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ABSTRACT
This work addresses the problem of processing continuous
Nearest Neighbor (NN) queries for moving objects trajecto-
ries when the exact position of a given object at a particular
time instant is not known, but is bounded by an uncertainty
region. As has already been observed in the literature, the
answers to continuous NN-queries in spatio-temporal set-
tings are time parameterized in the sense that the objects
constituting the answer vary over time. Incorporating un-
certainty in the model yields additional attributes that af-
fect the semantics of the answer to this type of queries. In
this work, we formalize the impact of uncertainty on the an-
swers to the continuous probabilistic NN-queries, provide a
compact structure for their representation and efficient al-
gorithms for constructing that structure. We also identify
syntactic constructs for several qualitative variants of con-
tinuous probabilistic NN-queries for uncertain trajectories
and present efficient algorithms for their processing.

1. INTRODUCTION
Moving Objects Databases (MODs) [8] constitute a fun-

damental technology for a wide variety of applications that
may require some type of Location Based Services (LBS) [26]
for mobile entities. The main tasks associated with MODs
are: (1) the efficient management of the location-in-time in-
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formation associated with mobile entities; (2) the efficient
processing of various queries of interest, such as range or
nearest neighbor (NN) queries. However, as has already
been observed in the literature [4, 22], due to the imprecision
of positioning technologies (e.g., roadside sensors, GPS), it
is not always possible to ascertain the exact location of a
particular moving object. Hence, uncertainty must be taken
into account in the data models, in the linguistic constructs
of the queries, and in the processing algorithms. The impact
of various sources of imprecision in the context of probabilis-
tic and uncertain data management has received consider-
able attention recently (e.g., [31, 21]), including spatial and
spatio-temporal settings (e.g., [4, 22, 35, 36]).

Contrary to what happens in pure spatial settings [10, 24],
the answer to a continuous NN-query in a spatio-temporal
setting is time parameterized [34, 33] in the sense that the
actual nearest neighbor of a given object need not be the
same throughout the time interval of interest. As an ex-
ample, assume that we have a MOD which consists of a
set of trajectories: S = {Tr1, T r2, . . . , T rN}, and a query
Q nn(q): “Retrieve the nearest neighbor of the moving ob-
ject whose trajectory is Trq between tb and te”. The an-
swer to the query is represented as a sequence A nn(q):
[(Tri1, [tb, t1]), (Tri2, [t1, t2]), . . . , (Trim, [tm−1, te])], express-
ing the fact that Tri1 ∈ S is the nearest neighbor of Trq

initially and up to time t1. However, the nearest neighbor
of Trq during the time interval [tk−1, tk] ⊆ [tb, te] (k > 1) is
the trajectory Tik ∈ S .

At the heart of the motivation for this work is the obser-
vation that incorporating uncertainty in the representation
of the trajectories must be properly reflected in the syntax
of both NN-queries and of their respective answers. For ex-
ample, consider a simple extension to Q nn(q), in a manner
that includes some uncertainty awareness, UQ nn(q): “Re-
trieve all the objects that have a non-zero probability of being
a nearest neighbor to the moving object Trq, between tb and
te”. In this case, in addition to a trajectory, e.g., Tri1 be-
ing the nearest neighbor of Trq during [tb, t1], it may well
be that some other objects may have a non-zero probability
of being a nearest neighbor of Trq in some sub-intervals of
[tb, t1].
Example 1. Consider the scenario depicted in Figure 1. It



illustrates 4 trajectories: Tr1, Tr2, Tr3, and Trq, shown as
3D line segments; and possible bounds of the uncertainties
of their locations, shown as sheared cylinders. Ignoring the
uncertainty, the nearest neighbor of Trq is Tr1 in [tb, t1],
and Tr2 in [t1, te]. However, if location uncertainty is taken
into consideration, we see that not only Tr1, but also Tr3

has a non-zero probability of being the nearest neighbor to
Trq at t = tb1. Similarly, at t = t11 all three trajectories
have non-zero probabilities.
Clearly, this needs to be considered continuously throughout
the entire duration of [tb, te]. However, it is even more im-
portant that we properly reflect it into all the sub-intervals,
at a level of granularity dictated by the particular problem
setting.
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Figure 1: Continuous nearest neighbor for uncertain
trajectories.

We postulate that the structure of the answer, UA nn(q),
needs to be organized in a way that:
• It identifies the trajectories Tri1, Tri2, . . . , which have
the highest probability of being the nearest neighbor to Trq,
and the corresponding time intervals [tb, t1], [t1, t2], . . . .
• It identifies sub-intervals within each [tk−1, tk] during which
a particular trajectory would have been ranked as the one
with highest probability nearest neighbor of Trq, had it not
been for Trik.
• The structure is recursively refined for each sub-interval of
time, until no lower granularity exists containing trajectories
with non-zero probability of being a nearest neighbor to Trq.

Each component of the answer may be augmented by an
extra descriptor of the properties of the probability val-
ues of the trajectory associated with the particular time
interval. For instance, such descriptors may contain: co-
efficients/functions of an analytical expression (if possible),
min/max values, plus a discrete sequence of values of the
probability at time instants within the given interval, etc.

To represent the structure of UA nn(q), we propose an
interval tree in which:
• The root consists of the parameters of the query (i.e., query
trajectory Trq and the time interval [tb, te]).
• The children of each internal node are the nodes that, with
the exclusion of their parents, have the highest probability of
being the nearest neighbors of Trq, within the time interval
bounded by the parent.

The structure of each internal or leaf node consists of the
following attributes:
1. time-interval [ti, ti+1] of relevance;
2. unique ID, say, Tri, of the trajectory corresponding to
the answer during the time-interval [ti, ti+1];
3. descriptor Di of the properties of the probability of Tri

being the nearest neighbor to Trq within [ti, ti+1]; and
4. pointers to the children-trajectories that have the next-
highest probability of being the nearest neighbor within the
disjoint sub-intervals of [ti, ti+1].

Clearly, this type of tree need not be balanced in terms
of the height and number of children for each internal node,
but we note that the leaf nodes correspond to the trajec-
tories that have the smallest probability of being an uncer-
tain nearest neighbor of Trq within the corresponding time-
intervals (i.e., no other trajectory has a smaller non-zero
probability). We call this tree IPAC-NN (Interval-based
Probabilistic Answer to a Continuous NN query) and we
illustrate it in Figure 2. We note that if the root of the
tree is removed, in effect we have a Direct Acyclic Graph
(DAG), which represents the answer. Given this declarative
description of the semantics of the answer to a continuous
probabilistic NN-query, the focus of the rest of this work is
on the procedural counterpart: constructing the IPAC-NN
tree for a given query. We note that we do not address the is-
sue of calculating the descriptors Di of the individual nodes.
Instead, we concentrate on ranking [30]. In addition to for-
malizing the semantics of the structure of the answers to
continuous probabilistic NN-queries for uncertain trajecto-
ries, our main contributions can be summarized as follows:
• We identify a simple transformation of a view over the
uncertain trajectories, which enables a construction of the
relative ranking of the probabilistic values for instantaneous
uncertain NN-queries.
• We demonstrate that our transformation is applicable to
a large class of probability density functions (pdf s) that de-
scribe the uncertainty associated with the location.
• We develop efficient algorithms to construct a geometric
dual of a IPAC-NN tree.
• We identify several syntactic variants for systematic incor-
poration of uncertainty in the statement of the continuous
NN-queries; for each variant we present an efficient algo-
rithm for its processing, based on the dual of the IPAC-NN
tree.
• We present experimental observations demonstrating the
benefits of our approach.

