
To appear in Proceedings of the 4th International Workshop of
Mobile Computing, Rostock, June 2003

CATIS: A Context-Aware Tourist Information System

Ariel Pashtan1, Remy Blattler2, Andi Heusser2, Peter Scheuermann2

 1Aware Networks 2Dept. of ECE,
 Buffalo Grove Northwestern University,
 IL 60089, USA Evanston, IL 60208, USA

ariel@awarenetworks.com, remy.blaettler@gmx.ch, aheusser@gmx.ch, peters@ece.nwu.edu

Abstract

In this paper we describe our current implementation
and future plans for CATIS, a context-aware tourist
information system that leverages Web services and XML
technologies for its implementation. We review notions of
context as they relate to tourists, and provide relevant
tourism scenarios that helped drive our design. Our
system architecture is Web services-based and includes a
context manager element that manages both dynamic and
static context. The elements of context in our work are
location, time of day, speed, direction of travel, personal
preferences, and device type. We describe how these
elements are leveraged to adapt Web-based information
that is delivered to mobile tourists. Our future plans for
incorporating mobility in the user’s context, and how to
scale our system to support large numbers of mobile users
are described as well.

1. Introduction

Context-awareness seeks to acquire and utilize
information about the physical and social situation in
which users and their wireless handset devices are
embedded to provide improved services that are
appropriate to the particular user given the interaction
platform, place, time, environment, and surrounding
events. Wireless handset devices, physical and social
contextual-information, all correlated with the
infrastructure back-end information can truly enhance
wireless services in terms of relevance, quality, and
appropriateness of delivered information. Example
envisioned services include tourist information services
that will wirelessly deliver relevant city information to
tourists’ mobile devices.

In the following we describe our current
implementation and future plans for CATIS, a context-
aware tourist information system that leverages Web
services and XML technologies for its implementation.
We start by reviewing notions of context as they relate to
tourists, and provide relevant tourism scenarios that

helped drive our design. We then describe our Web
services-based system architecture and introduce the
concept of a context manager. A description of how
context is leveraged to adapt information services follows.
The relevant context elements are location, time of day,
speed, direction of travel, personal preferences, and
device type. We end by describing the current status of
our project and our plans for incorporating mobility in the
user’s context, and how to scale our system to support
large numbers of mobile users.

2. Motivation

Context has been classified in different ways by
various researchers in this field (e.g., [5]). In general,
context refers to information about the device platform,
the user, and the surrounding environment. User context
typically refers to the user’s personal preferences for
information content, and environment context includes the
user’s location and current time of day.

Context has been used in distributed event-based
applications for wide-area networks. These applications
are characterized by a publish/subscribe model [4], [6],
[11], where receivers subscribe to information of interest
to them without regard to any specific source, while
senders publish information without addressing it to any
specific destination.

Context-awareness is very critical for mobile users.
These users have at their disposal devices that are not very
conducive to interactivity (e.g., small screens, space
constrained keyboards). Context-awareness can help
improve user interaction by knowing a-priori the user’s
situation, personal preferences, information interests, and
environment conditions, so that the user doesn’t have to
specify these constraints, and information delivery is
automatically adapted to his circumstances. For example,
if a context-aware system knows that a user is driving a
car, it can adapt alerts to audio messages without requiring
the user to input details about his current situation.

Context-aware services will also enhance the wireless
Internet experience in a significant way. Mobile users that

mailto:ariel@awarenetworks.com
mailto:remy.blaettler@gmx.ch
mailto:aheusser@gmx.ch
mailto:peters@ece.nwu.edu

want to access Web-based content will expect these
information services to exhibit adaptation capabilities
[12]. The adaptation we have addressed in our work
includes:

1. Location and time-based adaptation: the system
will track users’ location and will provide them
with information relevant to their locale and time of
day (e.g., open restaurants in their respective
direction of travel).

2. Personal adaptation: users will have access to
services that are tailored to their specific profile
(e.g., users want to receive information about
resources that match their personal tastes such as
nearby restaurants that offer their preferred cuisine,
or want to be notified of certain events if they occur
in their vicinity, or want the system to generate
travel directions customized to their preferences).

