FIGURE 6. Flexibility of the third degree Bezier curves.

P0Pn (respectively, PnPn−1 and P0Pn), as shown in Fig. 5a (for
n = 3). Given κ and �, we still have a number of degrees of
freedom with regard to the actual positions of the control points
P1, . . . , Pn−1. We note, however, that κ and � are constrained
by �, which means that, in general, a number of feedback loops
may be required in order for the chosen control points to satisfy
the end-to-end communication delay. As a specific example,
one may be interested in a curve which, for a given �, κ and
�), ensures that the area bounded by the Bezier curve and the
line segment P0Pn is maximal. An illustration is provided in
Fig. 6, which shows two Bezier curves with four control points
(third degree polynomials). The dashed curve (BC′), obtained
by using different control points P ′

1 �= P1 and P ′
2 �= P2, has a

wider area-span (in the central region) than the solid curve (BC)
and, consequently, it involves more nodes in processing a given
request, while retaining the bound on the delay. However, BC′
exploits fewer nodes in the vicinity of P0 and P1. This example
illustrates that the selection of exact values for the parameters
κ , � and � is an instance of a constraint optimization problem,
whose solution is beyond the scope of this work. We note that,
in practice, the convex hull of the control points can be used as
a first approximation for calculating the values of some of the
parameters of interest (e.g. �, � and κ).

3.2. Building a family of Bezier curves

Given a particular Bezier curve, we can utilize it as a route
to relieve the load of the nodes that participate in the optimal
(shortest) route between the sink and the source. However, one
Bezier curve enables the utilization of only a small subset of
nodes between the source and the sink nodes. On the other
hand, the degree of lifetime extension, is proportional to the
total number of sensor nodes that can share the load and serve
on alternate paths. Hence, a larger family of curves between

the source and the sink is desirable. In order to construct this
family, we start first by determining�, the maximum end-to-end
communication delay acceptable to the user and require that the
length of every Bezier curve satisfies (8).As we will demonstrate
shortly, this amounts to constructing two ‘boundary’ Bezier
curves (one to the left and the other to the right of the optimal
path) and requiring that all curves in the family fall within
these boundaries. In addition, our construction of the alternative
Bezier curves will guarantee that they are non-intersecting,
as opposed to braided trajectories [14]. The latter exhibit an
increase in the collision of packets under high data delivery
rates that causes correspondingly an increase in the end-to-end
communication delay. We shall describe now our method of
obtaining a parametric set of Bezier curves.

Without loss of generality, in the following we will assume
that the source and the sink nodes, corresponding to the first
(P0) and the last (Pn) control points are forming a line segment
parallel to the Y-axis—otherwise, a proper transformation of
the coordinate system can be performed [21]. The first step
consists in determining the two ‘bounding’ Bezier curves that
will satisfy, at the limit, the constraints of a long-running query.
Let us denote by BCmax

(R) and BCmax
(L) the right-hand side and the

left-hand side bounding Bezier curves relative to the shortest-
trajectory path P0Pn (cf. Fig. 7). These bounding Bezier curves,
will form an ‘envelope’ for the admissible region that may be
used for forwarding purposes. Next, we generate an entire set of
curves by relying on the affine invariance property of the Bezier

Source
node

Sink
node

– 3 – 2 – 1 0 1 2 3 

P0

P4
BCmax

(R)

BCmax
(L)

P2
in

P2
fin

P2
1

P2
2

FIGURE 7. Generating and indexing a family of Bezier curves.
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curves (cf. Section 2). For simplicity, we focus on explaining
how to generate the collection of curves based on the control
points of one of the two bounding Bezier curves, say, (BCmax

(R) ).
In order to select a set of discrete points which will be used as
control points for the alternate routes, we proceed as follows:

(i) Let P in
i denote the initial location of the ith control point

of one of the bounding Bezier curves.
(ii) Select a set of points on the shortest trajectory-path

segment P0Pn as ‘final’ control points (P fin
i ).

(iii) The control points Pi of the additional Bezier curves
that will define the family of alternative curves will be
located on the segment P in

i P fin
i .

The number of curves in the family is determined by the
selection of a discretization interval 1/λ that will split P in

i P fin
i

in λ equally-sized segments P 0
i P 1

i , . . . , P λ−1
i P λ

i , where P 0
i =

P fin
i and P λ

i = P in
i . Each discrete point P

j

i , 0 ≤ j ≤ λ

represents the ith control point of the j th Bezier curve, relative
to the corresponding boundary BCmax

(R) . Clearly, this procedure
needs to be repeated for the other bounding Bezier curve (in
this case BCmax

(L) ), and the resulting family is given by the union
of the families generated by the two bounding Bezier curves.
The family of alternative routes will be indexed through the set
{−λ, −(λ − 1), . . . ,−1, 0, 1, . . . , (λ − 1), λ}, as illustrated in
Fig. 7, for the case of a cubic Bezier curve and λ = 3. Thus,
2 · λ + 1 represents the cardinality of the family of alternative
routes situated on both sides of P0Pn.

An important observation is that, upon their deployment, the
locations of the individual sensor nodes need not fall exactly on
a particular Bezier curve. Hence, each node needs to be able to
determine which particular route it is serving. We will address
this issue in greater detail in Section 4, however, we mention it
here to illustrate some factors that can influence the selection of
λ. If λ is too large (1/λ small), then consecutive Bezier curves
will be too close to each other and a particular sensor node may
serve one route defined by more than one curve. On the other
hand, if λ is small, the generated family of curves may cover too
few of the nodes located between the bounding Bezier curves,
and thus reduce the effectiveness of the intended load balancing.

An additional improvement in performance can be achieved
by a judicious selection of the P fin

i , i ∈ {1, . . . , n − 1} along
the segment P0Pn, which affects the workload of the nodes
in the vicinity of the source/sink. Figure 8 illustrates various
strategies for the selection of the final control points. It presents
three different families of cubic Bezier curves based on the
same bounding Bezier curve, which differ in the choices of the
final positions of the control points. In Fig. 8a, the positions
of P fin

1 and P fin
2 coincide with the mid-point of the segment

P0P3; in Fig. 8b, P fin
1 and P fin

2 are equidistantly distributed along
the P0P3 segment; and in Fig. 8c, the positions of P fin

1 and
P fin

2 coincide with P0 and P3, respectively (the discretization
parameter is λ = 3). Observe that, even though the families of
curves depicted in Fig. 8a–c are very similar, there are important

differences toward the end-points of the curves, corresponding
to the source and the sink—the changes in the incident angles
are different in each case. The case depicted in Fig. 8c represents
the best selection of the final control points from the perspective
of utilization of a large number of nodes in the vicinity of the
sink/source for the entire family of routes. The main reason
for this is that the value of � is kept constant among all the
curves from the collection. In contrast, the family of curves
from Fig. 8a yields a worse workload distribution in the one-hop
neighboring areas of the source/sink nodes, that is, progressively
smaller percentages of the nodes in the corresponding 2π −2�

sectors participate in the forwarding for different curves, as
the value of � increases with the proximity of a particular
curve to the segment P0P3. Finally, Fig. 8b corresponds to a
configuration that achieves a degree of workload distribution
somewhere in between the cases depicted in Fig. 8a and c.
For comparison, Fig. 8d. illustrates how the neighboring nodes
around the source/sink have much lower utilization when
an ellipse is used as a base for the construction of routing
trajectories.