The rest of this paper is structured as follows. In Section
2, we gather the necessary background. Section 3 presents
the main contribution of our work in terms of the trans-
formation of the uncertain trajectories and its implication
towards algorithmic construction of the IPAC-NN tree, as
well as identifying the class of (instantaneous) location pdf s
for which the transformation is applicable. In Section 4, we
present the different variants of the continuous probabilis-
tic NN-queries and their processing. Section 5 presents our
experimental observations and Section 6 positions our work
with respect to the related literature. Finally, in Section 7,
we give some concluding remarks and outline directions for
future work. For clarity of the presentation, we have moved
the lengthier proofs to an Appendix.

2. PRELIMINARIES
In this section, we introduce the background necessary for

the development of our main results. First, we define the
model of uncertain trajectories used throughout this work.
Subsequently, we recollect some results pertaining to instan-
taneous NN-queries for uncertain objects for the special case
when the querying object is crisp (i.e., its location is exact,
without any uncertainty) [4].
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Figure 2: Interval tree of the answer to a probabilistic continuous NN-query.

2.1 Uncertainty of Motion
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Figure 3: Motion models and uncertainty.

Selecting the model for the motion plan of the moving
objects affects not only the algorithms for processing the
popular categories of spatio-temporal queries (e.g., range,
NN) [8], but also the representation of uncertainty. For ex-
ample, assume that the moving objects sends periodic up-
dates of the form (x, y, t) reporting its (x, y) location (ob-
tained, for example, using an on-board GPS system) at time
t to the MOD server [18]. Given an upper-bound on its
maximum speed vmax, the location in between two updates
is bounded by an ellipse (Figure 3.a) [11, 22]. On the other
hand, if along with its current (sampled) location the ob-
ject also transmits its expected velocity then, for as long as
its sampled location of the object at a given time does not
deviate more than a certain threshold, say Dmax, from its
expected location, it needs not transmit an update to the
server. This is called a dead-reckoning policy [37], and the
possible whereabouts are illustrated in Figure 3.b.
Our work assumes that each moving object has a full trajec-
tory as its motion model. This corresponds to the settings
in which users transmit to the MOD server: (1) the be-
ginning location; (2) the ending location; (3) the beginning
time; and (4) possibly a set of points to be visited. Based
on the information available at the electronic maps, along
with the traffic patterns, the server constructs the short-
est travel time or shortest path trajectory, and transmits it
back the user, keeping a copy in the server for query pro-
cessing [9]. Aside from the large number of commercial fleet

vehicles (e.g., FedEx, UPS) the number of shortest travel
time trajectories requested by individual users, from services
such as MapQuest, Yahoo Maps and Google Maps, exceeded
85,000,000 per month in 2006 [6]. The uncertainty model
with the full trajectory is often based on the assumption
that at each time instant there is a bound on the object’s
possible whereabouts [36], as shown in Figure 3.c. This fig-
ure also illustrates that at a given time instance, the pdf of
the location of the object within its boundaries may take
different forms (e.g., uniform, bounded-Gaussian).

Formally, a trajectory is a function T ime → R2, repre-
sented as a sequence of 3D (2D spatial plus Time) points,
accompanied by a unique ID of the moving object:
Tri = {oidi, (xi1 , yi1 , ti1), (xi2 , yi2 , ti2), . . . , (xik

, yik
, tik

)}
where ti1 ≤ ti2 ≤ . . . ≤ tik

. When clear from the context,
we will interchangeably use Tri and oidi. In between two
consecutive points, the location of the object oidi at time
t ∈ (ti(k−1)

, tik) is obtained by linear interpolation, assum-
ing that the object is moving along a straight line-segment
and with a constant speed that is calculated as:

vik
=

√

(xik
−xi(k−1)

)2+(yik
−yi(k−1)

)2

tik
−ti(k−1)

(1)

An uncertain trajectory Tru
i is a trajectory augmented

with: (1) the information about the radius of the circle
bounding the uncertainty zone, i.e., the disk representing
the 2D set of possible locations of the object at a given time
instant; and (2) the pdf of the location within the uncertainty
disk. Therefore, we have: Tru

i = {oidi, r, pdf, (xi1 , yi1 , ti1),
(xi2 , yi2 , ti2), . . . , (xik

, yik
, tik

)}. The location of the object
in the center of the uncertainty disk is now called its expected
location and we use Di(t) to denote the uncertainty disk of
Tri at time t. Throughout this work, we assume the param-
eters r and pdf are the same for the trajectories in a given
set. As commonly assumed in the literature (e.g., [4, 35]) we
also assume that, viewed as random variables, the pdf s of
the locations of the uncertain objects are independent from
each other. We note that in the examples we use uniformly
distributed 2D random variables in the uncertainty zone. As-
suming that the expected location of the object with oidk

at time t is (xk(t), yk(t)), at that time pdfk(t)(X,Y ) =

=

{

0,
√

(xk(t) − X)2 + (yk(t) − Y )2 > r
1

r2π
,

√

(xk(t) − X)2 + (yk(t) − Y )2 ≤ r (2)

However, as we will formally demonstrate in Section 3,
our results are applicable to a much larger class of pdf s.



2.2 Instantaneous NN-queries for Uncertain Ob-
jects and Crisp Querying Object

Assume that the location of the querying object Trq is
crisp, and the possible locations of the other trajectories are
disks with radii r. A thorough treatment of this problem
setting is presented in [4]. Here, we only present a concise
summary, and observations that are immediately relevant to
our work.
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Rmax
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R
d

1
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14

Figure 4: Uncertain NN-query (crisp Trq).

I: The distance from Q to the most distant point of the clos-
est disk, Rmax, is the upper bound on the distance that any
possible nearest neighbor of Trq can have. Consequently,
any Tri whose closest possible distance to Q, denoted by
Rmin

i , is larger than Rmax, has a 0 probability of being a
nearest neighbor to Trq and can therefore be safely pruned
(i.e., ignored from any computation). As illustrated in Fig-
ure 4, Rmin

4 > Rmax
1 , and similarly Rmin

5 > Rmax
1 , which

means that Tr4 and Tr5 cannot have a non-zero probability
of being a nearest neighbor to Trq. We use Rmin to denote
the distance from Q to the closest point of the closest disk.
II: In general, the probability that (the location along the
trajectory at a given time of) a given object Tri is within
distance Rd from Q(= Trq) can be specified as:

PWD

i,Q (Rd) =

∫

A

∫

pdf i(x, y) dx dy (3)

where A is the area of the intersection of the disk with ra-
dius Rd centered at Q and the uncertainty disk of Tri and
pdfi(x, y) is the corresponding pdf of Tri.
Example 2: [4] When pdfi(x,y) is uniform, the probability
P WD

i,Q (Rd) can be calculated as:

PWD

i,Q (Rd)















0 if(Rd < rmini
)

1
R2

d
π
(Θ − 1

2
sin 2Θ) + 1

π
(α − 1

2
sin 2α)

if(diQ − r ≤ Rd ≤ diQ + r)
1 if(diQ + r < Rd) (4)

where Θ = arccos
d2

iQ+r2−R2
d

2diQr
and α = arccos

d2
iQ+R2

d−r2

2diQRd
,

and diQ is the distance between Q and the expected location1

of Tri. Taking the derivative of P WD
i,Q , yields pdfWD

i,Q (Rd)
which, in the case of uniform distribution, will be non-zero
only when diQ − r ≤ Rd ≤ diQ + r.