3. Device adaptation: knowing the device features, the
delivered information can be tailored to the
particular hardware and software platform. For
example, the device has a certain screen size and
may not support certain image formats.

Tourism is an area that will benefit from context-
awareness as demonstrated by research projects in mobile
context-awareness [1],[7]. The FIPA (Foundation for
Intelligent Physical Agents) standards organization [10]
and m-ToGuide [9], a project sponsored by the European
Commission’s 5th Framework Program, are also targeting
tourism applications as a new service for mobile users
where context will play a significant role in the delivery of
relevant information to tourists on the go.

Tourist scenarios provided the motivation for the
CATIS system design. In the following we describe
scenarios that take into account user location, time of day,
speed of travel, and direction of travel.

3. Tourist Service Scenarios

In the scenarios we considered, the tourist can specify
categories of information interests, and the tourist’s
wireless device will display related location-based
information as he moves between city locations. For
example, the wireless device can display landmark
information. As the user changes locations, the displayed
information updates to the new locality. Besides location,
time of day can also trigger a change in the presented
information. Speed and direction of travel also impacts the
displayed information. Finally, as the tourist’s situation
changes, for example first driving then walking, the
displayed information will adapt to different presentation
formats, for example audio then graphics and text.

In our first implementation phase we took into account
user location and time of day. The scenario is as follows:

It is noon and Sue is in the Chicago metropolitan area.
Based upon the time context, her wireless device
automatically initiates a request to get restaurant
information for eating lunch. The network-based tourist
information service is queried for restaurants in the
immediate neighborhood of Sue. It subjects the answers to
a sequence of filter, transform, and sort steps in order to
take into account the user preferences for restaurants and
the type of device that she is using. For example, pizzerias
appear at the top of the list because they are Sue’s
favorite, and Chinese restaurants appear second as her
alternative choice. Restaurants with cuisines that Sue
doesn’t like, or that are too expensive, are filtered out.
Finally, the resulting restaurant list is transformed into
Web pages in a format appropriate for display on her
client wireless device.

Our second implementation phase adds speed of travel
and direction of travel context considerations. The
scenario is as follows:

It is evening and Guy is in the New-York metropolitan
area. Guy is traveling in a rented car. Based upon the time
context, his wireless device automatically initiates a
request to get restaurant information for eating dinner.
The network-based tourist information service is queried
for restaurants in the neighborhood of Guy and in his
detected direction of travel. In addition to considering the
user preferences for restaurants and the type of device that
he is using, the tourist information service tracks his speed
and direction of travel. Restaurants that are within a
predetermined range of his location, for example up to
half an hour of driving, and in his detected general
direction of travel, will be candidates for display. Finally,
the resulting restaurant list is transformed into Web pages
in a format appropriate for display on his wireless device.
Figure 1 depicts how time and location context affects the
display of tourist information: upon moving from one
geographic area to the next (the different circles) the
displayed information content changes in relation to the
context.

In the following, we describe the development of
CATIS, a context-aware information system for mobile
tourists that implements a Web services-based system
architecture and leverages XML technologies for its
adaptation capabilities.

Time / Distance

12:00 / Orlando
14:35 / Daytona

17:20 / Miami

Burger King 3m ahead
Uno Pizzeria 1m at left
Shake&Steak 100f ahead

Hilton 2m left
Super 6 Motel right here
Marriott 3m ahead

Figure 1 Time and location context affect

4. CATIS Architecture

The CATIS architecture [3] that supports a tourist
information service is shown in Figure 2. This architecture
is Web service-based and the major elements include:

• A thin client device that hosts a Web browser.
• An application server that delivers web content

customized to the user’s context.
• A UDDI (Universal Description, Discovery and

Integration) services directory that provides users
with a centralized registry of tourist information
services (e.g., a restaurant finder service). The
UDDI specifications describe the information to
provide for each service, as well as provide a query
and update API to access information in the
registry. For the UDDI implementation we used
Systinet’s WASP UDDI Enterprise Server.

