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Wireless Sensor Network Localization Techniques
Guoqiang Mao, Barış Fidan and Brian D.O. Anderson

Abstract— Wireless sensor network localization is an important
area that attracted significant research interest. This interest is
expected to grow further with the proliferation of wireless sensor
network applications. This paper provides an overview of the
measurement techniques in sensor network localization and the
one-hop localization algorithms based on these measurements.
A detailed investigation on multihop connectivity-based and
distance-based localization algorithms are presented. A list of
open research problems in the area of distance-based sensor
network localization is provided with discussion on possible
approaches to them.

Index Terms— wireless sensor networks, localization, AOA,
RSS, TDOA.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are a significant
technology attracting considerable research interest.

Recent advances in wireless communications and electronics
have enabled the development of low-cost, low-power and
multi-functional sensors that are small in size and commu-
nicate in short distances. Cheap, smart sensors, networked
through wireless links and deployed in large numbers, provide
unprecedented opportunities for monitoring and controlling
homes, cities, and the environment. In addition, networked
sensors have a broad spectrum of applications in the de-
fence area, generating new capabilities for reconnaissance and
surveillance as well as other tactical applications [1].

Self-localization capability is a highly desirable characteris-
tic of wireless sensor networks. In environmental monitoring
applications such as bush fire surveillance, water quality
monitoring and precision agriculture, the measurement data
are meaningless without knowing the location from where
the data are obtained. Moreover, location estimation may
enable a myriad of applications such as inventory management,
intrusion detection, road traffic monitoring, health monitoring,
reconnaissance and surveillance.

Sensor network localization algorithms estimate the loca-
tions of sensors with initially unknown location information
by using knowledge of the absolute positions of a few sensors
and inter-sensor measurements such as distance and bearing
measurements. Sensors with known location information are
called anchors and their locations can be obtained by using
a global positioning system (GPS), or by installing anchors
at points with known coordinates. In applications requiring
a global coordinate system, these anchors will determine the
location of the sensor network in the global coordinate system.
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In applications where a local coordinate system suffices (e.g.,
smart homes), these anchors define the local coordinate system
to which all other sensors are referred. Because of constraints
on the cost and size of sensors, energy consumption, imple-
mentation environment (e.g., GPS is not accessible in some en-
vironments) and the deployment of sensors (e.g., sensor nodes
may be randomly scattered in the region), most sensors do not
know their locations. These sensors with unknown location
information are called non-anchor nodes and their coordinates
will be estimated by the sensor network localization algorithm.

In this paper, we provide an overview of techniques that
can be used for WSN localization. Review of wireless network
localization techniques can be found in [2], [3], [4]. The focus
of these references is on localization techniques in cellular net-
work and wireless local area network (WLAN) environments
and on the signal processing aspect of localization techniques.
Sensor networks vary significantly from traditional cellular
networks and WLAN, in that sensor nodes are assumed to
be small, inexpensive, cooperative and deployed in large
quantity. These features of sensor networks present unique
challenges and opportunities for WSN localization. Patwari
et al. described some general signal processing tools that are
useful in cooperative WSN localization algorithms [5] with a
focus on computing the Cramér-Rao bounds for localization
using a variety of different types of measurements [5]. Our
review in contrast focuses on the measurement techniques
and localization algorithms in WSNs. While many techniques
covered in this paper can be applied in both 2-dimension (<2)
and 3-dimension (<3), we choose to focus on 2D localization
problems for ease of explanation.

The rest of the paper is organized as follows. In Section II,
measurement techniques in WSN localization are discussed;
these include angle-of-arrival (AOA) measurements, distance
related measurements and RSS profiling techniques. Distance
related measurements are further classified into one-way prop-
agation time and roundtrip propagation time measurements,
the lighthouse approach to distance measurements, received
signal strength (RSS)-based distance measurements and time-
difference-of-arrival (TDOA) measurements. In Section III,
one-hop localization techniques based on these measurements
are discussed. Section IV discusses nonline-of-sight error mit-
igation techniques in WSN localization. Section V and Section
VI focus on multihop localization techniques, in particular
connectivity-based and distance-based multihop localization
techniques. Section VII discusses open research problems in
distance-based localization. Finally a summary is provided in
Section VIII.