1Appropriate modifications are needed when Q is located
inside the uncertainty zone of Tri [4].

III: The probability of a given object, say Trj , being a near-
est neighbor of the crisp querying object Trq can be calcu-
lated based on the following:
(a) The probability of Trj being within distance ≤ Rd;
(b) The probability that every other object Tri(i 6= j) is
within distance > Rd from Q; and
(c) The fact that the distributions of the objects are assumed
to be independent from each other.
The generic formula can be specified as:
PNN

j,Q =
∫ ∞

0
pdfWD

j,Q (Rd) ·
∏

i6=j
(1 − PWD

i,Q (Rd)) dRd (5)
We note that the boundaries of the integration need not be 0
and ∞ because the effective boundary of the region for which
an object can be a nearest neighbor of Q is the ring centered
at Q with radii Rmin and Rmax. In addition, pdfWD

j,Q (Rd) is

0 for any Rd < Rmin
j , and 1−PWD

i,Q (Rd) is 1 for Rd < Rmin
i .

By sorting the objects that have a non-zero probability of be-
ing nearest neighbors according to the minimal distances of
their boundaries from Q, one can break the evaluation of (5)
into several intervals (one for each Rmini

), and the compu-
tation of the P NN

j,Q can be performed in an efficient manner,
based on the sorted distances and the corresponding inter-
vals [4]. Such efficiency is especially important because the
actual evaluation of the integrals like those in Equation (5),
may often rely on numerical computations. In a uniform dis-
tribution this is equivalent to sorting the objects according
to the distances of their respective expected locations from
Q.
IV: We note that the ideas above, although intuitive, have a
slight problem in the context of soundness vs. completeness.
Namely, the evaluations of PNN

i (Q) as defined by Equation
(5), do not constitute a probability space [7] or, in terms of
classical probability, Σ∀iP

NN

i,Q will yield a value < 1. The
reason is that, strictly speaking, the probability of a given
object being the nearest neighbor to Trq consists of two
parts:
PNN

i,Q = PNN E

i,Q + PNN J

i,Q (6)

The first part, PNN E

i,Q , denotes the exclusive probability that
Tri is the nearest neighbor of Trq and is calculated in the
spirit of (5). The second part, PNN J

i,Q represents the joint
probability and corresponds to the case(s) in which Tri is
the nearest neighbor of Trq along with some other Trj ’s.
Strictly speaking, it consists of the following sums:
• Σj

∫ ∞

0
pdf WD

i,Q (Rd)·pdf WD

j,Q (Rd)·
∏

k 6=i,j
(1−PWD

k,Q (Rd)) dRd–
corresponding to the cases when Tri is a paired-NN with
other Trj’s;
• Σk

∫ ∞

0
pdf WD

i,Q (Rd) · pdfWD

j,Q (Rd) · pdfWD

k,Q (Rd) · ∏l6=i,j,k(1−
PWD

l,Q (Rd)) dRd – capturing all the cases of triplets of trajec-
tories being the nearest neighbor to Trq;
• . . .
•

∫ ∞

0

∏

i
pdfWD

k,Q (Rd) dRd–calculating the probability that all
trajectories can simultaneously be nearest neighbors.

3. MOVING CONVOLUTIONS AND CON-
TINUOUS NN-QUERIES

In this section, we present a first set of results of our
work. First, we illustrate the problems that arise when the
query object has an uncertainty associated with its location.
Next, by using a simple transformation, we show that for a
large class of pdf’s, we can reduce this case to one in which
the ideas presented in Section 2.1 can be applied almost
unmodified. We subsequently present a methodology for
constructing the geometric dual of the IPAC-NN tree.



3.1 Within Distance: Uncertain Querying Ob-
ject

For the time being, let us still consider a “snapshot” query
in which the location of the querying object Trq is also un-
certain, and can be anywhere within the disk of radius r
centered at the expected location Q.

R
min

R
max

TrQ

Tr
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Tr
2

Tr
3

Tr4

Tr
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Z
1

Z
2

dist(Z
1
,Z

2
) < R

max

Figure 5: Uncertain NN-query (uncertain Trq).

The first observation is that we can no longer prune the
objects whose uncertainty disk is further than Rmax from Q.
An illustration is provided in Figure 5. Namely, when Trq

is located somewhere in the zone denoted by Z1 inside of its
own uncertainty disk and Tr4 is located somewhere in the
zone denoted by Z2, their distance is < Rmax and, conse-
quently, Tr4 has a non-zero probability of being a (possible)
nearest neighbor of Trq. This fact complicates the main ben-
efits in terms of compactness of the representation and the
efficiency of processing probabilistic NN-queries with respect
to using the formulas from Section 2.2 (cf. [4]). Strictly
speaking, at the heart of the problem is the calculation of
the probability that a given object Tri within distance Rd

of Trq.
Since the distributions of the objects within their spatial

boundaries are independent, one can obtain the probability
of two objects being within distance ≤ Rd from each other
as follows:
1. Find the set of all the possible locations in the uncertainty
disk Di that are at distance Rd from some point in the disk
Dq . This set is actually the intersection: Di∩ (Dq ⊕ Rd),
where (Dq ⊕ Rd) denotes the Minkowski sum (see, e.g., [5])
of the uncertainty disk of Trq with a disk of diameter Rd.
2. For each point P (= (xp, yp)) ∈ Di∩ (Dq ⊕ Rd) and a
point Q ∈ Dq, evaluate P WD

q,P (Rd) using, e.g., Equation (3),
and “add” the uncountably-many such results – which is,
integrate over the area Di∩ (Dq ⊕Rd), with dxp and dyp as
the extra-variables of differentiation.

This yields a quadruple integration in the corresponding
version of Equation (3) used for evaluating P WD

i,q (Rd) and

yields additional overhead in determining the pdfWD
i,q (Rd)

(via differentiation), in order to be able to use Equation
(5) for evaluating P NN

i,q . Most often, the procedure outlined
above will rely on a numerical evaluation, which approxi-
mates the outer-integrals by a sum of the products of the
probabilities that Tri is at location l1 ∈ Di, given that Trq

is at location l2, and ‖l1l2‖ ≤ Rd (over all such locations
l1 and l2, and after discretizing the corresponding location-
pdf’s [35, 4]). Since the locations of the individual objects

1

x

y

pdf

0

2r

1
r2

pdf(Tr
2
)

pdf(Trq) pdf(Tr1)

Figure 6: Evaluating within distance probability.

are assumed to be independent, the conditional probability
Pr(Tri = l1 | Trq = l2) is simply Pr(Tri = l1).
Example 3. Figure 6 shows the locations of 3 uncertain
objects with uniform pdf’s. Each of them has the uncer-
tainty radius of 1, and their respective expected locations
are Eloc(Trq) = (2, 2), Eloc(Tr1) = (7, 3) and Eloc(Tr2) =
(3, 8). The two dashed segments of circles, centered at two
locations inside the uncertainty disk of Trq illustrate part of
the calculation of the probability of Tr1 being within distance
≤ 4 from Trq (obviously, 0 for Tr2).