4. STREAM-PIPES FORWARDING MODEL

In this section, we address the main issues involved in
forwarding data-packets along an individual trajectory from
a given family of Bezier curves. Toward this, we present a
forwarding model based on ‘stream-pipes’, which is a collection
of nodes in a closed spatial proximity of a particular Bezier
curve. We define the concept of a stream-pipe and present the
forwarding algorithm executed locally by an arbitrary node.
Subsequently, we focus on the problem of load-balancing within
a given stream-pipe and address in detail the behavior of the
source.

Whenever a new request is to be posed to the network, its
processing requires two main actions: (i) propagating it from
the sink to the source, and (ii) coordinating the data sampling
and delivery throughout the desired lifetime of the request. From
this perspective, there are three main functional categories of the
nodes:

(i) sink;
(ii) source;

(iii) relay nodes along a given curve.

We note that the selection of the actual source node is done
based on a minor modification of the TBF approach [23].
Namely, the sink generates an initial request specifying the
geographic location from which the readings are desired. As the
request-packet is being propagated, each node checks whether
its distance from the destination which is smaller than any one
of its neighbors, in which case, it declares itself to be the source.
Otherwise, it forwards the packet toward the location initially
specified by the sink, in a TBF-like manner.
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FIGURE 8. Possible selections of the final positions of control points.

4.1. Stream-pipes based on Bezier curves

We proceed now to define in detail the major concepts of
stream-pipes, namely, how the relay nodes perform geodesic
forwarding, as well as how to determine the number of curves
in a stream-pipe and their boundaries.

Given a Bezier curve BCk , the stream-pipe SPk defined by
that curve is the spatial region that consists of all the points that
are no further than R∗ from BCk— i.e. the width of the pipe is
equal to 2R∗, the diameter of the effective communication range
of each node. An alternative definition of the stream-pipe SPk is
that it is the subset of SN (the set of all the nodes) which consists
of the nodes whose locations are inside the region BCk ⊕ R∗,
where ⊕ denotes the Minkowski Sum [34] of BCk and the disk
with radius R∗.

We note that, for each stream-pipe SPi , a direction of flow
of the packets needs to be defined, which is expected to be
‘outbound’ from the source and ‘inbound’ to the sink. However,
this intuitive desideratum, when making a forwarding decision,
cannot simply use the Euclidean distance between the location
of a given node and the location of the sink (respectively,
source).As illustrated in Fig. 9c, if the source uses the Euclidean
distance as a criterion for forwarding, it will (incorrectly) send
the packet to the node ‘C’ instead of ‘B’, since ‘C’ is the node
that is furthest from the source itself, and closest to the sink.
However, ‘B’ is the one that is closest along the Bezier curve
defining that stream-pipe. Similarly, even the node ‘B’ may
prefer ‘C’ to ‘A’, if the Euclidean distance was used. Hence, the
correct criterion of advancing/forwarding a given packet among
the nodes within a given stream-pipe SPi is to ensure that its
geodesic distance, i.e. the length of the path traveled by that
packet along the nodes within SPi , is increasing from the sink

and decreasing toward the source. On the basis of properties of
Bezier curves, we can now formally define the desideratum for
geodesic distance. Given two nodes, snp and snq , we say that
snp is further along BCi from the source (resp. toward the sink)
than snq if and only if the value up (of the parameter u) used
for calculating the location of the point on BCi that is closest
to snp is larger than the value of uq (of the parameter u) used
for calculating the location of the point on BCi that is closest to
snq . The definition of the Bezier curves (cf. Equation (1)) and
the condition up > uq ensure that the geodesic distance from
the source along BCi , is monotonically increasing (Fig. 9c). We
note that a node snp may have more than one ‘nearest-neighbor’
on a particular curve BCi , in which case a tie-breaker is needed.
In our implementation (cf. Section 6) we have adopted the policy
of selecting the largest u-value that is no smaller than the values
used by the last node in the stream-pipe.

Another important aspect of designing the stream-pipes,
related to determining the actual number of the Bezier curves
in the family, is how to determine their width. Once again,
there are conflicting requirements: (i) in order to maximize the
‘spatial utilization’, one needs to have more and wider pipes
and (ii) in order to avoid inter-pipe interference, one needs to
ensure some minimal distance between the pipes corresponding
to neighboring curves from the family. Let DSP

i,(i+1) denote
the maximal Euclidean distance between the two stream-pipes
defined by neighboring Bezier curves BCi (u) and BC(i+1)(u)

for a given u ∈ [0, 1], and let di denote the width of SPi .
An upper bound on the value of λ, which determines the total
number of the curves in a given family, can be specified as:

λ ≤ κmax

(di + DSP
i,(i+1))

, (9)
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R*

Y

X

Towards sink

From
source

Source
node

Sink node

Stream-pipes

(a) Individual Stream-Pipe (b) Multiple Stream-Pipes 
(c) Stream-pipe forwarding

(zoomed-in)

A

B

C

Y

uC uB uA

FIGURE 9. Stream-pipes model.

where κmax denotes the largest spatial deviation that a Bezier
curve can have from P0Pn.

Clearly, the actual value of λ will depend on the selections
of DSP

i,(i+1) and di . However, regardless of what those values
are (e.g. even if one allows a larger distance between two
consecutive stream-pipes), the proximity among the nodes in
the vicinity of the source and the sink may not permit such
a distribution, as opposed to the nodes, say, in the middle
of a given curve. Depending on the actual deployment, this
observation remains valid even if DSP

i,(i+1) and di are made
functions of u. We note that in our implementation, we used
the values of di = 2 · R∗ and DSP

i,(i+1) = R∗.

4.1.1. The behavior of relay nodes
Upon receiving a data-packet that needs to be forwarded to
the sink, each node must generate an anchor point—a 2D
point along the respective Bezier curve which determines the
corresponding route—in order to decide which one of his one-
hop neighbors should be used next in the forwarding process.
The generation of the anchor point is based on the parameters
of the underlying curve defining the stream-pipe to which a
given node belongs, and its location is transmitted along with
the regular data-packets. Given a fixed, known anchor point, the
forwarding decision is simply based on a greedy choice of a node
from the set of neighboring nodes, that is physically closest to
that anchor point.As an example, in Fig. 10a the black-filled dots
represent the set of anchor points along a particular Bezier curve,
and the white disks linked with line segments to them represent
the actual forwarding nodes associated with these anchor points.
In order to complete the forwarding between the source and the
sink, a sequence of such anchor points must be formed in a
distributed manner.

On the one hand, each anchor point can correspond to the
longest one-hop of communication distance, and hence the

X

Y

Anchor
point

Sink

Source

X

Y

Anchor
point

Sink

Source

(a) Mapping forwarding nodes to
anchor points

(b) Resulting forwarding path

FIGURE 10. Impact of ‘small’discretization step on the actual routes.

physical distance between two consecutive anchor points along
a particular route should be equal to the communication range
R∗. Using a small distance value for the consecutive anchor
points may not only increase the number of hops required to
forward a data-packet between the source and the sink node, but
also possibly create local cycles. This is illustrated in Fig. 10b.
However, enforcing a strict monotonically increasing policy
on the geodesic distance of consecutive forwarding nodes will
prevent the occurrence of such cycles. On the other hand, a large
distance between consecutive anchor points (cf. Fig. 11a) may
yield a sequence of forwarding nodes whose positions will not
closely follow the prescribed trajectory, as illustrated in Fig. 11b.
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FIGURE 11. Impact of ‘large’discretization step on the actual routes.