II. MEASUREMENT TECHNIQUES

Measurement techniques in WSN localization can be
broadly classified into three categories: AOA measurements,
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distance related measurements and RSS profiling techniques.

A. Angle-of-arrival measurements

The angle-of-arrival measurement techniques can be further
divided into two subclasses: those making use of the receiver
antenna’s amplitude response and those making use of the
receiver antenna’s phase response.

Beamforming is the name given to the use of anisotropy in
the reception pattern of an antenna, and it is the basis of one
category of AOA measurement techniques. The measurement
unit can be of small size in comparison with the wavelength of
the signals. The beam pattern of a typical anisotropic antenna
is shown in Fig. 1. One can imagine that the beam of the
receiver antenna is rotated electronically or mechanically, and
the direction corresponding to the maximum signal strength is
taken as the direction of the transmitter. Relevant parameters
are the sensitivity of the receiver and the beam width. A
technical problem to be faced and overcome arises when the
transmitted signal has a varying signal strength. The receiver
cannot differentiate the signal strength variation due to the
varying amplitude of the transmitted signal and the signal
strength variation caused by the anisotropy in the reception
pattern. One approach to dealing with the problem is to
use a second non-rotating and omnidirectional antenna at
the receiver. By normalizing the signal strength received by
the rotating anisotropic antenna with respect to the signal
strength received by the non-rotating omnidirectional antenna,
the impact of varying signal strength can be largely removed.

Fig. 1. An illustration of the horizontal antenna pattern of a typical
anisotropic antenna.

Another widely used approach [6] to cope with the varying
signal strength problem is to use a minimum of two (but typi-
cally at least four) stationary antennas with known, anisotropic
antenna patterns. Overlapping of these patterns and comparing
the signal strength received from each antenna at the same
time yields the transmitter direction, even when the signal
strength changes. Coarse tuning is performed by measuring
which antenna has the strongest signal, and it is followed
by fine tuning which compares amplitude responses. Because
small errors in measuring the received power can lead to a
large AOA measurement error, a typical measurement accuracy
for four antennas is 10 − 15 degrees. With six antennas, this
can be improved to about 5 degrees, and 2 degrees with eight
antennas [6].

The second category of measurement techniques, known as
phase interferometry [7], derives the AOA measurements from
the measurements of the phase differences in the arrival of
a wave front. It typically requires a large receiver antenna
(relative to the wavelength of the transmitter signal) or an
antenna array. Fig. 2 shows an antenna array of N antenna
elements. The adjacent antenna elements are separated by a
uniform distance d. The distance between a transmitter far
away from the antenna array and the ith antenna element can
be approximated by

Ri ≈ R0 − id cos θ (1)

where R0 is the distance between the transmitter and the
0th antenna element and θ is the bearing of the transmitter
with respect to the antenna array. The transmitter signals
received by adjacent antenna elements have a phase difference
of 2π d cos θ

λ , which allows us to obtain the bearing of the
transmitter from the measurement of the phase difference. This
approach works quite well for high SNR but may fail in the
presence of strong co-channel interference and/or multipath
signals [7].

Fig. 2. An antenna array with N antenna elements.

The accuracy of AOA measurements is limited by the
directivity of the antenna, by shadowing and by multipath
reflections. How to obtain accurate AOA measurements in
the presence of multipath and shadowing errors has been a
subject of intensive research. AOA measurements rely on a
direct line-of-sight (LOS) path from the transmitter to the
receiver. However a multipath component may appear as a
signal arriving from an entirely different direction and can
lead to very large errors in AOA measurements. Multipath
problems in AOA measurements can be addressed by using
the maximum likelihood (ML) algorithms [7]. Different ML
algorithms have been proposed in the literature which make
different assumptions about the statistical characteristics of the
incident signals [8]–[10]. They can be classified into determin-
istic and stochastic ML methods. Typically ML methods will
estimate the AOA of each separate path in a multipath environ-
ment. The implementation of these methods is computationally
intensive and requires complex multidimensional search. The
dimensionality of the search is equal to the total number of
paths taken by all the received signals [7]. The problem is
further complicated by the fact that the total number of paths
is not known a priori and must be estimated. Different from
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the earlier ML methods, which assume the incoming signal is
an unknown stochastic process, another class of ML methods
[11]–[13] assume that the structure of the signal waveform
is known to the receiver. This assumption is possible in some
digital communication systems because the modulation format
is known to the receiver and many systems are equipped
with a known training sequence in the preamble. This extra
information is exploited to improve the accuracy of AOA
measurements or simplify computation.