• A context manager that keeps track of the user’s
dynamic context (e.g., location, wireless device
features) as well as the user’s preferences.

• A collection of Web services that deliver tourist
content (e.g., landmark information, restaurant
locations, etc). Each Web service has a WSDL
(Web Services Description Language) document in
XML format that describes the Web service’s
interface and gives a concrete binding to a network
address.

Given the Web’s intrinsically distributed and
heterogeneous nature, communication mechanisms must
be platform-independent and as lightweight as possible.
SOAP (Simple Object Access Protocol) [8] is used for the
communication between the application server and the
directory service (UDDI) as well as between the
application server and the various Web services. SOAP is
an XML-based protocol for messaging and remote
procedure call and is used here on top of HTTP.

When a new user registers himself in the system, he
logs on to the application server and enters his preferences
(e.g., restaurant preferences). These preferences are then
forwarded for storage to the context manager. If the client
device possesses a GPS receiver then the client sends
location updates to the context manager at regular
intervals. User speed and direction is computed from the
user’s tracked location history. If the user doesn’t have a
GPS receiver then at the point of the information inquiry
he enters his location manually in the form of a city name
or zip code.

In our implementation we used both Java Web services
and Microsoft’s .NET Framework, a native XML Web
services platform. Microsoft .NET includes ASP.NET, a
framework for creating application servers that support
dynamic web pages, standard Web service technologies
like SOAP and WSDL, as well as a multi-language
development environment (including C#). One of our
Web services was implemented in C#.

When a tourist needs information, for example about
restaurants in his vicinity, he connects to the application
server to request the information (step 1 in Figure 2). The
application server queries the context manager for user
context information such as location and restaurant
preferences (step 2). It then sends an inquiry to the UDDI
Server to get the addresses of the available restaurant Web
services (step 3). The application server then sends a
request to all the Web services along with the user’s
location and desired distance from the user (step 4). The
Web services search their databases for the appropriate
addresses and filter out those that are too far away. The
Web services return an XML list to the application server.
The application server filters the XML documents
according to the user’s preferences, prepares the
presentation of the information and sends it to the client
(step 5).

UDDI Server Application
Server Sue

Guy

Tourist Information
Web services

Context
Manager

Context Data
(location)

1

2

3
4

5

Figure 2 CATIS Architecture

5. Location and Time-Based Adaptation

As tourists travel in a city, they come across different
landmarks and have different needs depending on time of
day. Tourists want to learn about the landmarks they are
facing, or may want to find a nearby restaurant that serves
their favorite food if it is dinner time. While location is a
prime determinant of what information should be sent to
the user’s wireless device, time can affect the suggested
information content that is delivered. For example, if it is
lunch time and a tourist expressed interest in receiving a
list of restaurants in close proximity, the delivered list
should not contain those restaurants that serve food
starting at a later time of day. The application server
issues a request to the restaurant Web service and the Web
service returns a list of restaurants filtered based on
location and time of day.

In addition, tourists may be traveling by car or public
transportation, and the information delivered to their
device needs to be updated to reflect their changing
environment. Additional elements of context that affect
the displayed information include speed and direction of
travel. We devised a sliding grid-window methodology in
which location, speed, and direction of travel are taken
into account to deliver a list of restaurants (Figure 3).
Speed of travel determines whether further away
restaurants should appear on the list, and direction will
narrow the list to those in the direction of travel. For

example, restaurants that are in the opposite course of
travel will not be listed.

Our sliding grid window algorithm uses a two-step
approach whereby first the relevant tourist’s neighboring
area is determined, and then a list is generated based on a
preferred maximum distance of travel to a restaurant. This
approach relies on detecting the user’s speed and
leveraging a pre-partition of the metropolitan area into a
grid of square areas where the user is traveling as shown
in Figure 3. The user’s GPS instrumented client device
sends periodic location updates to the CATIS context
manager (Figure 2). From each location update the CATIS
application can determine where the user is currently
located. By tracking a user’s location changes, the
application can determine the user’s speed and direction
of movement. From these latter two elements of context,
the application selects a set of squares that form the area
that surrounds the user. The faster the user travels, the
greater is the area.