An important observation is that different Bezier curves from
a given family will have a different length and, consequently, a
different number of anchor points. The number of anchor points
for a particular curve BCi , denoted by ki , can be calculated as
follows.We divide its approximate length LCBCi

, obtained using
Equation (6) in Section 3.1, by R∗, and we let ki = �LCBCi

/R∗�.
For i ∈ {−λ, . . . ,−1, 0, 1, . . . , λ}, the value of ki is used to
determine the discretization value for the parameter u ∈ [0, 1]
(cf. Section 2.2). In other words, the discretization step δi for
approximating the ith Bezier curve with a polyline is obtained as
δi = 1/ki . Recall that, for each BCi , the locations of its control
points can be derived using the control points of its bounding
Bezier curve and their final locations along the segment P0Pn.
Specifically, the location of the j th control point for the ith
curve of the family of Bezier curves, P i

j is given by

P i
j = P in

j ± |P fin
j − P in

j | · (i/λ), (10)

where the selection of ‘−’ or ‘+’ sign is determined based
on whether the ith curve is indexed by a positive (‘−’) or
a negative (‘+’) value of its index (i.e. whether the curve is
on the right-hand side or the left-hand side of P0Pn). Using
the corresponding control points P i

j and the corresponding
discretization step of the unit-interval δi , the location of the
lth anchor point on the ith Bezier curve can be calculated as

Ĉi(l · δi) =
j=n∑
j=0

ˆBj,n(l · δi) · P i
j . (11)

Observe that in Equation (11), the values of Ĉi(l · δi)

(respectively, ˆBj,n(l · δi)) coincide with the actual values of
Ci(l ·δi) (respectively, Bj,n(l ·δi)), computed using Equation (5)

(cf. Section 2.2) with the discrete set of values for the parameter
u corresponding to l · δi . Given the information about the
particular curve BCi (its control points) and the discretization
interval for the parameter u on that curve, an individual node,
say snr , can use Equations (10) and 11, to determine its relative
position with respect to a particular anchor point, say, APj

i on
that curve. More importantly, snr can determine the relative
position of each of his one-hop neighbors NB(snr ) with respect
to that curve and its anchor points. Instead of having to evaluate
an uncountably infinite set of possible values for u, once again
snr will use the discrete approximation of the particular Bezier
curve where the discretization step δi is determined based on
the stream-pipe SPi (equivalently, the Bezier curve BCi) that
is closest to snr . In order to estimate with a bounded error the
distance (of itself or any node from NB(snr )) to the curve BCi ,
the node snr will use the distance to the polyline approximating
BCi , i.e. the line segment between the two closest anchor points
(cf. Equation (5)).

Algorithm 2 summarizes the basic forwarding methodology
using the ideas presented so far. In order to perform the
forwarding decision, a node needs to receive the following
control information within a particular packet 	:

(i) ID, the packet ID (determined by the source).
(ii) snsink, the ID (respectively, location) of the sink node.

(iii) snsend, the ID (respectively, location) of the node that
sent the packet.

(iv) i, the index of the pipe SPi that is currently being used,
i ∈ {−λ, . . . ,−1, 0, 1, . . . , λ}

(v) P i
0 , P i

1 , . . . , P i
n, the control points of the BCi currently

being used, calculated by the source node once for a
given i ∈ {−λ, . . . ,−1, 0, 1, . . . , λ}.

(vi) δi , the normalized (0 ≤ δi ≤ 1) discretization step of
the ith curve, calculated as 1/�LCBCi

/R∗�.
(vii) the current parameter value of the anchor point used to

select snr as the receiver of the packet, calculated using
ul = δi · l.

In the forwarding algorithm, the receiving sensor node
snr first checks whether the sink is within its effective
communication range and, if so, forwards the data portion of the
packet 	 directly to it. Otherwise, snr determines a new anchor
point AP(snr ) along the stream-pipe SPi and, from the set of
its one-hop neighbors NB(snr ) it selects the one that is closest
to the AP(snr ), to which the data-packet 	 with the updated
control information is forwarded.

Algorithm 2 Forward(	, snr ): the forwarding of packet 	 by
the relay node snr

INPUT: 	 = ([ID, snsink, snsend i, δi , ul , P
(i)
0 , . . . , P (i)

n ], data)
NB(snr )—the set of 1-hop neighbors of node snr

OUTPUT: Next-hop neighbor for forwarding the packet toward
the sink;

Updated packet 	

1. IF snsink ∈ NB(snr )
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2. Send 	.data to snsink;
3. ELSE // Determine the next anchor point on the curve
indexed by i

4. AP(snr ) = Ĉi(ul + δi) // evaluated using de Casteljau’s
Algorithm with control points P

(i)
0 , . . . , P (i)

n ;
// Determine the neighboring node to forward 	 to

5. Select node snnext ∈ NB(snr ) such that snnext is closest
to AP(snr );

// In case of a tie, select the one furthest from snr itself
6. IF snnext has been successfully communicated (ACK-ed)
7. // Update 	’s relay information:

snsend = snr and ul = ul + δi

8. Send 	 to snnext

9. ELSE
10. Notify snsend and drop 	

11. ENDIF
12. ENDIF

Algorithm 2 is the basic forwarding algorithm executed by a
node along a given route, and its complexity is linear in the
cardinality of the set of one-hop neighbors of snr . In other
words, if |NB(snr )| = nr , the time complexity of Algorithm 2
is O(DC(n) · nr)), where DC(n) = O(n2) is the complexity
of executing the De Casteljau’s algorithm for BCi defined via
n control points. We note that a particular relay node snr in a
given stream-pipe needs to execute Algorithm 2 for forwarding
only the first time it is used for routing. For subsequent packets,
snr needs to check whether the relay parameters in 	 have
been received before, which is the input parameters, the updated
relay parameters, as well as the state parameters consisting of
snnext, the values of its anchor point and the current route, and
the distances of each node in NB(snr ) to the anchor point.
Additionally, if snr cannot forward the packet 	 toward the
sink along BCi , it will notify the sender snsend, as this may
indicate a topological hole in the network [35], which will have
to be bypassed (if possible) in order to successfully transmit the
requested data from the source to the sink.

4.2. Load-balancing in stream-pipes

Although the concept of stream-pipes enables more nodes in
the vicinity of a given Bezier curve to be used for routing, this
alleviates only partially the problem of workload distribution.
We observe that the association of actual nodes to anchor points
is static, in the sense that an invariant subset of nodes that are
mapped to a particular pipe will be actively used, whereas the
others inside that same pipe will be idle. This may increase the
discrepancy of the energy levels among the nodes within an
individual stream-pipe. Similar issues have been observed for
shortest path-based routing (cf. [36]) and the proposed solution
tried to dynamically adapt the selection of the forwarding nodes
along that path. In our settings, instead of a shortest path we
have a Bezier curve that is discretized by using a sequence of
anchor points, and we allow the nodes in the vicinity of a given

curve to participate in the routing based on their proximity to
a given anchor point. In order to better exploit the nodes in a
given stream-pipe and balance the load among them, we allow
for a number of virtual channels in the stream-pipe, each one
using a different sequence of anchor points along the respective
Bezier curve. We achieve it by using a randomized offset that is
determined by the source to vary the location of the first anchor
point along a given virtual channel.

Our method for generating virtual channels proceeds as
follows. The source node computes a different randomization
factor, denoted by ωi,j ∈ (0, 1] for determining the location
of the first anchor point along the j th virtual channel of SPi .
Specifically, its location is computed by using uij1 = ωij · δi in
Equation (11). The subsequent anchor points are computed by
each relay node using the given discretization step value δi . This
achieves the effect of generating a different sequence of anchor-
points for each distinct virtual channel. Hence, two data-packets
transmitted by the nodes from a given stream-pipe SPi , using a
different value of ωij and the same value for δi , are likely to be
forwarded by different sets of nodes. The reason for this is that
each value of ω will determine a different start of a discretization
sequence for the parameter u which, in turn, will generate a
different sequence of anchor points along the (approximated)
Bezier curve. Consequently, we have an increased likelihood
that a different sequence of forwarding nodes within a given pipe
will be used. Figure 12 illustrates two different virtual channels
within a single pipe for ω = .4 and ω = .8, illustrating how
different nodes are selected as forwarding nodes for different
values of ω.