We are now in the position to explain the theoretical foun-
dation of our main results. Let V i denote the 2D random
variable representing the possible locations of the uncertain
trajectory Tru

i at a given time instant. Recall that the crux
for evaluating a probabilistic NN-query is determining the
expression for the probability of Tru

i being within a given
distance Rd from Tru

q , which is, the value of P WD
i (Rd).

An equivalent interpretation is that we need to evaluate
P (‖V i − V q‖ ≤ Rd). Now, the key observation is that
V i −V q is another random variable, denote it V iq which, in
probability and signal/image processing is known as a cross-
correlation of V i and V q [17, 20]. Another interpretation is
that V iq can be viewed as a sum V i + (−V q). Since V i and
V q (consequently, −V q) are independent variables [4, 35]),
it is a well-known fact from the probability theory that the
random variable V iq has a pdfiq which is a convolution of the
corresponding pdf’s of V i and −V q) [20]. In other words:
pdf(V iq) = pdf(V i) ◦ pdf(−V q) (6)
Example 4. As one can readily verify (cf. [20]), the con-
volution of two cylinders with heights 1

r2π
is a cone whose

base is a circle with radius 2r and height 3
4r2π

. As illus-
trated in Figure 7, instead of performing an uncountably-
many additions (e.g. adding an extra outer-integration) in
the context of Example 2, for the various circles of radius
4 centered somewhere in the uncertainty disk of Trq (cf.
Figure 6), we can now use a simpler calculation – evaluate
the volume of the intersection of the cone centered at (5, 1)
(= (7, 3) − (2, 2)), with the cylinder with radius 4 centered
at the origin (0,0).

Specifically, for uncertain trajectories with uniform location-
pdf ’s, given the Equation (2), we have
pdf(V iq(t)(X, Y )) = (7)
{

0,
√

((xi(t) − xq(t)) − X)2 + ((yi(t) − yq(t))Y )2 > 2r

3
4r2π

(1 −
√

((xi(t)−xq(t))−X)2+((yi(t)−−yq(t))Y )2

2r
), otherwise

We note that, in order for a convolution of two functions
to exist (i.e., two functions to be convolutable) it is sufficient



1

x

y

pdf

0
-4.0

+4.0

4r

3
4r2

pdf(Tr
2
 - Tr

q
)

pdf(Tr
1
 - Tr

q
)

Figure 7: Within distance probability: convolution.

that each of them is Lebesgue-integrable [25]. However, in
many practical settings, the pdf’s of the objects’ locations
(e.g., uniform, Gaussian) are Riemann-integrable [25], which
is a weaker condition. Before presenting the main result, we
prove some properties which demonstrate that our proposed
methodology is applicable to a wide range of pdfs for objects’
locations. For brevity, we will use f to denote pdf(V iq), g
to denote pdf(V i), and h to denote the pdf(−V q).
Property 1. Assume that g (resp. h) has a centroid C1

(resp. C2), which coincides with its expected value E(V i),
resp. E(−V q). Then their convolution f = g ◦ h has a
centroid Cc = C1 + C2, and Cc is the expected value of the
variable V iq.

As specific examples, the expected value of the convolu-
tion of two Gaussian distributions with means µ1 and µ2, is
exactly µ12 = µ1+µ2, and we note that the pdf of the convo-
lution is also Gaussian [20]. Similarly for the expected value
of two uniform distribution, however, as we saw in Example
3, the resulting pdf is no longer uniform.
Property 1 provides a basis for defining the categories of
pdfs for which our main results are applicable, and towards
that end, we need to define the concept of a rotational (a.k.a
cylindrical) symmetry [17]. A given 2D function, say h, is
said to be rotationally symmetric with respect to a point C
in its domain and the vertical (Z) axis if, for all other points

P and Q in its domain, ‖PC‖ = ‖QC‖ ⇒ h(P ) = h((Q)).
Now we have:
Property 2: Assume that g and h have a rotational sym-
metry around their respective centers, C1 and C2, with re-
spect to the vertical (Z = pdf) axis. Then, their convolution
f = g ◦h also has a rotational symmetry around the vertical
axis and with respect to its centroid Cc.

Assume that Tru
1 and Tru

2 denote two uncertain trajec-
tories with centers (expected locations) C1 and C2 at some
time-instant t. In addition, assume that they have same
(modulo translation) corresponding location pdfs at t, which
are rotationally symmetric. The last claim that is needed be-
fore we state our main result for this section, is summarized
in the following:
Lemma 1: Let Q denote a 2D point. If ‖QC1‖ < ‖QC2‖,
then P NN

1 (Q) > P NN
2 (Q).

Assume that we are given a collection of moving objects
with equal pdfs (modulo translation with respect to their
centers), which are rotationally symmetric. Let Trq denote
the (uncertain) querying trajectory. The main result of this
section can be summarized as:
Theorem 1. The permutation of the oids representing the
ranking of the probabilities of individual objects being nearest
neighbor to Tru

q at a given time-instance, is exactly the same
as the permutation representing the ranking of the distances
of their centers (expected locations) from the center (expected
location) of Tru

q .
Proof: Theorem 1 is a straightforward consequence of the
properties of the convolution for independent random vari-
ables with rotational symmetry, and Lemma 1.
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Figure 8: Convolution of intersecting pdfs.

As an illustration, recall Figure 7: – since the centroid of
Tru

1−Tru
q is closer to the coordinate-center than the centroid

of Tru
2 − Tru

q , we have that P NN
1 (Q) > P NN

2 (Q).
We conclude this section with an observation. In the ex-

amples so far, we assumed that the uncertainty disks of the
respective trajectories did not intersect. However, in prac-
tice, this need not be the case. For instance, Figure 8 shows
the impact on the (pdf of the) resulting convolution, when
a given trajectory intersects the querying trajectory. How-
ever, it can be readily demonstrated that the main results
presented in this section are still valid.

3.2 Continuous Uncertain NN-Queries
The basic observation that the difference of two trajec-

tories can be expressed as a single random variable, along
with Theorem 3.1, forms the foundation for constructing the
IPAC-NN tree introduced in Section 1, which is what we fo-
cus upon now. Without loss of generality, we assume that
throughout the duration of the time-interval of interest for a
given query UQ nn(q), [tb, te], each trajectory consists of a
single segment (i.e., each object’s expected location is along
a 2D line segment).

Let (xbi, ybi) denote the expected location of the uncer-
tain trajectory Tru

i at tb and, similarly, (xei, yei) denote the
expected location of Tru

i at te. The expected motion of
Tru

i during [tb, te] will be characterized by a velocity vector
whose corresponding X and Y components are:
vxi = (xei − xbi)/(te − tb) and vyi = (yei − ybi)/(te − tb).
Hence, the expected location at some time instant t ∈ [tb, te]
will have coordinates:
xi(t) = xbi + vxi(t − tb) and yi(t) = ybi + vyi(t − tb)
which are the coordinates of the center of the uncertainty
disk at t.