Yet another class of AOA measurement methods is based
on so-called subspace-based algorithms [14]–[17]. The most
well known methods in this category are MUSIC (multiple
signal classification) [14] and ESPRIT (estimation of signal
parameters by rotational invariance techniques) [15], [16].
These eigenanalysis based direction finding algorithms uti-
lize a vector space formulation, which takes advantage of
the underlying parametric data model for the sensor array
problem. They require a multi-array antenna in order to form
a correlation matrix using signals received by the array. The
measured signal vectors received at the M array elements
is visualized as a vector in M dimensional space. Utilizing
an eigen-decomposition of the correlation matrix, the vector
space is separated into signal and noise subspaces. Then
the MUSIC algorithm searches for nulls in the magnitude
squared of the projection of the direction vector onto the noise
subspace. The nulls are a function of angle-of-arrival, from
which angle-of-arrival can be estimated. For linear arrays,
Root-MUSIC [18], a polynomial rooting version of MUSIC,
improves the resolution capabilities of MUSIC. A weighted
norm version of MUSIC, WMUSIC [19], also gives an exten-
sion in the resolution capabilities compared to the original
MUSIC. ESPRIT [15], [16] is based on the estimation of
signal parameters via rotational invariance techniques. It uses
two displaced subarrays of matched sensor doublets to exploit
an underlying rotational invariance among signal subspaces
for such an array. A comprehensive experimental evaluation
of MUSIC, Root-MUSIC, WMUSIC, Min-Norm [20] and
ESPRIT algorithms can be found in [21]. A very large number
of AOA measurement techniques have been developed which
are based on MUSIC and ESPRIT, to cite but two, see e.g.,
[17], [22]. Due to space limitations, we do not provide an
exhaustive list of them in this paper. Readers may refer to
[23] for a detailed technical discussion on AOA measurement
techniques.

B. Distance related measurements

Distance related measurements include propagation time
based measurements, i.e., one-way propagation time measure-
ments, roundtrip propagation time measurements and time-
difference-of-arrival (TDOA) measurements, and RSS mea-
surements. Another interesting technique measuring distance,
which does not fall into the above categories, is the lighthouse
approach shown in [24]. In the following paragraphs we
provide further details of these techniques.

1) One-way propagation time and roundtrip propagation
time measurements : One-way propagation time and roundtrip
propagation time measurements are also generally known as

time-of-arrival measurements. Distances between neighboring
sensors can be estimated from these propagation time mea-
surements.

One-way propagation time measurements measure the dif-
ference between the sending time of a signal at the transmitter
and the receiving time of the signal at the receiver. It requires
the local time at the transmitter and the local time at the
receiver to be accurately synchronized. This requirement may
add to the cost of sensors by demanding a highly accurate
clock and/or increase the complexity of the sensor network by
demanding a sophisticated synchronization mechanism. This
disadvantage makes one-way propagation time measurements
a less attractive option than measuring roundtrip time in
WSNs. Roundtrip propagation time measurements measure
the difference between the time when a signal is sent by a
sensor and the time when the signal returned by a second
sensor is received at the original sensor. Since the same clock
is used to compute the roundtrip propagation time, there
is no synchronization problem. The major error source in
roundtrip propagation time measurements is the delay required
for handling the signal in the second sensor. This internal delay
is either known via a priori calibration, or measured and sent
to the first sensor to be subtracted. A detailed discussion on
circuitry design for roundtrip propagation time measurements
can be found in [25].

Time delay measurement is a relatively mature field. The
most widely used method for obtaining time delay measure-
ment is the generalized cross-correlation method [26], [27]. A
detailed discussion on the cross-correlation method is given in
Section II-B.3.

Based on the observation that the speed of sound in the
air is much smaller than the speed of light (RF) in the air,
Priyantha et al. developed a technique to measure the one-
way propagation time [28], which solved the synchronization
problem. It uses a combination of RF and ultrasound hardware.
On each transmission, a transmitter sends an RF signal and an
ultrasonic pulse at the same time. The RF signal will arrive
at the receiver earlier than the ultrasonic pulse. When the
receiver receives the RF signal, it turns on its ultrasonic re-
ceiver and listens for the ultrasonic pulse. The time difference
between the receipt of the RF signal and the receipt of the
ultrasonic signal is used as an estimate of the one-way acoustic
propagation time. Their method gave fairly accurate distance
estimate at the cost of additional hardware and complexity of
the system because ultrasonic reception suffers from severe
multipath effects caused by reflections from walls and other
objects.