4.2.1. The behavior of the sink and source
The main role of the sink node is to properly initiate a particular
request, for which the basic attributes are: (i) T —the duration
of the sampling; (ii) fr—the frequency/rate of the sampling
executed by the source and (iii) the source—the source node ID,

Source Sink

Source Sink

Anchor point
Sensor node

(a)

(b)

R4.1 R4.2 R4.3 R4.4 R4.5 R4.6 R4.7

R8.0 R8.1 R8.2 R8.3 R8.4 R8.5 R8.6 R8.7

R4.0

FIGURE 12. Multi-channel routing within a single pipe:
a) ω = .4; b)ω = .8.
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or equivalently, the physical location from which the readings
are requested. An additional responsibility of the sink is to
determine the parameters needed for generating the family of
curves that will be used for routing purposes, which include the
following: (i) the control points of the bounding Bezier curves;
(ii) the number of alternative routes, i.e. the value of λ and (iii)
the final location of the control points. In addition, the sink also
determines the value of Np—the number of consecutive packets
that should be sent along an individual stream-pipe, and mi—
the number of virtual channels in the ith stream-pipe SPi . A
REQ (request) packet with this information is sent to the source
along the shortest path route, as explained in Section 3.

Throughout the duration T of the sampling period the source
node is responsible for collecting the sensed data values, as
well as coordinating the delivery of the packets among the
2λ + 1 stream-pipes and among the virtual channels within a
single stream-pipe. For that purpose, the source node determines
most of the information for obtaining the run-time routing
parameters, that are specified as follows:

(i) The index i ∈ [−λ, . . . ,−1, 0, 1, . . . , λ] of the current
(Bezier curve of the) pipe Pi .

(ii) The discretization interval δi for that pipe.
(iii) The initial value of the parameter u, that is, the value

of ωij for determining uij = ωij · δi , which is needed
for determining the particular (in this case, j th) virtual
channel within a given pipe. Given its knowledge of the
one-hop neighbors, the source actually determines a set
�i = {ωi1 , . . . , ωim} of initial offsets for a given stream
pipe SPi .

(iv) nc, the number of data-packets that have been sent
consecutively through the currently used virtual channel
j along SPi .

Recall that the data stream serving a particular request will
be transmitted over 2λ + 1 alternating pipes, however, the
relay nodes in each stream-pipe SPi are divided into virtual
channels. Each channel will be responsible for transmitting
�Np/ | �i |� packets, where | �i | denotes the cardinality of
the set �i . The run-time behavior of the source node is specified
by Algorithm 3.

Algorithm 3 Source Routing Behavior
INPUT: R∗, P in

0 , . . . , P in
n , P fin

0 , . . . , P fin
n // received from the

sink
STATE-INFO: λ, �Np/m�, �i , nc (counter of sent packets), i

(pipe index), j (channel index), ωij

OUTPUT: inext, δi(next), snnext

along with updated STATE-INFO
1. Initialize:

inext ← i;
nc ← nc + 1;
j(new) = j ;

// Determine if the virtual channel and/or the stream-pipe
need to be updated

2. IF nc ≥ �Np/ | �i |�
3. nc = 0
4. jnew ← j + 1
5. IF jnew > mi

6. jnew = 1
7. inext ← Select inext �= i from [−λ, . . . , 0, . . . λ] //
Switch to a different pipe
8. δi(next) ← calculate the discretization interval/step for
SPi(next)

9. ENDIF
10. ωij(new)

← get the offset for the jnewth channel from �i

11. ENDIF
// Update the STATE-INFO
12. IF (jnew �= j )
13. unext ← ωij(new)

· δi(next)

14. ENDIF
15. Determine snnext using the forwarding Algorithm 2
16. Compose and send packet 	 to node snnext

We observe here that line 7 of the algorithm actually involves
a number of computation steps:

(i) Using Equation (10), the source computes the
coordinates of each control point of the i(next) pipe.

(ii) The source also computes LCBCi(next)—the approximate
length of the Bezier curve BCi(next), using Equation (6).

(iii) Lastly, the actual value of δi(next) is computed as
LCBCi(next)/R

∗.

In addition, the selection of the subsequent stream-pipe in
line 7 is something that may affect the energy consumption,
which we address in detail in the Section 5.1.

We conclude this section with a few observations regarding
the complexity of the Algorithm 3. First, in a similar spirit to
Algorithm 2, we note that the source node needs to calculate
the respective parameters for routing within a given stream-
pipe (e.g. (δi , �i)) only once—upon the initial processing of
the query request and the very first time each SPi is used for
routing. The calculated values can be stored locally and simply
re-used in any subsequent usage of SPi . If the total number of
one-hop neighbors of the source node is nsrc, then the number
of executions of Algorithm 3 as stated above, is O(nsrc). This
worst-case scenario occurs when each one-hop neighbor is used
as an anchor point—albeit within different stream-pipe(s). Let
nB denote the combinatorial complexity, i.e. the number of
control points of the Bezier curves. Since there are a total
of 2λ + 1 different stream-pipes, the time complexity of the
initial execution of Algorithm 3 is bounded by O(n2

Bλnsrc).
Clearly, this cost will be amortized with the subsequent, after
initial, uses of each stream-pipe. In addition, as our experiments
demonstrate, the amortized cost justifies, in terms of the lifetime
criteria, the use of Bezier-based routing as opposed to, for
example, k-short—consisting of two line-segments per route,
the initial specification of which is just as straightforward as,
for example, ellipses (two points/real-valued parameters).
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5. SYSTEM-WIDE AND REAL-TIME ISSUES

Thus far, we have presented the basic ideas behind the routing
within a particular stream-pipe from the family of Bezier curves.
However, there are some other important run-time aspects that
need to be considered in order to further prolong the lifetime,
decrease the overall energy expenditure of the nodes and ensure
the timely delivery of the packets to the sink. In this section, we
address these issues in detail.

5.1. Stream-pipe selection policies

Given a collection of stream-pipes, an important decision that
the source node needs to make is what policy to use for
alternating among the pipes when transmitting the sensed data.
In Algorithm 3 discussed earlier, this was stated as the choice
of the i(next) ∈ {−λ, . . . ,+λ}. Assuming that the pipes
are symmetric around the line segment P0Pn and adopting
the counter-clockwise direction of traversing a particular
curve from P0 toward Pn as the positive one, the set of
alternating routes can be enumerated as: S = [−λ, −(λ −
1), . . . ,−1, 0, 1, . . . , (λ − 1), λ], corresponding to their left-
to-right sequence with P0Pn having the index value of 0.

The policy of alternating among the pipes now amounts to
selecting the best permutation of S to be used in transmitting
the packets. One may be tempted to use the identity permutation
which alternates periodically among the sequence S of pipes,
and selects in each period the pipe based on the order in the
original sequence S. We call this a sweep-based alternating
policy among the stream-pipes.