For a given trajectory Tru
i which is not the querying tra-



jectory (i.e., i 6= q), let TRiq denote the difference-trajectory
Tru

i − Tru
q . In other words, at each time instant t, the

expected location of the object moving along TRiq(t) is a
vector-difference of the expected locations of the correspond-
ing points along Tru

i (t) and Tru
1 (t). TRiq(t) captures the

spirit of Section 3.1, in the sense that the 2D distance be-
tween the expected locations of the objects moving along
Tru

i (t) and Tru
1 (t) (at time t), (cf. [2, 23]) now becomes the

distance at that same time t that an object moving along
TRiq has from the origin (0,0). Let Vxiq = vxi − vxq, Vyiq =
vyi − vyq denote the components of the velocity of the ob-
ject whose expected trajectory is TRiq and Xbiq = xbi −xbq

and Ybiq = ybi − ybq denote the coordinates of the expected
location at tb. Then, the distance of TRiq from the origin,
as a function of the time is diq(t) =

√
At2 + Bt + C, where:

A = V 2
x iq + V 2

y iq,
B = −2(V 2

xiq
tb + Vxiq

Xbiq
+ V 2

yiq
tb + Vyiq

Ybiq
) and

C = 2Xbiq
Vxiq

tb +V 2
xiq

t2b +X2
biq

+2Ybiq
Vyiq

tb +V 2
yiq

t2b +Y 2
biq

.

Since A ≥ 0, the function diq(t) is a hyperbola and, based on
the underlying parabola (under the square root), it attains
a minimum at tm = −B/2A (if tm /∈ [tb, te], the hyperbola
is strictly monotonic).

Given a collection of such distance functions (one for each
moving object, except the querying one), based on the ob-
servations in Section 3.1, we know that at any time instant
t, the ranking of the probabilities of a given object Tru

j

being a nearest neighbor to Tru
q is the same as the rank-

ing of the distance functions diq(t). Hence, the problem
of constructing the IPAC-NN tree, which is, determining
the member-nodes of each level along with their respective
time-intervals, can be reduced to the problem of finding the
collection of (ranked) lower envelopes for the set of distance
functions SDF = {d1q(t), d2q(t), . . . , dNq(t)} between tb and
te. We now focus on describing how to construct the lower
envelope of SDF .

Firstly, we observe that two different distance functions,
e.g., diq(t) and djq(t), in general, can intersect in at most
two points2 – consequently, they can have 0, 1 or 2 intersec-
tions throughout [tb, te]. Their intersections (if any) can be
straightforwardly obtained by setting diq(t) = djq(t) which,
after squaring both sides, amounts to solving a quadratic
equation and checking whether each of the solutions (if any)
is ∈ [tb, te]. Parts a.) and b.) in Figure 9 illustrate two cases
in which pairs of distance functions (corresponding to pairs
of TR-like trajectories) intersect in 2 and 1 points, respec-
tively. We call such intersection points critical time-points.
To determine how each of the input-hyperbolae contributes
to the lower envelope, it suffices to compare the correspond-
ing distance functions in a single time value tin anywhere
in-between two consecutive critical time-points. In the se-
quel, without loss of generality, we assume an existence of
a function called Env2(TRiq, TRjq, t1, t2) which takes two
difference-trajectories as input and returns their lower enve-
lope as output, along with the critical times, between times
t1 and t2. Clearly, Env2(TRiq , TRjq, t1, t2) runs in O(1).
Example 5. In the example of Figure 9.a), the outcome of
Env2(TR1, TR2, tb, te) generates the lower envelope LE1,2 =
[(TR2, [tb, t11]), (TR1, [t11, t12]), (TR2, [t12, te])]. On the other
hand, in the settings of Figure 9.b), Env2(TR3, TR4, tb, te)
yields LE3,4 = [(TR4, [tb, t31]), (TR3, [t31, te])].

2In their intervals of strict monotonicity, they can have at
most 1 intersection.

Now, the main question is how to efficiently construct the
lower envelope of the whole collection of distance-trajectories
(i.e., the set SDF of their distance functions to Trq). The
problem of efficiently constructing a lower envelope has al-
ready been addressed in the literature [5, 29]. For our set-
tings we implemented a divide-and-conquer based approach,
in a spirit of MergeSort, that we used in our experiments.
The algorithm which constructs the lower envelope for a set
of distance-trajectories STR = {TR1, TR2, . . . , TRN} (i.e.,
their distance functions SDF = {d1q(t), d2q(t), . . . , dNq(t)})
can be specified as follows:
Algorithm 1 LE Alg(STR,1,N)

Let C = dN/2e
Merge LE((LE Alg(STR,1,C), LE Alg(STR,C,N))

with an additional base case specifying that the output of
LE Alg(STR,i,i) is [(TRi, [tb, te])].

The main difference with the traditional MergeSort algo-
rithm is that, when merging two input-envelopes, instead of
incrementing counters and comparing elements of arrays, we
incrementally sweep over the critical time-points of each of
them, and maintain the values of the current lower bound
and current upper bound from among the critical times of the
inputs. In addition, when merging two envelopes, denote the
operation as �, we cannot simply concatenate them, but we
need one more task: namely, if the first (in time) portion of
the currently obtained lower envelope is defined by the same
TRj that defines the last portion of the existing envelope,
the concatenation will also merge the two consecutive time
intervals into one. In other words, the �-concatenation of
[(TRj , [tj1, tj2])] and [(TRj , [tj2, tj3])] yields [(TRj , [tj1, tj3])].
For completeness, our implementation of the algorithm for
merging two (lower) envelopes is given below:
Algorithm2 Merge LE(LE1, LE2)
Input: Two lower-envelopes with their critical time-points
LE1 =
[(TR1i1 , [tb, t11]), (TR1i2 , [t11, t12]), . . . , (TR1im , [t1(m−1), t1m])]
LE2 =
[(TR2i1 , [tb, t21]), (TR2i2 , [t21, t22]), . . . , (TR2in , [t1(n−1), t1n])]
Output: The combined lower-envelope LE1,2 = LE1 ]LE2

Let LE1,2 = ∅;
k = p = 0;
while((k < m) ∨ (p < n))
{ tcl

1 = t1k; tcl
2 = t2p;

tcu
1 = t1(k+1); tcu

2 = t2(p+1); // assume t10 = t20 = tb

tcl = max(tcl
1 , tcl

2 ); // current lower bound
tcu = min(tcu

1 , tcu
2 ); // current upper bound
// of the sweeping time-interval

LE1,2 = LE1,2 � Env2(TR1ik, TR2jr , tcl, tcu)
// concatenate (�) the currently obtained
// envelope due to the existing one.

If (tcu
1 < tcu

2 ) k++;
Else If (tcu

2 < tcu
1 ) p++;

Else // (tcu
2 = tcu

1 )
{ p++; k++; } // advance }

Due to the properties of the Davenport-Schinzel sequences
(cf. [29]), the combinatorial complexity of the lower enve-
lope is λ2(N) = 2N − 1 = O(N), since two hyperbolae can
intersect in at most two points. The time complexity of
the Algorithm 2 is linear in the size of the sum of its inputs
which, in turn, implies that the time complexity of the Algo-
rithm 1 is specified by the recurrence: T (2N) = 2T (N)+2N .
Hence, the complexity of constructing the lower envelope is
O(N log N).
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Figure 9: Constructing the lower envelope.