A recent trend in propagation time measurements is the
use of ultra wide band (UWB) signals for accurate distance
estimation [29], [30]. A UWB signal is a signal whose
bandwidth to center frequency ratio is larger than 0.2 or a
signal with a total bandwidth of more than 500 MHz. UWB
can achieve higher accuracy because its bandwidth is very
large and therefore its pulse has a very short duration. This
feature makes fine time resolution of UWB signals and easy
separation of multipath signals possible.

2) Lighthouse approach to distance measurements : An-
other interesting approach to distance measurements is the
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lighthouse approach [24] which derives the distance between
an optical receiver and a transmitter of a parallel rotating
optical beam by measuring the time duration that the receiver
dwells in the beam. Fig. 3 illustrates the principle of the
lighthouse approach. A transmitter located at the origin is
equipped with a parallel optical beam, i.e., an optical beam
whose beam width b is constant with respect to the distance
from the rotational axis of the beam. The optical beam rotates
at an unknown angular velocity ω around the Z axis. An
optical receiver in the XY plane and at a distance d1 from
the Z axis detects the beam for a time duration t1. From Fig.
3, it can be shown that

d1 ≈ b

2 sin(α1/2)
=

b

2 sin(ωt1/2)
. (2)

The unknown angular velocity ω can be derived from the
difference between the time instant when the optical receiver
first detects the beam and the time instant when the optical
receiver detects the beam for the second time. Therefore the
distance d1 can be derived from the time duration t1 that the
optical receiver dwells in the beam.

Fig. 3. An illustration of the lighthouse approach for distance measurement.

The lighthouse approach measures the distance between
an optical receiver and the rotational axis of the optical
beam generated by the transmitter. A major advantage of the
lighthouse approach is the optical receiver can be of a very
small size, thus making the idea of “smart dust” possible
[24]. However the transmitter may be large. The approach also

requires a direct line-of-sight between the optical receiver and
the transmitter.

3) Time-difference-of-arrival measurements : There is a
category of localization algorithms utilizing TDOA measure-
ments of the transmitter’s signal at a number of receivers
with known location information to estimate the location of
the transmitter. Fig. 4 shows a TDOA localization scenario
with a group of four receivers at locations r1, r2, r3, r4 and a
transmitter at rt. The TDOA between a pair of receivers i and

Fig. 4. Localization using time-difference-of-arrival measurements.

j is given by:

4tij , ti − tj =
1
c

(||ri − rt|| − ||rj − rt||) , i 6= j (3)

where ti and tj are the time when a signal is received at
receivers i and j respectively, c is the propagation speed of
the signal, and || · || denotes the Euclidean norm.

Measuring the TDOA of a signal at two receivers at separate
locations is a relatively mature field [31]. The most widely
used method is the generalized cross-correlation method,
where the cross-correlation function between two signals si

and sj received at receivers i and j is given by integrating
the lag product of two received signals for a sufficiently long
time period T ,

ρi,j(τ) =
1
T

∫ T

0

si(t)sj(t− τ)dt (4)

The cross-correlation function can also be obtained from an
inverse Fourier transform of the estimated frequency domain
cross-spectral density function. Frequency domain processing
is often preferred because the signals can be filtered prior
to computation of the cross-correlation function. The cross-
correlation approach requires very accurate synchronization
among receivers but does not impose any requirement on
the signal transmitted by the transmitter. The accuracy and
temporal resolution capabilities of TDOA measurements will
improve when the separation between receivers increases
because this increases differences between time-of-arrival.
Closely spaced multiple receivers may give rise to multiple
received signals that cannot be separated. For example, TDOA
of multiple signals that are not separated by more than the
width of their cross-correlation peaks (whose location on the
time-delay axis corresponds to TDOA) usually cannot be
resolved by conventional TDOA measurement techniques [32].
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Yet another factor affecting the accuracy of TDOA measure-
ment is multipath. Overlapping cross-correlation peaks due
to multipath often cannot be resolved. Even if distinct peaks
can be resolved, a method must be designed for selecting the
correct peak value, such as choosing the largest or the first
peak [7].