However, as observed in the literature (e.g. [37]), there may be
packet-loss due to interference among the nodes along spatially
close pipes. When the sampling frequency is high, and a packet
is transmitted for every sampled value, spatially close nodes will
be employed by adjacent stream-pipes in small time intervals.
Specifically, when the sequential sweep (modulo λ) is used
to select among the candidate pipes, this will result in pipe
interference, which is especially observable in the proximity
of the sink/source node, under high data rate loads. Motivated
by this, we propose the following permutation for alternating
among the pipes:

Sd = [−λ, 1, −(λ − 1), 2, . . . ,−2, (λ − 1), −1, λ, 0]. (12)

We call Sd the constant mid-distance permutation for
alternating among the stream-pipes.

Many other policies are possible, in addition to the sweep-
based and the constant mid-distance approaches. As another
example, one can randomly select which stream-pipe is to be
used next. As part of our experiments, we have tested the
behavior of sweep, mid-distance and random-select policies.
The results are depicted in Fig. 13, which illustrates the energy
demands of the participating nodes when transmitting a data-
stream between two fixed end-points for a duration of 10 h, every
2 s. The differences in the energy demands are due to the packet

100

80

60

40

20

0

Energy (%)

Random
Selection

Sweep
Constant

Mid-
Distance

Alternation

FIGURE 13. Route selection policies.

collisions occurring as a result of neighboring pipe interference,
and subsequent packet retransmissions.As one may observe, the
constant mid-distance policy is the best performer in terms of
energy efficiency. As a consequence, we have adopted it as a
stream-pipe selection strategy and used it in our experiments.

5.2. Sleep-scheduling of sensor nodes

An additional opportunity to preserve the energy of the nodes is
to exploit their capability of turning their radios off, by entering
into a sleep state [38]. In our settings, at any time only the nodes
from one stream-pipe, say SPi need to be active. Whenever
another route is to be selected, the nodes along its stream-pipe
SPj need to be awaken, and the nodes from SPi may enter the
sleep state.

Switching between the sleep/active state is a process that
can take from a few microseconds to several hundreds of
milliseconds, depending on the type of radio and awakening
mechanism a node possesses [38]. As a consequence, the
data-packets that are waiting for the transmission at a given
sensor node may experience a delay when the next hop is in
a sleep state. Additionally, if the frequency by which routes
are switched is greater than the maximum frequency needed
for each node to switch on/off its circuitry, then one may find
nodes that are being mapped to different stream-pipes active
simultaneously, even though only one pipe is needed at a time.

Consequently, once a specific stream-pipe is being selected,
it may be beneficial to use it for a prolonged period of time
before it is replaced; in other words, we use it to send Np

consecutive data packets through it, before selecting another
pipe. Ideally, if we consider a query with a life-span of T that
requires a data-stream sampling frequency sf to be delivered
across 2λ + 1 alternative pipes, then Np should be chosen as
Np = T/(sf ·(2λ+1)). In this case, the algorithm would access
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each stream-pipe from a given family of pipes only once, and
use it for an extended period of time. Doing so minimizes the
overhead of transmitting and evaluating the Bezier curves as the
curve’s parameters need to be transmitted only 2λ + 1 times,
once for each curve. However, for very large values of T , the
energy imbalance may increase significantly among adjacent
routes and if we limit the number of packets that can be sent
consecutively through each stream-pipe, we can achieve a more
even residual energy distribution. As an example, a possible
upper bound can be Np = Qsize, where Qsize is the capacity
of the outgoing queue (buffer) of each sensor node [39]. In this
case, the risk of overflow in a pipe, i.e. exceeding the buffer
capacity, which would result in a packet drop, of the nodes
within is reduced. In our implementation and the experiments,
we chose the value of Np = min{Qsize, T /(sf · (2λ + 1))}.

We assume that each node is equipped with a remotely
activated switch [40] which allows its transceiver to be powered
on remotely by a neighboring node, via dedicated paging
signals, whenever there is a need for a communication link
to be established between the two. In our settings, whenever
a particular stream-pipe needs to be used initially (or, after
the sensor nodes around it have been put to sleep), a special
WAKE packet is sent by the source and forwarded along by the
corresponding nodes in order to establish the communication
channel.

The WAKE packet is very similar to the regular packet 	 used
in Algorithm 2, except it has two specific items:

(i) A dedicated wake bit, which is used by the sink node
to discard that packet upon receiving. The in-between
relay nodes will treat the WAKE packet just as a regular
data-packet and they will attempt to forward it toward
the sink, for the purpose of awakening and establishing
the route.

(ii) A dedicated used bit which tells the receiving node that
(the Bezier curve of that) route, along with the particular
channel within the corresponding stream-pipe, have
already been used before. Thus, used = 1 means that
the node snr currently receiving the WAKE packet has
already been given all the information needed to execute
the Algorithm 2 and it had the opportunity to store
the output snnext from among its neighbors NB(snr ).
On the other hand, if used = 0, upon receiving the
WAKE packet, snr knows that it has never participated
in that particular route/channel, and hence it will have
to use (and store for subsequent use) all the parameters
from the WAKE and execute the Algorithm 2, the
output of which will be also be stored for subsequent
transmissions.

5.3. Delay budgeting with hole bypassing

Algorithm 2 is designed to operate under the assumption of
a densely populated network, where a one-hop neighbor is

available for every sensor node and in any desired direction.
However, in reality, some nodes or group of nodes may not be
able to establish a communication channel. This is the case, for
example, when nodes are not physically available in isolated
geographic areas (e.g. due to deployment in mountainous
and/or hostile environments) or, despite their availability upon
the initial deployment, group of nodes in a given region
have become unusable (e.g. energy depletion or environmental
disasters). Regardless of the reason, the lack of effective
availability of nodes in a particular region implies an existence
of, so called, holes in the network [35, 41].

As we mentioned in Section 3, in the case that the
relevant information about the holes, e.g. their location and
boundaries, is known beforehand, the sink node may take it into
consideration when formulating the request for routing from
a given source, and properly construct the Bezier curves that
will ensure routes that can bypass them. However, as observed
in the literature (e.g. [35]), network-wide management of the
knowledge about the holes can be cost-prohibitive, as holes may
be created at various points of the network’s lifetime, and local
routing algorithms are needed that can be used to bypass the
hole and relay the packets (as close as possible) to the desired
destination.

To cope with this issue, a straightforward modification of the
implementation of Algorithm 2 is needed in the steps 5–8 to
adopt a GPSR-like behavior [41], that is, selecting the nodes
along the boundary of the hole, with a goal of reaching the
sink. However, there is an important practical issue that needs
to be considered in our settings; namely, when bypassing the
hole in a particular reference direction (typically, a counter-
clockwise, so that the interior of the hole is always on the left-
hand side), the time needed for a packet transmitted along a
given Bezier curve BCi (equivalently, its stream-pipe SPi) may
exceed the acceptable delay bound �. Hence, in our current
implementation, we have adopted a slightly modified version
of the original GPSR approach:

(i) When a hole is encountered, it is bypassed from both
directions (clockwise and counter-clockwise).

(ii) Once each of the bypassing routes reaches the location
on the intersection of its Bezier-curve used when the
hole was encountered and the boundary of that hole (∂-
hole), the information about the delay incurred in each
route is reported back to the node that detected the hole
first.

(iii) The information is used to

(a) select the direction of bypassing (i.e. the one with a
smaller extra-delay) and

(b) notify (by back-propagation) the source that some
of the Bezier curves from the family can no longer
assure that the expected routing delay will be ≤ �.
The source will stop using the stream-pipe that
violates �.
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P0

P3
Bypassing exceeding
the delay-tolerance

FIGURE 14. Bypassing holes.

An illustration of this problem is provided in Fig. 14. As
shown, the counter-clockwise bypassing of the hole incurs an
unacceptable delay overhead.