Once the surrounding area is determined, an
information request is issued to the restaurant Web service
to retrieve the area’s restaurants. By requesting only the
restaurants within a certain sliding grid window we are
allowing for the possibility that Web service could make
use of spatial data structures [13] in order to find the
relevant data set. When this latter set is returned to the
CATIS application, a filtering step takes place to select
only those restaurants that are within a pre-determined
distance from the tourist. For example, only those
restaurants that are within half an hour of travel, at the

current user’s speed, will be selected for display. This
algorithm proves to be more efficient compared to an
exhaustive computation of distance over all restaurants,
and is also more attuned to take into account the user’s
direction of travel.

A

B

Direction of travel Mobile user

Neighboring area with
relevant information

Circle of maximum
distance

Figure 3 Selection of relevant area based on speed

and direction of travel

6. Personal Adaptation

An important aspect of context-awareness is the
system’s ability to deliver information that is
personalized, i.e., adapted to a user’s specific needs. The
personalization aspect includes system awareness of the
user’s information interests and service preferences.
Personalization has been deemed by the Wireless World
Research Forum as an important determinant in context-
aware computing where the human is placed at the center
and communication systems are built based on the
analysis of individual communication spaces and provide
for individual adaptation [2]. The adaptation performed in
CATIS is done based on user context information,
including his preferences, retrieved from the context
manager. A tailored list of restaurants that meets the user
preferences is generated as shown in Figure 4.

Upon receiving the list of restaurants from the Web
services, the application server can modify directly this
list, and then apply selection criteria to extract from the
list only restaurants that meet user pre-specified
preferences. Initially, the list of restaurants is modified to
include preference levels as indicated in user profiles, and
distance from the user’s current location. The preference
levels specify the user cuisine preferences. The result of

this step is a modified list with Restaurant elements that
include PreferenceLevel and Distance sub-elements (bold
entries) as shown in Listing 1.

<Restaurant>
 <Name>Blue Ribbon Restaurant</Name>
 <Street>6301 N Ridge Ave</Street>
 <City>Chicago</City>
 <State>IL</State>
 <Zip>60660</Zip>
 <Phone>(773) 973-4825</Phone>
 <Cuisine>Southern/Soul</Cuisine>
 <PriceHigh>35</PriceHigh>
 <PriceLow>10</PriceLow>
 <Latitude>41.995796</Latitude>
 <Longitude>-87.675693</Longitude>
 <Open>10:00</Open>
 <Close>23:30</Close>
 <Valet>0</Valet>
 <Distance>2.6015</Distance>
 <PreferenceLevel>3</PreferenceLevel>
</Restaurant>

Listing 1 Restaurant element modified with preference

The extraction of specific restaurant elements that meet
user criteria is done by modifying the XSLT stylesheet
(partially shown in Listing 2) that is used to convert the
list of restaurants to displayable markup (XSLT is further
described in the next section). The for-each statement in
Listing 2 goes through the list of restaurants and selects
only those that fulfill the criteria specified in the select
attribute. The next two sort statements tell the XSL
transformer how to sort the list. The remaining lines just
include HTML tags and tell the transformer which sub-
elements to select for display from the Restaurant element.