It is worth noting that Gardner et al. proposed an approach
in [32] and [33], which exploits the cyclostationarity property
of a certain signal to obtain substantial tolerance to noise and
interference. The cyclostationarity property is a direct result
of the underlying periodicities in the signal due to periodic
sampling, scanning, modulating, multiplexing, and coding
operations employed in the transmitter. Both the frequency-
shifted and time-shifted cross-correlations are utilized to ex-
ploit the unique cyclostationarity property of the signal. Their
method requires the signal of interest to have a known analog
frequency or digital keying rate that is distinct from that of
the interfering signal.

4) Distance estimation via received signal strength mea-
surements : Another category of distance related measure-
ment techniques estimates the distances between neighboring
sensors from the received signal strength measurements [34]–
[38]. These techniques are based on a standard feature found
in most wireless devices, a received signal strength indicator
(RSSI). They are attractive because they require no additional
hardware, and are unlikely to significantly impact local power
consumption, sensor size and thus cost.

In free space, other things being equal the RSS varies as
the inverse square of the distance d between the transmitter
and the receiver. Let us denote this received power by Pr(d).
The received power Pr(d) is related to the distance d through
the Friis equation [39]:

Pr(d) =
PtGtGrλ

2

(4π)2d2
(5)

where Pt is the transmitted power, Gt is the transmitter
antenna gain, Gr is the receiver antenna gain and λ is the
wavelength of the transmitter signal in meters.

The free-space model however is an over-idealization, and
the propagation of a signal is affected by reflection, diffrac-
tion and scattering. Of course, these effects are environment
(indoors, outdoors, rain, buildings, etc.) dependent. However,
it is accepted on the basis of empirical evidence that it is
reasonable to model the RSS Pr(d) at any value of d at a
particular location as a random and log-normally distributed
random variable with a distance-dependent mean value [40],
[41]. That is,

Pr(d)[dBm] = P0(d0)[dBm]− 10nplog10

(
d

d0

)
+ Xσ (6)

where P0(d0)[dBm] is a known reference power value in dB
milliwatts at a reference distance d0 from the transmitter, np

is the path loss exponent that measures the rate at which the
RSS decreases with distance and the value of np depends
on the specific propagation environment, Xσ is a zero mean
Gaussian distributed random variable with standard deviation
σ and it accounts for the random effect of shadowing [39]. In

this paper, we use the notation [dBm] to denote that power is
in dB milliwatts units. Otherwise, it is in milliwatts.

It is trivial to conclude from Eq. 6 that, given the RSS
measurement, Pij , between a transmitter i and a receiver j,
a maximum likelihood estimate of the distance, dij , between
the transmitter and the receiver is:

d̂ij = d0

(
Pij

P0(d0)

)−1/np

(7)

Note that Pij and P0(d0) in Eq. 7 are measured in milliwatts
instead of dB milliwatts. Using Eq. 6 and Eq. 7, the estimated
distance d̂ij can be related to the true distance:

d̂ij = dij10−
Xσ

10np = dij10−
ln(10)Xσ

10npln(10) = dije
− Xσ

ηnp (8)

where η = 10
ln(10) . The expected value of d̂ij is:

E
(
d̂ij

)
=

1√
2πσ

∫ ∞

−∞
dije

− Xσ
ηnp e−

Xσ
2σ2 dXσ = dije

σ2

2η2n2
p

(9)
Thus the maximum likelihood estimate in Eq. 7 is a biased
estimate of the true distance and an unbiased estimate is given
by:

d̂ij = d0

(
Pij

P0(d0)

)−1/np

e
− σ2

2η2n2
p (10)

C. RSS profiling measurements

Yet another category of localization techniques, i.e., the
RSS profiling-based localization techniques [42]–[46], work
by constructing a form of map of the signal strength behavior
in the coverage area. The map is obtained either offline by
a priori measurements or online using sniffing devices [44]
deployed at known locations. They have been mainly used for
location estimation in WLANs, but they would appear to be
attractive also for wireless sensor networks.