6. EXPERIMENTAL EVALUATION

In order to demonstrate the advantages of our proposed
methodology, we compared it with three routing techniques:

(i) ‘k-shortest path’ (k-short) approach [14];
(ii) ‘Electrostatic-Field-Routing’ (EFR) approach [42];

(iii) ‘Energy Conserving Grid Routing Protocol’ (ECGRID)
[43];

The first two techniques, k-short and EFR, are both similar
in spirit with our approach, in the sense that they try to
achieve lifetime extension through workload balancing among a
collection of distinct paths. Each of them, however, has certain
limitations when compared with the Bezier-based multi-path
routing:—the k-short approach does not focus on the workload
balancing around the sink and source node areas;—the EFR
approach does not bound the admissible lengths of the routes,
which can cause unacceptable delay in the transmission since,
in the extreme case, the routes can span the networks’ physical
boundaries. Moreover, EFR also suffers from path-merging
effects, thereby reducing the degree of workload balancing,
whereas Bezier routing, with its stream-pipe design and node-
forwarding policy, avoids path-merging whenever the network
status allows it.

The last approach that we considered, ECGRID [43] is, in
a sense, orthogonal to the ‘mainstream’ multi-path approaches.
Its design actually focuses on ensuring that a communication
path is maintained in an ad hoc network, by relieving the nodes
whose energy reserves have dropped below a certain threshold.
Essentially, the ECGRID partitions the space of interest into
cells (hence ‘grid’), and varies the selection of the node(s) within
a given cell that are in charge of a particular routing path. As
such, ECGRID bears a resemblance of the variations that our

approach performs within a stream-pipe corresponding to one
particular Bezier curve, however, it does not have the concept
of a collection of alternating routes.

The experiments were performed using SIDnet-SWANS
[44, 45], which is built upon the JiST-SWANS [46] simulator,
adapted for WSN settings. The core objective of these
experiments was to analyze the net effect of sustained routing
over the lifetime of the network, taking in to consideration
the nodes’ death rate due to battery depletion, as well as the
implications on the QoS in terms of packet delay. Experiments
were based on a vast configuration space, which takes into
consideration the following parameters: (i) sampling rate; (ii)
network coverage; (iii) number of simultaneous queries and
(iv) alternation policies. We configured three single-source
scenarios, based on different placements of the source; and six
multi-source scenarios (three with two-sources and three with
four-sources), which are illustrated in Fig. 15. A summary of
the parameters is given in Table 1, based on which nearly 4000

Sensor network

Sink
A

B
C

D
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F

G H I

Single-source scenarios:
C->A, I->A, F->E

Sink

Sensor network

Sink
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B
C

D
E

F

G H I

Multi-source scenarios  :
(2) (a) D->B, H -> F;(b)D->F, C->I; (c)D->F, H->B

(4) (a)D->A,B->C,E->F,H->I
(b)D->A,B->H,E->F,I->C
(c) G->C,A->I,D->F,H->B
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FIGURE 15. Deployments utilized for (a) single-source and (b)
multiple-source scenarios.
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TABLE 1. Summary of experimental configuration space.

Query Sampling No. packets
No. overlap interval Alternation sent before
queries (%) (ms) policy route change

1 0 4000 RANDOM 1
2 50 2000 SWEEP 10
4 80 1000 CT-MID-DIST 100

500

experiments have been automatically generated and performed.
We note that the queueing capacity of each node was set to 120
packets, and we observed that the sampling rate of 500 m leads
to queueing much more often than the other values.

The experimental platform consisted of a cluster of four
quad core Linux machines, on which the experiments ran
in a continuous batch. The testbed consists of 500 nodes
randomly distributed using a uniform distribution function in
an area of 6000 × 6000 f t2. Nodes are homogeneous, sharing
the same configuration: 20 000 bps transmission/reception
rate on Mac802.15.4; 10 s time-to-sleep interval; and power
consumption characteristics based on the Mica2 Motes, as
summarized in Table 2. A small battery powers each node,
with an initial capacity of 35 mAh, which, given the power
consumption characteristics from Table 2, is expected to power
a node for a few tens of hours, depending on the load. The
smaller battery size was chosen in order to reduce the simulation
time while still preserving the validity of the experimental
observations.

Figure 16 illustrates the amount of sensor nodes that stop
functioning over time due to energy depletion, under a sustained
sampling and packet transmission rate at the source nodes. As
it can be observed, on the average, the Bezier-based approach
has a gain of 5 h (approximately 20%) over k-short. This gain
can be observed in Fig. 16 by focusing on the maximum time
interval in which both algorithms yield the same number of

TABLE 2. Energy characteristics of Mica2 Mote (MPR500CA).

Energy
Based on requirement

State (mA) (mJ/ms)

Sensing active Is = 10 0.03
Sensing passive Is = 0 0
CPU active Ip = 8 0.024
CPU idling Ii = 0.015 4.5 ∗ 10−5

RADIO transmitting It = 27 0.081
RADIO receiving Ir = 10 0.03
RADIO listening Il = 3 0.009
RADIO Off-Mode Islp = 0.5 0.0015

energy-depleted nodes. Another way to observe the gains of the
Bezier-based routing is by looking for the difference in energy-
depleted nodes at any given instant of time. As shown, after
15 h, the number of dead nodes for Bezier-based routing is 30,
whereas the k-short approach has almost 60 dead nodes and
EFR has 80 dead nodes.

An important observation is in order regarding Fig. 16.
Namely, the bounds on the benefits of Bezier-based routing in
terms of the number/rate of dead nodes needs to be considered
in a slightly wider context. As a specific example, note that
when comparing with k-short based routing, it may appear that
the benefits of the proposed approach are temporary and that
k-short may achieve better performance towards the end of the
simulation period. However, there is a complementary aspect
that needs to be considered—Fig. 17 illustrates the degradation
of the QoS-level at run-time, expressed as the percentage of
data packets that have been received at the sinks. As one can
observe, Bezier-based routing is dropping much fewer packets
compared with the other approaches. The main implications of
this is as follows. Every packet that is being dropped represents a
potential energy saving for the nodes further along a given route,
since those nodes will not spend any energy for subsequent
routing of that packet. Hence, in Fig. 16, some of the energy
savings achieved by the other approaches are actually due to
not performing the same effective transmission as the Bezier-
based one.

To get an intuitive idea what would have been the benefits of
the Bezier-based routing assuming that the packet-drop rate is
the same, one can apply a linear scaling, factoring in the (relative
weight of the) dropped packets in each approach. The resulting
graph is illustrated in Fig. 18.

Both Figs. 16 and 18 show that ECGRID is the worst
performing approach, and the main reason for it is that it
does not exactly perform alternation among multiple routes for
the purpose of load balancing over time. Although throughout
the lifetime of the network different routes may be generated,
each subsequent route becomes active only after the nodes
servicing the previous route have reached a certain pre-defined
low threshold in their battery reserves. As the number of
available nodes decreases, ECGRID starts changing routes
more often, which incurs a large overhead since many control
messages need to be exchanged upon switching from one route
to another. This is why ECGRID spends significantly more
energy toward the end of the simulation time. Specifically,
Fig. 18 shows that under ECGRID routing, the nodes start dying
at a nearly exponential rate toward the end of the simulation
time—for instance, after 20 h of simulation time, the ECGRID
has depleted approximately 2.8 times as many nodes as Bezier-
based routing.