<xsl:for-each select="PRICE_SELECTION">
 <xsl:sort select="PreferenceLevel" order="descending"
 data-type="number" />
 <xsl:sort select="Distance" order="ascending"
 data-type="number" />
 <TR>
 <TD>
 <xsl:value-of select="Name" />
 </TD>
 <TD>
 <xsl:value-of select="Cuisine" />
 </TD>
 <TD>
 <xsl:value-of select="Street" />

 <xsl:value-of select="City" />,
 <xsl:value-of select="concat(State, ' ', Zip)" />
 </TD>

 <TD>
 <xsl:value-of select="Phone" />
 </TD>

Listing 2 XSLT stylesheet for generating markup

The string “PRICE_SELECTION” in the XSLT
stylesheet is replaced by the application server before
actually applying the XSLT file to filter out too cheap and
too expensive restaurants, as well as remove the
restaurants that the user likes least. The string replacement
is done using XML’s Xpath query language that views
XML documents as trees and uses path expressions to
select document components that need to be changed. The
particular Xpath expression that is used to filter the
restaurants is shown in Listing 3. As a result of the
“PRICE_SELECTION” string replacement, the selected
restaurants will have a PriceHigh element less than or
equal to 40, a PriceLow element higher than or equal to
10, and a PreferenceLevel greater than 1.

Restaurants/Restaurant[(PriceHigh <= 40) and
 (PriceLow >= 10) and
 PreferenceLevel > 1]

Listing 3 XPath expression for filtering restaurants

Chinese: 5
Pizza: 6
Grill: 2

User
Preferences

XML File
for Display

User Preferences
Filtering Service

Restaurant
List

Figure 4 Cuisine preferences filtering

7. Device Adaptation

The mobile tourist’s device has certain characteristics
of screen size, image support, and browser type. The
filtered list of restaurants is adapted correspondingly for
display purposes. The screen size will determine what size
pictures can be displayed on a user’s device, and the
number of pages that they will navigate through. The list
of accepted content types indicates to the server what
markup (e.g., WML, HTML) the device can interpret.

Depending on the content types supported by the client
browser, an appropriate formatting sheet in XSLT
(Extensible Stylesheet Language Transformations) is used
to convert the content representation into appropriate

markup for display on the user’s mobile device. For
example, if the device supports WML, an XSLT sheet that
generates WML markup will be chosen. Figure 5 shows
the XSL translator component that selects the right XSLT
stylesheet for a user’s client device and applies it to the
XML list of restaurants for generating displayable
markup. In the current implementation, the application
server uses three different XSLT style sheets, one for a
PC, one for a PDA and one for a cell phone. The system
determines the kind of device by searching for certain
information in the useragent string that is included in
every HTTP request. This string contains information
about the operating system, the browser version and the
screen size. Currently, all XSLT files only generate
HTML web pages. For example for PCs the HTML will
be a nice table with all the information from the XML file,
but for cell phones only part of that information will be
used and the information is displayed in a list.

XSL Stylesheets
<Hotels>
 <Addr>
 <Name>Holiday Inn</Name>
 <Street>123 Nice Drive</Street>
 <City>Small Town</City>
 <State>WA</State>
 <ZipCode>45678</ZipCode>
 <PhoneNumbers>

 <PhoneNumber>123- 4567</PhoneNumber>
 <PhoneNumber>789- 9393</PhoneNumber>
 </PhoneNumbers>
 </Addr>
 <Addr>
 <Name>Super 6</Name>
 <Street>567 Main St.</Street>
 <City>Big City</City>
 <State>WA</State>
 <ZipCode>39489</ZipCode>
 <PhoneNumbers>
 <PhoneNumber>839- 3238</PhoneNumber>

 <PhoneNumber>293- 2984</PhoneNumber>
 </PhoneNumbers>
 </Addr>
</Hotels>

XSL Translator

XML File

Browser Pages
Figure 5 Device adaptation

8. Current Status and Future Extensions

We have presented the architecture of the CATIS
system that incorporates a number of context variables
relating to mobility, such as time and location, and type of
device. Our prototype, supporting three different type of
Web services and implemented using Microsoft .Net is
operational and is entering the second version.

In order to support effectively mobility, other variables
such as the surrounding environment need to be
considered also. For example, if a user is driving a car, it
makes sense to see if there are any Web services that can
transfer the required information to his wireless PDA in

audio form. As a further enhancement of this scenario, let
us consider the case when the user is driving his car and
his wife is traveling with him. In this case, we may
consider also displaying the information about a given
service in video form. This discussion implies that we also
need to keep track in our UDDI registery of the media
capabilities of the services, i.e., text, audio or video.
Currently, the Web service framework does not provide
this capability and we plan to investigate corresponding
extensions to the UDDI directory service.