We illustrate the concepts with:
Example 5. Observe Figure 9, and assume that the en-
velopes in Part a.) and b.) represent the inputs to the
Merge LE. Initially, the current lower bound tcl is tb (since
tcl
1 = tcl

2 = tb), whereas the current upper bound is tcu =
min(t11, t31) = t11. Hence, Env2(TR2, TR4, tb, t11) is ap-
plied in the first iteration, obtaining a new critical time-
point (t1,new) and generating an envelope with two portions
(TR4, [tb, t1,new ]) and (TR2, [t1,new , t11]). Since t11 < t31,
we increment k at the end of the loop which, in turn, means
that tcl

1 = t11 and tcu
1 = t12. Consequently, throughout the

second iteration of the while-loop we have tcl = max(tcl
1 (=

t11), t
cl
2 (= tb)) = t11 and tcu = min(tcu

1 (= t12), t
cu
2 (= t31)) =

t31. Env2(TR1, TR4, t11, t31), yields the next part of the
overall envelope [(TR1, [t11, t31])]. Since t31 < t12, this time
we increment p before we enter the next iteration. Subse-
quent iterations will consecutively invoke:
– Env2(TR1, TR3, t31, t12), generating a new critical time-
point (t2,new in Figure 9.c) and removing t31 from the list
of critical time-points because TR1 continues to be the lower
envelope at it (cf. �-concatenation). After this iteration,
LE1,2,3,4 consists of [(TR4, [tb, t1,new ]), (TR2, [t1,new , t11]),
(TR1, [t11, t2,new]), (TR3, [t2,new , t12])];
– Lastly, invoking Env2(TR2, TR3, t12, te) will generate
[(TR3, [t12, te])] which, when appended to the existing LE1,2,3,4

”absorbs” t12 as a critical time point.
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One of the benefits of constructing the lower envelope is
that it provides a continuous-pruning criteria. Namely, the
trajectories whose distance functions do not intersect the
region bounded by the lower envelope and its vertically-

translated copy for a vector of length 4r in the (distance,time)
space, can never have a non-zero probability of being a near-
est neighbor to Tru

q . The reason for this is that at any time
instant, in order for any (after convolution) object to have
a non-zero probability of being a nearest neighbor to (0,0),
its nearest location (which is 2r closer then the centroid of
its convolution) must be no further than 2r from the ring
centered at the nearest neighbor to (0,0) at that time, and
with width 2r. As an example, in Figure 10, TR7 can be
safely pruned from any consideration, because its distance
from the lower envelope at any time instant is > 4r.

Now, the procedure for constructing the IPAC-NN tree
that can be used for answering ranking-based continuous
probabilistic NN queries for uncertain trajectories, can be
outlined as follows:
Algorithm3 Tree IPAC-NN(T , Trq, [tb, te])
Input: A collection of trajectories T ; a querying trajectory
Trq ∈ T , and a time-interval [tb, te]
Output: The IPAC-NN tree for the continuous probabilistic
NN-query.
1. Construct the lower envelope using Algorithm 2. The
lower envelope corresponds to the nodes in Level 1 of the
IPAC-NN tree;
2. Prune all the objects that can never have a non-zero prob-
ability of being a nearest neighbor;
3. for each level L
4. for each time-interval bounded by a pair of consecutive

critical time-points ti and ti+1 on the level L−1 envelope
5. Remove from consideration TRL−1

i defining the
envelope at level L − 1 in (ti, ti+1)

6. Construct the portion of the lower-envelope at
level L applying Algorithm 1.

7. end for
8. end for

Since the combinatorial complexity of the lower envelope
is O(N), after its construction (O(N log N)), the pruning
phase has a time complexity of O(N2). Assuming that, after
the pruning, there are dN/Ke objects left for consideration,
the running time for constructing the 2nd-lower-envelope
(equivalently, the Level 2 nodes of the IPAC-NN tree) is
bounded by O(NdN/Ke log(dN/Ke)). Since two distance
function (hyperbolae) can intersect at most twice, we ob-
serve that the total number of intersection points within the
zone bounded by the lower envelope and it translation for



4r in the (distance,time) space is O(dN/Ke2), which is the
upper bound on the complexity of (i.e., the number of nodes
in) the IPAC-NN tree. Figure 10 illustrates the first two lev-
els of lower envelopes for a given set of (distance functions
of) uncertain trajectories.
We summarize the results of this section with the following
theorem:
Theorem 2: The graph of all the envelopes in the (dis-
tance, time) space that intersect the zone bounded by the
lower envelope and its copy vertically translated by 4r be-
tween times tb and te is the dual of the DAG obtained by
removing the root of the IPAC-NN tree corresponding to a
given continuous probabilistic NN-query between tb and te.
The combinatorial complexity of this graph is O(dN/Ke2),
which is the combinatorial complexity of the IPAC-NN tree.

We conclude this section with one last observation regard-
ing the complexity results: the derivations the we presented
assumed that all the trajectories have one single segment.
However, in case each trajectory has m segments through-
out the time-interval of interest for the query, the bounds
need to be multiplied by a factor of Nm.

4. VARIATIONS OF THE NN-QUERY
One of the benefits of our work is that the IPAC-NN tree

structure provides a foundation for extending the capabili-
ties of MOD in terms of processing continuous probabilistic
NN queries. For example, one can define predicates that will
enables the users to pose a query like:
SELECT T FROM MOD

WHERE EXISTS T ime IN [t1, t2]
AND ProbabilityNN(T, T rQ, T ime) > 0

In the rest of this section, we identify four categories of syn-
tactic variants of probabilistic continuous NN-queries that
can be answered using an IPAC-NN tree and we outline the
algorithms for their processing. Due to space limitations, we
do not provide a formal description of the set of predicates
expressing the queries, nor corresponding SQL-statements.
However, we note that similar formalizations have been pre-
sented in [36], albeit for a slightly different purpose (range
queries for uncertain trajectories). The claims in this sec-
tion expressing the complexity results for the queries follow
directly from the results in Section 3.
Category 1: Queries that pertain to verifying the proper-
ties of a single trajectory.
• UQ11(∃t): “Does Tru

i have a non-zero probability of being
a NN to Tru

q at some time during [tb, te]?”
In order to answer UQ11 it suffices to check whether the
(distance function of) TRi is inside or intersects the bound-
aries of the zone in-between the lower envelope (Level 1 of
the IPAC-NN tree) and its 4r-translated copy.
• UQ12(∀t): “Does Tru

i have a non-zero probability of being
a NN to Tru

q all throughout [tb, te]?”
The answer of UQ12 can be processed by checking the fol-
lowing conditions: (1) TRi is inside the pruning-zone at tb;
and (2) it stays inside it until te, i.e., it does not intersect the
envelope and its 4r-translated copy, determining the bound-
aries of the pruning zone.
• UQ13(X% of [tb, te]): “Does Tru

i have a non-zero prob-
ability of being a NN to Tru

q , at least X% of the time in
[tb, te]?”
The main observation for the processing of UQ13 is that,
in addition to checking for all the intersections, an addi-
tional “accumulator” variable is needed to sum up the time-

intervals during which TRi is inside the pruning zone.
Claim 1: The time complexity of processing a Category 1
query is O(N) (i.e., the combinatorial complexity of the lower
envelope) after O(N log N) pre-processing time.