Another important aspect that we investigated through our
experiments is the benefits brought by Bezier-based routing
in terms of lifetime extension. As we have mentioned (cf.
[4, 5]), the definition of the lifetime depends on the particular
application. Figure 19 illustrates the lifetime gain according to
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FIGURE 16. Number of dead nodes (averaged rate).
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FIGURE 17. Successful packet transmission rate.

three definitions, based on the time until: (i) the first node dies,
(ii) the first 1% of the nodes die and (iii) the first 10% of the
nodes die. One can observe that the Bezier approach yields an
improvement of between 20% and 34% over k-short, its best
competitor.

We also analyzed the effects of the different approaches
when the network-wide perceived degradation of performance
in terms of packet drop rates was used as a QoS criterion. We
considered three thresholds in packet drop rates: 1% (for sensi-
tive application), 10% and 50%, and for each of them we present
the duration of the acceptable operational regimes in Fig. 20.

As shown, the Bezier-based approach gains between 20% and
42% of lifetime over k-short, which is, once again, the second-
best method.

An important observation is that defining the lifetime of a
WSN solely based on the amount of dead nodes may not be the
most plausible approach. Namely, it is not only how many nodes
are effectively dead, but also what their distribution is like with
respect to the network. Hence, we looked at the improvement
of load balancing by evaluating the standard deviation of the
residual energy of the relay nodes within the network. Figure 21
shows that, at a peak-to-peak comparison, Bezier-based routing
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FIGURE 19. Lifetime performance according to dead nodes’ count criteria.

achieves significant improvements over ECGRID (104%), EFR
(43%) and k-short (20%) in all scenarios. Toward the end of
simulation time, the difference among the standard deviations
is reduced because, at that time, the relay nodes reach a pre-
defined low-battery threshold (5% of initial battery capacity),
and disengage from further relaying duties. As an additional
observation, the time at which the standard deviation reaches
its (worst) peak is delayed in Bezier routing by 7 h, compared
with ECGRID, and 2 h, when compared with k-short.

Another QoS aspect that may be of interest for the users
is the latency the delivery of the packets. As we mentioned,
the benefits in terms of extended lifetime come at the cost of
having a family of routes that are longer than the shortest path
between a given (sink, source) pair, and Fig. 22 illustrates the
averaged values of the maximal packet delivery latencies for the
approaches considered. As can be seen, both Bezier-based and
k-short routings exhibit lower delivery latencies, nearly 40%
smaller than the ones exhibited by EFR, and twice as much
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FIGURE 21. Standard deviation of energy levels as a measure of energy imbalance manifested in the entire network.

of ECGRID, throughout the time in which most of the nodes
in the network are still operational. EFR routes, based solely
on the gradient of the electrostatic field are not sensitive to the
distance between the source and the sink. The Bezier-based
and k-short routing exhibit comparable latency performance,
since the control points of the outermost Bezier curve have been
calibrated to roughly match the ‘longest-admissible’ path used
by the k-short. EFR, however, exhibits the longest latencies

since the protocol does not provide a mechanism to explicitly
bound the spread of the alternating routes, and a significant
number of routes will tend to spread throughout the entire
network deployment area. An interesting observation is that
toward the end of the simulation time, at which point the
network has drastically changed in terms of the available nodes
that can be used for routing, the latencies for both Bezier-
based and k-short approaches tend to increase, whereas they
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FIGURE 22. Packet delivery latencies.

decrease for the EFR. This is due to the tendency of EFR
to initially use the boundary nodes and progressively build
shorter routes as the outer nodes die, gradually shifting the
route locations toward the center, thereby reducing the latency.
Another interesting observation is the behavior of the ECGRID
approach: its latency fluctuates very frequently, yielding many
peaks and valleys in the graph in Fig. 22. The mean reason
for this phenomenon is that, when switching routes, ECGRID
relies on unacknowledged broadcast messages for the purpose
of re-electing grid heads, which are not guaranteed to succeed
immediately. Hence, the data-packets of the given query may
need to be temporarily queued. Once a new route has been
successfully established, the latency drops since there is no
alternation among routes until the battery reserves of the nodes
on the current one are exhausted. We note that some of the peaks
of high latency were in the order of minutes.

We conclude this section with an observation regarding the
benefits of the Bezier-based routing in the vicinity of the source
(resp. sink) nodes. Namely, for all practical purposes, when
the nodes that are within one hop from the source (resp. sink)
die, the particular query pertaining to that given (sink, source)
pair can no longer be executed. As we indicated throughout the
paper, one of the advantages if the Bezier curves is that they
enable exploiting a larger portion of the neighbors in the area
around the vicinity of the source (resp. sink). In this specific
experiment, to illustrate the benefits of such flexibility, we have
fixed the boundary of the outermost routes for the k-short to
be segments with a total length twice the size of the shortest
path between the source and the sink, generating the angle of
2 ∗ 60◦ = 120◦ as a boundary of the nodes around the sink and
the source. We compared this against the Bezier curves with
the same delay of the outermost curve; however, we allowed
the angle bounding the one-hop neighbors of the source and
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FIGURE 23. Percentage of dead one-hop neighbors.

the sink to be 240◦, using the locations of the source and the
sink as the final location of the respective control points (cf.
Equation (10) in Section 4). As illustrated in Fig. 23, the death
rate, in terms of percentage of the depleted nodes, among the
one-hop neighbors of the source (resp. sink), after a certain
initial period (5 h), is much higher for the k-short approach. In
addition, the available nodes expire sooner, rendering the entire
multi-path collection unusable for routing.

7. RELATED WORK

Many different aspects of routing protocols in WSN settings
have been subject of extensive recent research work, and a
survey encompassing different topics is presented in [3]. A
complementary body of work was dedicated to the various
issues related to the lifetime of WSNs, which have recently
been surveyed in [4]

The Computer Journal, 2010

 at N
orthw

estern U
niversity Library, S

erials D
epartm

ent on January 12, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


22 O. Ghica et al.

The concept of using multiple paths for routing purposes
in sensor networks is not new. Results based on the Directed
Diffusion approach [47], which considered multiple paths
are presented in [14]. In addition to constructing disjoint
paths that do not intersect, the work also considers braided
paths which may intersect. Although some of the goals are
similar to ours (prolonging lifetime), the work is more focused
on resilience to failures and it proposes routings for which
the decisions are made locally. Our work is, in a sense,
complementary because although we consider multiple routes,
we also incorporate the alternating among a family of routes
and the load balancing in the vicinity of the source/sink node.

A different approach for extending the lifetime of a sensor
network, which we used for our experiments in Section 6, is
presented the [43]. Again, the key idea is to achieve a more
energy-efficient routing by partitioning the region of interest
into a grid, and keep one node per region awake for monitoring
the existing activities and incoming queries, whereas switching
off the radios of all the other nodes and putting them in a
sleep state. Our approach also allows the nodes to power off
their radios, but selectively keeps active only the nodes that are
involved in an ongoing query. This work has been compared
with [43], however, other approaches that implement multi-path
routing exist, such as the one presented in [48]. The latter is
not concerned with lifetime issues and does not consider the
bounded delivery delay as a QoS indicator, and its main focus
is on the overhead of route construction and maintenance, as
well as the probability of error-packets due to link failures.