The current implementation uses two dynamic context
variables, namely time and location (in addition to static
user preferences). Based on the time of day, the
application server, to which the mobile device connects,
decides which type of service to invoke, i.e., a hotel
finder, a park finder, or a restaurant finder. Currently, the
location is determined by the user specifying a zip code.
This provides a location with large granularity. Distance
from the user’s current location is specified in terms of
number of adjacent zip codes rather than actual miles. We
intend to incorporate fine-grained location tracking with
GPS enabled devices, such as cell phones with built-in
GPS receivers.

We also plan to investigate issues regarding the
scalability of our system. Consider a metropolitan area
having thousands of mobile users. In our current
implementation, the Web services send information
relevant to a given geographic area to the application
server and this latter network element filters the
information for a particular user. In order for these
operations to be performed efficiently, their costs need to
be amortized across other users.

Caching the results from the Web services is another
important issue that we plan to address. Rather than
issuing a request to the Web services every time a user
wants to get information from a certain area, it would be
much faster to temporarily cache the results of a previous
query and then serve users based on the data in the cache.

In addition, instead of sending separate requests to the
corresponding Web services, the application server should
recognize that one request suffice and after the response is
received different filtering operations need to be
performed for different users. Similarly, if the application
server receives requests from users in neighboring areas,
such as Evanston and Skokie it would make sense to
aggregate them into a single request since the response set
contains overlapping information. In both of these
examples, the application server needs to perform some
kind of aggregation of the requests. The response will

be split into different results taking into account the user
preferences.

Furthermore, it also makes sense to make use of a
distributed scheme, whereby we have different application
servers for separate geographical areas and each
application server will perform aggregation and splitting
operations only for the users in its area.

9. References

[1] G. Abowd et al., “Cyberguide: a Mobile Context-Aware

Tour Guide”, Wireless Networks 3, pp. 421-433, 1997.
[2] M.van Bekkum et al., “A User-Centric Design of a

Personal Service Environment”, 3rd WWRF Proc., Sept.
2001.

[3] R. Blättler , “Context-Aware Information System for
Mobile Users” MS. Project, Northwestern University, June
2002.

[4] A. Carzaniga and A. Wolf, “Content-Based Networking: A
New Communication Infrastructure”, Proceedings NSF
Workshop on Infrastructure for Mobile and Wireless
Systems, 2002.

[5] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile
Computing Research”, Technical Report TR2000-381,
Dept. of Computer Science, Dartmouth College, 2000.

[6] G. Chen and D. Kotz, “Context Aggregation and
Dissemination in Ubiquitous Computing Systems”,
Technical Report TR2002-420, Dept. of Computer Science,
Dartmouth College, 2002.

[7] K. Cheverst et al., “Experiences of Developing and
Deploying a Context-Aware Tourist Guide: The GUIDE
Project”, ACM MOBICOM 2000.

[8] F. Curbera et al., “Unraveling the Web Services Web,”
IEEE Internet Computing, March/April 2002.

[9] EC 5th Framework Program, “M-ToGuide”,
www.mtoguide.org, 2003.

[10] FIPA, “FIPA Personal Travel Assistance Specification”,
www.fipa.org, 2001/08/10.

[11] Y. Huang and H. Garcia-Molina, “Publish/Subscribe in a
Mobile Environment,” Proc. 2nd ACM Intern. Workshop on
Data Engineering for Wireless and Mobile Access, May
2002.

[12] A. Pashtan and J. Yanosy, “An Adaptable Services
Framework”, 5th WWRF Proc., Mar. 2002.

[13] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, 1999

[14] A. Silberschatz, H. Korth, and S. Sudarshan, Database
System Concepts (4th ed.), McGraw-Hill, 4. edition, 2001

http://www.mtoguide.org/
http://www.fipa.org/