Category 2: These queries extend Category 1 with an-
other parameter, k, for the purpose of ranking a particular
trajectory.
• UQ21([(∃t), k]): “Does Tru

i have a non-zero probability of
being a kth highest-probability NN of Tru

q at any time in
[tb, te]?”
To answer this query, we check whether there exists a node
in the IPAC-NN tree, at Level i i ≤ k, which has Tru

i as its
label-attribute. Equivalently, we check whether TRi inter-
sects the Level i (i ≤ k) lower envelope.
• UQ22([(∀t), k]): “Does Tru

i have a non-zero probability
of being a kth highest-probability NN to Tru

q all throughout
[tb, te]?”
The answer of UQ22 can be processed by: (1) checking
whether TRi is at the Level i (i ≤ k) lower envelope at
tb; and (2) checking that it maintains that property until te.
• UQ23(X% of [tb, te],k): “Does Tru

i have a non-zero prob-
ability of being a kth highest-probability NN to Tru

q , at least
X% of the time in [tb, te]?”
Similarly to UQ13, the main observation for the processing
of UQ23 is that, in addition to checking whether TRi is ini-
tially at the Level i (i ≤ k) lower envelope, an“accumulator”
variable is used to sum up the time-intervals during which
TRi maintains that property.

Observing that at every Level j the total combinatorial
complexity of the lower envelope is bounded by O(N), we
have:
Claim 2: The time complexity of processing a Category 2
query is O(kN) (equal to the combinatorial complexity of
the levels of lower envelopes that need to be checked) after
O(dN/Ke2) pre-processing time.

The next two categories of continuous probabilistic NN
queries are extensions of Category 1 and Category 2 when
we quantify over the space of the uncertain trajectories.
Category 3: Queries pertaining to the entire MOD.
• UQ31(∃t): “Retrieve all the trajectories that have a non-
zero probability of being NN to Tru

q some time during [tb, te].”
The answer to this query essentially amounts to constructing
the IPAC-NN tree.
• UQ32(∀t): “Retrieve all the trajectories that have a non-
zero probability of being NN to Tru

q throughout the entire
[tb, te].”
In addition to constructing the IPAC-NN tree (equivalently,
the collection of lower envelopes) the processing of UQ33

requires checking which TRi intersects 4r-translation of the
lowest (Level 1) lower envelope – an overhead of O(N).
• UQ33(X% of [tb, te]): “Retrieve all the trajectories that
have a non-zero probability of being NN to Tru

q at least X%
of the entire [tb, te].”. In addition to UQ33 we now need an-
other “accumulator” variable, that will measure the portion
of the time that each trajectory that has intersected the 4r-
translation of the lowest (Level 1) lower envelope, has spent
outside of it.
Claim 3: The time complexity of processing a Category 3
query is O(dN/Ke2).
Category 4: The last category of queries that we consider
extends Category 3 in the same way as queries from Cat-
egory 2 extend queries from Category 1 – by adding the
value of k as a ranking parameter in terms of k-th highest



NN probability. Due to space limitations, we do not for-
mally present these queries here. However, we note that
the complexity of their processing introduces an additional
factor of k in the O(dN/Ke2) (Claim 3).

We conclude this section with the observation that an-
other variant of UQ11 and UQ21 and UQ31 would consider
a fixed time value (i.e., t = tf ) and evaluate the properties at
that time, however, the corresponding complexities are the
same as the ones expressed the respective claims above.

5. EXPERIMENTAL OBSERVATIONS
In this section, we evaluate some benefits of our proposed

methodology. Our experiments are implemented in C++
on a Pentium IV 3.60GHZ, 1G MB memory and Windows
XP platform. For our experiments, we considered a geo-
graphic area of size 40 × 40 miles2. The moving objects
were generated using a modified version of the random way-
point model, and each object starts at a randomly selected
position in the region of interest. Subsequently, the object
picks a random direction and moves at a speed randomly
distributed between 15mph and 60mph. For simplicity, we
assumed that all the objects change their velocity vectors
synchronously. The duration of the motion is fixed to 60min.
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Figure 11: Construction of Lower Envelope

In the first group of experiments, we investigate the ef-
ficiency of computing the lower envelope of the distance
functions, by comparing our approach (cf. Algorithm 1)
against the naive approach, which finds the intersection of
all the distance functions, sorts them in time, then sweeps
in time comparing the lowest values in-between intersections
(O(N2 log N), since there are O(N2) such intersections). We
varied the number of moving objects from 1000 to 12000 and
measured the running time of each approach. The results
are plotted in Figure 11, where the running time is shown
in a logarithmic scale. As expected based on the theoret-
ical analysis, our approach is much faster, with orders of
magnitude speed-up.

Next, we evaluated the efficiency of using our computed
lower envelope to answer UQ11 and UQ13 (cf. Section 5),
where we set the value of X = 50% for UQ13. We compared
our approach with the naive approach, which checks all pair-
wise intersection times of the distance functions. Again, the
total number of objects was between 1000 and 12000 and
we randomly selected an object for the evaluation. The av-
eraged results of 100 such selections are illustrated in Fig-

ure 12, which shows that the lower envelope yields significant
speedup(s).
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Figure 12: Existential Queries

Finally, we evaluated the pruning power of the lower enve-
lope as a function of the uncertainty radius. We varied the
radius of uncertainty for the moving objects from 0.1 mile
to 2 miles, and measured the ratio when fixing the total
number of moving objects to 2, 000 and 10,000, respectively.
The result is shown in Figure 13. It can be observed that
when the moving objects have an uncertainty radius of 0.5
mile, over 90% of the objects can be pruned from any con-
sideration, based on the lower envelope. When the radius
increased to mile, about 85% of the objects can be pruned.
An implication of this observations is that when actual eval-
uation of the probabilities is needed, only about 15% of the
objects will contribute for an uncertainty radius of 1 mile.
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Figure 13: Pruning Power of the Lower Envelope

6. RELATED WORK
Nearest neighbor queries are essential operations in a wide

variety of application domains, from machine learning and
computer vision [28] to classification and clustering in data
mining [32]. Voronoi diagrams, extensively studied in com-
putational geometry [5, 1], provide a tool for finding the
nearest neighbor of a query point among N static points in



O(log N) query time for 2D. For spatial databases, the prob-
lem of efficient scalable processing of (k)NN-queries has been
addressed in [24] with a branch-and-bound approach and in
[10] with an incremental technique, both relying on R-trees
for indexing.

In recent years, there have been many interesting results
on (k)NN-queries in spatio-temporal settings. In [15], a dual
transformation (points to lines) is explored for developing ef-
ficient algorithms when the objects are moving in one dimen-
sion. Generic methodologies for processing spatio-temporal
queries for trajectories, based on a rich algebra of types, are
presented in [16]. The generation of the time-parameterized
answer to the continuous variant of the NN-queries, along
with the other traditional spatial queries, in spatio-temporal
settings, and the efficient scalable processing of such queries
based on TPR-trees was presented in [34, 33].

When the motion of the objects is represented as a stream
of (location,time) updates, the main issue is how to effi-
ciently monitor and update the answer to (k)NN queries,
for which scalable techniques have been proposed in [38,
39]. On the other hand, when the motion of the object
is expressed by (location,time,velocity) updates, an incre-
mental approach for processing (k)NN-queries is presented
in [13]. In addition, some papers have focused on efficient
processing of such queries on road networks [19, 27].