In this technique, in addition to there being anchor nodes
(e.g., access points in WLANs) and non-anchor nodes, a large
number of sample points (e.g., sniffing devices) are distributed
throughout the coverage area of the sensor network. At each
sample point, a vector of signal strengths is obtained, with the
jth entry corresponding to the jth anchor’s transmitted signal.
Of course, many entries of the signal strength vector may be
zero or very small, corresponding to anchor nodes at larger
distances (relative to the transmission range or sensing radius)
from the sample point. The collection of all these vectors
provides (by extrapolation in the vicinity of the sample points)
a map of the whole region. The collection constitutes the RSS
model, and it is unique with respect to the anchor locations and
the environment. The model is stored in a central location. By
referring to the RSS model, a non-anchor node can estimate
its location using the RSS measurements from anchors.

In summary, a number of measurement techniques are
available for WSN localization. Which measurement technique
to use for location estimation will depend on the specific
application. Typically, localization algorithms based on AOA
and propagation time measurements are able to achieve better
accuracy than localization algorithms based on RSS measure-
ments. However, that accuracy is achieved at the expense
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of higher equipment cost. Patwati et al. gave the Cramér-
Rao lower bounds for location estimation using TOA, RSS
and AOA measurements respectively in [5]. However the
Cramér-Rao lower bound may be too optimistic when the
measurement error deviates from Gaussian. Moreover the
Cramér-Rao bound assumes the underlying estimator is an
unbiased estimator. This assumption may not be satisfied by
many localization techniques.

III. ONE-HOP LOCALIZATION TECHNIQUES

In this section, we discuss the principles of one-hop lo-
calization techniques in which the non-anchor node to be
localized is the one-hop neighbor of a sufficient number of
anchors.

A. AOA based one-hop localization techniques

In the absence of noise and interference, bearing lines
from two or more receivers will intersect to determine a
unique location, i.e., the location estimate of the transmitter.
In the presence of noise, more than two bearing lines will not
intersect at a single point and statistical algorithms, sometimes
called triangulation or fixing methods, are required in order to
obtain the location estimate of the transmitter [47], [48]. This
is shown in Fig. 5

Fig. 5. In the presence of noise, bearing lines from three receivers will not
interact at the same point.

Location estimation using bearing measurements is a well
researched problem [47]–[52]. The pioneering work in the
area is that of Stansfield [49]. His approach has been fur-
ther generalized in [50], [52] and has been implemented in
many practical systems. Another well-known approach is the
maximum likelihood estimator [47], [51].

The 2D localization problem using bearing measurements
can be formulated as follows. Let xt = [xt, yt]T be the
true coordinate vector of the transmitter to be estimated from
bearing measurements β = [β1, ..., βN ]T , where N is the total
number of receivers. Let xi = [xi, yi]T be the known location
of the receiver associated with the ith bearing measurement.
Denote by θ(x) = [θ1(x), ..., θN (x)]T the bearings of a
transmitter located at x = [x, y]T at the receiver locations,
where θi(x), 1 ≤ i ≤ N is related to x by:

tan θi(x) =
y − yi

x− xi
(11)

The measured bearings of the transmitter consist of the true
bearings corrupted by additive noises ε = [ε1, ..., εN ]T , which
are assumed to be zero-mean Gaussian noises with N × N
covariance matrices S = diag{σ2

1 , ..., σ2
N}, i.e.,

β = θ(xt) + ε (12)

When the receivers are identical and much closer to each other
than to the transmitter, the variances of bearing measurement
errors are equal, i.e., σ2

1 = · · ·σ2
N = σ2. The ML estimator of

the transmitter location xt is given by:

x̂t = arg min
1
2
[θ(x̂t)− β]T S−1[θ(x̂t)− β] (13)

= arg min
1
2

N∑

i=1

(θi(x̂t)− βi)2

σ2
i

(14)

The nonlinear minimization problem in Eq. 13 can be solved
by a Newton-Gauss iteration [47], [48]:

x̂t,k+1 = x̂t,k + (15)
(
θx(x̂t,k)T S−1θx(x̂t,k)

)−1
θx(x̂t,k)T S−1 [β − θx(x̂t,k)]

where θx(x̂t,k) denotes the partial derivative of θ with respect
to x evaluated at x̂t,k. The use of Eq. 15 requires an initial
estimate close enough to the true minimum of the cost
function. Such an initial estimate may be obtained from prior
information, or using a suboptimal procedure [48].