Our proposed approach is in a same category with the ones
that use the concept of a TBF [23] and TBF+ [33]. These
works focus on designing routing protocols where the nodes
locally decide about forwarding of the packets, based on a
pre-specified trajectory. In a sense, Niculescu and Nath [23]
discusses a richer set of scenarios than are considered here
(e.g. discovery of topology; broadcast; multi-cast), whereas
we focus on a simpler setting of a long-running continuous
query for given (sink,source) pairs. Further generalization is
provided in [33], which introduces the TBF+ concept. TBF+
uses polynomial curves for the trajectories (e.g. an ellipse).
Using curve fitting and the information about the energy of
a particular node, TBF+ forces the trajectories to pass through
points with higher energy reserves. Our Bezier-based approach
uses algebraic parameterized curves and develops a formalism
that enables constructing a family of such curves for the
purpose of generating alternate routes. Furthermore, it offers the
possibility of linking the alternative routes with the QoS criteria
of acceptable temporal delay while prolonging the lifetime [5]
of the network. It would be interesting to combine our solution
with the ideas in [23] for the purpose of taking the current energy
of the nodes into consideration when constructing a particular
alternate route, which is the goal of our ongoing work.

The concept of virtual channels within a stream-pipe that
we used, is somewhat similar to the concept of meta-paths
introduced in [36]. In that work, a strip of size 0.86 times

the communication radius is used, in order to balance the load
among the nodes along a given route, with guaranteed bounds on
the length of the longest route and the maximum load, whereas
in our work, we considered the width of the stream-pipes as yet
another parameter in the proposed methodology. The aspects
of energy and power awareness for routing purposes have
been considered in the literature from a couple of perspectives
[15, 18, 49–51]. Balancing the energy awareness with the
time constraints in a purely local manner was considered in
[50], which introduces the priority-based stateless routing as an
implementation of the volunteer-forwarding paradigm. A more
general overview of the performance optimization via multi-
path routing is presented in [15]. When it comes to database-
like TinyDB queries, it has been demonstrated that the problem
of finding the most energy-efficient routing structure is NP-
complete [49].Although we did not consider the problem of load
balancing for multiple queries/requests, our work perceived the
load balancing from two perspectives: across multiple routes,
and within a single stream-pipe for a given (sink, source) pair.
However, the parameterization of the Bezier curves makes our
approach attractive from the perspective of local and distributed
computations, as well as extending the number of nodes within
the neighborhood of the sink and the source. We observe that
some recent results presented in [51], interestingly, demonstrate
that the impact of the particular routing algorithm on the energy
consumption is larger in MANETs than inWSN settings.A work
that dynamically combines tree-based structures with multi-
path routing is presented in [16], however, the role of the multi-
path portion is to increase the robustness (in terms of packets
delivery), which is complementary to the goals of this work.

The problem of optimizing the sleeping schedule of the
sensor nodes has been addressed in [38]. In particular, the work
considers a detection of so-called rare event where the delay of
event detection (due to sleep scheduling) is balanced with the
lifetime extension of the network. Additionally, the problem
of dynamic wake-up protocols which ensure satisfaction of
spatio-temporal constraints when data is to be delivered in
mobile environments has been considered in [52]. Our work
is complementary to this line of works, in the sense that we
have considered settings in which a family of routing curves
is used (spatial extension) for the purpose of extending the
lifetime of a WSN, while providing guarantees on the end-
to-end communication delay of individual packets (temporal
bound).

Many recent works have introduced various geometric
concepts targeted toward solving problems of interest for
routing and data management in sensor networks. For
example, Bruck et al. [53] proposed distributed algorithms
for constructing the medial axis of the sensor field which can
subsequently be used as a ‘reference map’ for orientation and
for localized algorithms for route construction. Subsequently,
Wang et al. [54] extended the usage of the medial axis for the
purpose of detecting the boundary nodes of a given sensor field.
In complementary works [55, 56], the concepts like Yao and
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Gabriel graphs were used for the purpose of developing power-
efficient distributed algorithms for maintaining the connectivity
of a given sensor network. In some sense, our work can be
viewed as similar in spirit because we are using a geometric
concept, namely, the Bezier curve. However, our goal is
orthogonal since we focused on the problem of lifetime
extension via alternate-path routing.

8. CONCLUDING REMARKS

We presented an approach for multi-path routing between a
given (sink,source) pair, based on Bezier curves and geared
toward load balancing among the relay nodes, for the purpose of
prolonging the sensor networks lifetime. Due to the flexibility of
constructing their shapes, one important benefit of using these
curves for route’ construction is that they allow for a better
exploitation of the nodes in the vicinities of the source and sink.
A feature of the Bezier curves that is especially appealing is that
by carefully selecting the control points, one can impact the
bounds on the delay, relative to the shortest path between
the source and the sink. Most importantly, the construction of
the routes based on Bezier curves can be done locally, that
is, with a small overhead in terms of parameters transmitted,
each relay node can decide who should be the next hop along
the particular route toward the sink. To increase the balance of
the distribution of the load among the nodes along a particular
route, we introduced the concept of the stream-pipes and virtual
channels.

We have experimentally compared the benefits of the Bezier-
based routing methodology with three different approaches:
k-short [14], EFR [42] and ECGRID [43], using our publicly
available [44] SIDnet-SWANS simulator. The experiments,
using several different parameters, have demonstrated that the
proposed routing methodology indeed prolongs the lifetime
of the network, while maintaining balanced energy levels
of the nodes employed. Contrary to the observations for
ad hoc networks [13], we have shown that non-negligible
energy savings and extensions of lifetime can be achieved
by judiciously controlled multi-path routing. As an implicit
observation, the experiments for the ECGRID protocol provided
a quantitative illustration of the known fact that the pure
energy-oriented savings are not equivalent with the network’s
lifetime. Namely, the nodes’death rate of the ECGRID becomes
extremely high after a certain time interval. In addition to
providing an environment for evaluations of the analytical
results in different experimental settings, one of the benefits
of this work was the development of the different features of
our simulator [45].

9. FUTURE WORK

There are several immediate extensions of this work. Currently,
we are investigating the problem of the adaptability of the

family of curves representing the alternate routes when multiple
queries are simultaneously present within the geographic region
of interest [57], for the purpose of reducing the energy expenses
while maintaining the routing structures. As a first step, we are
addressing the problem of reducing the number of intersecting
paths due to multiple queries and its impact on the packet drop
rate. In this context, we are also considering the case in which the
sink requests measurements from a given geographical region.
In such settings, it is very likely that some combination of trees
and multi-paths will be needed, and we are extending the results
in [58] for the purpose of prolonging the network lifetime via
selection of such combinations. Another aspect of our ongoing
work is investigating the problem of more dynamic adjustment
of the selection of the nodes within a particular stream-pipe and
analyzing its impact on the energy savings2 in a detailed manner.
In addition, we are planning to address issues related to location
uncertainty—specifically, how it affects the determination of the
corresponding stream-pipes.

From the end-user perspective, an interesting question is how
the approach proposed in this paper could be incorporated into
some formal algebra for specifying the desired properties of
the routing (cf. [37, 49])? An important extension, both as a
feature to our simulator as well as a more general tool for
constructing paths that will avoid known holes, is to incorporate
the existing results on ‘reverse-engineering’ of the Bezier (and
other categories of splines) curves—given a particular shape,
construct a curve which approximates it well with a minimum
number of control points [20], where an interesting variant is
the problem of bypassing holes with a minimum length of the
route(s). We are also working on developing extensions of our
SIDnet-SWANS simulator that will perform the following:

(i) Simulate the behavior of the underlying real network
without actually interfering with its operations. This can
be used for various hypothetical queries and scenarios
that would involve ‘what-if’ type of reasoning about
the impact of particular activities (e.g. new requests,
physical removal of nodes) before placing the actual
burden on the underlying network.

(ii) Efficiently (balancing the time and energy spent) obtain
the information about the state of an underlying sensor
network by querying a minimal subset of the nodes,
whenever there is an indication that the simulation model
has a large discrepancy with respect to the actual state
of the nodes/network [60].
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