Two works that are very similar in spirit to ours are [2, 23].
Both of them consider the collection of hyperbolae repre-
senting the distance functions from a querying object. How-
ever, [23] focuses on processing a (k)NN-query but, unlike
our approach, does not use the construction of the lower
envelope for the purpose of pruning objects that have zero
probability of being nearest neighbor to the querying ob-
ject within a given time interval. The main goal of [2], on
the other hand, is scalable processing of regular and reverse
NN-queries, focusing on efficient management of modifica-
tions (insertions/deletions) and, once again, the uncertainty
is not formally addressed.

Various models of uncertainty in spatio-temporal settings,
have been considered in the literature. As we mentioned,
[22] considers the uncertainty for the (location,time) updates
model and demonstrates that, under constraint maximal ve-
locity, the spatial zone of the object’s whereabouts is an el-
lipse. The 3D interpretation of that same model (“beads”)
was presented in [11]. However, the processing of continu-
ous NN-queries under the uncertainty model was not con-
sidered. The uncertainty model that we consider in this
work has been used for processing range queries in MOD
settings [36], where various semantic categories of the (an-
swers to the) queries were presented and geometric concepts
were used for their efficient processing. In this paper, we
rely on the results in [4] for processing instantaneous NN-
queries in uncertain environments and, in a sense, this work
provides a continuous extension of it, due to the properties
of the convolution for the sum of independent variables.

A recent work addressing a problem similar to the one
tackled in this paper is [12], where the goal is to present ef-
ficient algorithms for processing continuous kNN-query, for
objects moving on road network with uncertain velocity. In-
versely to our results, the work in [12] focuses on finding
the upper-envelope of the set of distance functions, guar-
anteeing that a certain object may be one of the k nearest
neighbors. However, although there is no formal analysis of
the complexity presented, it appears that the construction

of the upper envelope takes quadratic time.

7. CONCLUSIONS AND FUTURE WORK
We have addressed the problem of continuous NN queries

for uncertain trajectories of moving objects, where the un-
certainty at any time instant is bounded by a circle with a
fixed radius. We have demonstrated that our approach is
applicable to a large class of location pdfs—those that are
rotationally symmetric. For these settings, we have provided
a compact structure, the IPAC-NN tree, to represent the an-
swer to such queries and we have given algorithmic solution
for constructing the geometric dual of this structure. In ad-
dition, we have identified several syntactic variants for the
continuous probabilistic NN-queries and demonstrated how
they can be efficiently answered.

There are several challenges that we plan to address in the
future. One of them is to identify the basic properties of the
descriptors of the probability values in the IPAC-NN trees
which, in turn, will enable processing of continuous threshold
NN-queries (e.g., retrieve the objects that have more than
65% probability of being a nearest neighbor within 50% of
the time) [3]. Another interesting problem is to design data
structures that provide for scalable processing of such un-
certain queries, in a spirit similar to the U-trees [35]. In
addition, we are planning to address other variants of con-
tinuous probabilistic NN queries (e.g., all pairs, reverse) and
compare the semantics of traditional Top-k NN queries for
crisp trajectories with that for uncertain trajectories (cf. [2,
23, 30]). Finally, we plan to allow for different uncertainty
zones of the object locations (i.e., circles with different radii),
for which a promising foundation is the Voronoi diagram of
moving disks [14].
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9. APPENDIX
Before we proceed with the outline of the proofs of the claims

from Section 2, we briefly note that when a translation, e.g., s 7→
s+w is applied as a transformation to a 2D variable (in the sense
of variable substitution), as well as rotation around the center,
e.g., s 7→ w(= ρ(0,0),φ(w)), the Jacobian determinant evaluates
to ”1”.
Proof: (of Property ) Firstly, observe that E(V iq) = E(V i) +

E(−V q) simply because V iq is the sum of V i and −V q . By defi-

nition, the centroid of f can be calculated as: Cc = (
∫

xf(x)dx)/
(
∫

f(x)dx). Let us observe separately the:
(1) Denominator: by the definition of the convolution, we have:
∫

f(x)dx) =
∫

[
∫

g(u)·h(x−u)du)]dx = ...substitute variables x =
x + u, noting that dx remains the same and the Jacobian is ”1”
(translation)... =

∫

g(u)du ·
∫

h(x)dx = ...since h and u are pdfs,
each integral evaluates to ”1” ... = 1.
(2) Numerator: Similarly,

∫

xf(x)dx) =
∫

x[
∫

g(u)·h(x−u)du)]dx
= ...applying the same substitution: x = x + u ... =

∫

(x +
u)[

∫

g(u) · h(x)du)]dx = ((
∫

xh(x)dx)
∫

g(u)du) +
((

∫

ug(u)du)
∫

h(x)dx). Observing once again that
∫

h(x)dx =

C1 and
∫

g(u)du = C2, the claim follows. 2.

Proof: (of Property 2) Assume P and Q are points from the do-

main of f such that ‖PCc = QCc‖. Then, there exists a rotation

ρ with a center at Cc and an angle φ, such that ρCc,φ(P ) = Q.
This can also be viewed as a composition of: (1) translation of

Cc to the origin; (2) rotation for angle φ; (3) (de)translation back

to Cc).

Observe f(P − Cc) = ...by Property 1 ... = f(P − (C1 + C2)).

By definition, this is equal to
∫

g(u) · h(P − C1 − C2 − u)du =

...substituting u with u − C1, du remains, and the Jacobijan is
”1” ... =

∫

g(u − C1) · h(P − C2 − u)du = ... by the assumed

rotational symmetry of h, if Q is a point such that ‖PC2 = QC2‖

... =
∫

g(u−C1) ·h(Q−C2−u)du = ...substituting u with u−C1

... =
∫

g(u) ·h(Q−C1−C2−u)du = f(Q−(C1 +C2)). Since the
convolution is translation (shift) invariant [17], the claim follows.
2

Proof: (of Lemma 1) It suffices to prove the claim for the ex-
clusive NN probabilities (i.e. P NN E

1,Q > P NN E
2,Q , cf. Section

2.2), because the joint NN probability will appear equally in each
of P NN

1,Q
and P NN

2,Q
. Due to the assumption(s), we have that

R1
min < R2

min and R1
max < R1

max. Appropriately modifying
Equation (5), we have:
(I): P NN

1 (Q) =
∫ ∞
0 pdfWD

1 (Rd) · (1 − P WD
2 (Rd))dRd =

∫ R
max1

Rmin
1

pdfWD
1 (Rd) · (1 − P WD

2 (Rd))dRd and, similarly:

(II): P NN
2 (Q) =

∫ ∞

0
pdfWD

2 (Rd) · (1 − P WD
2 (Rd))dRd =

∫ Rmax
1

Rmin
2

pdfWD
2 (Rd) · (1 − P WD

1 (Rd))dRd.

The claim follows from the observations that for every ν, when
evaluating pdfWD

2 (Rmin
2 + ν) in (II), there exists an equivalent

pdfWD
1 (Rmin

1 +ν) which, however, is multiplied by a larger value

of (1 − P WD
2 (Rd) in (I). 2