The Stansfield approach assumes that the measurement error
is small enough such that εi ≈ sin εi, 1 ≤ i ≤ N . In that case,
the cost function in Eq. 14 becomes:

1
2

N∑

i=1

sin2(θi(x̂t)− βi)
σ2

i

(16)

Using the relation

sin(θi(xt)− βi) = sin θi(xt) cos βi − cos θi(xt) sin βi

=
(yt − yi) cos βi − (xt − xi) sin βi

ri

where ri =
√

(xt − xi)2 + (yt − yi)2, Eq. 16 becomes

1
2

N∑

i=1

[(yt − yi) cos βi − (xt − xi) sin βi]
2

σ2
i r2

i

=
1
2
(Axt − b)T R−1S−1(Axt − b) (17)

where

A =




sinβ1 − cosβ1

...
...

sin βN − cos βN


 (18)

b =




x1 sin β1 − y1 cos β1

...
xN sin β1 − y1 cos βN


 (19)

R = diag{r2
1, · · · , r2

N} (20)

Stansfield implicitly assumes that even though R is not per-
fectly known, a rough estimate of R can be obtained. Since the
cost function weakly depends on R, the fact that the estimate
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is rough will not significantly affect the solution. Under these
assumptions, the minimization of Eq. 17 with respect to xt is
a well known problem and the solution is given by:

x̂t = (AT R−1S−1A)−1AT R−1S−1b (21)

Note that the closed form solution in the Stansfield approach
depends on two assumptions: first, the measurement error is
small such that εi ≈ sin εi, 1 ≤ i ≤ N ; second, R is known.
One may chose to accept the first assumption but reject the
second assumption. In that case an iterative procedure can be
used to obtain the solution to the minimization problem, which
has no advantage over the ML technique [48].

Analytical expressions for the bias and the covariance ma-
trix of the estimation errors associated with the ML approach
and with the Stansfield approach were given in [48]. It was
shown that the Stansfield approach provides biased estimates
even for a large number of bearing measurements and the
ML approach is asymptotically unbiased at a large number of
measurements. However the RMS (root mean square) error of
Stansfield approach is not necessarily larger than that of the
ML approach. A quite different approach is referred to at the
end of Section III-C, using a very recently introduced method
of exploiting the over-determined nature of the noiseless
problem.

B. TDOA-based one-hop localization techniques
Given the TDOA measurement 4tij and the coordinates of

receivers i and j, Eq. 3 defines one branch of a hyperbola
whose foci are at the locations of receivers i and j and on
which the transmitter rt must lie. In <2, measurements from a
minimum of three receivers are required to uniquely determine
the location of the transmitter. This is illustrated in Fig. 6.

Fig. 6. Intersecting hyperbolas from three receivers.

In a system of N receivers, there are N − 1 linearly
independent TDOA equations, which can be written compactly
as:


||r1 − rt|| − ||rN − rt|| − c4 t1 N

...
||rN−1 − rt|| − ||rN − rt|| − c4 tN−1 N


 = 0 (22)

In practice, 4tij is not available; instead we have the noisy
TDOA measurement 4t̃ij given by:

4t̃ij = 4tij + nij (23)

where nij denotes an additive noise, which is usually assumed
to be an independent zero-mean Gaussian distributed random
variable. Eq. 22 is a nonlinear equation that is difficult to solve,
especially when the receivers are arranged in an arbitrary
fashion. Moreover, in the presence of noise, Eq. 22 may not
have a solution.

A noisy version of Eq. 22 can be written as:



4t̃1 N

...
4t̃N−1 N


 =




||r1−rt||−||rN−rt||
c
...

||rN−1−rt||−||rN−rt||
c


 +




ε1 N

...
εN−1 N




(24)
Denote by 4t̃ the TDOA measurement vec-
tor [4t̃1 N , . . . ,4t̃N−1 N ]T . Denote by f(rt)
the vector [ 1c (||r1 − rt|| − ||rN − rt||) , . . . ,
1
c (||rN−1 − rt|| − ||rN − rt||)]T and denote by S the
covariance matrix of the TDOA measurement errors. The ML
estimator minimizes the following quadratic function:

Q(r̂t) =
[4t̃− f(r̂t)

]T
S−1

[4t̃− f(r̂t)
]

(25)

in which f(rt) is a nonlinear vector function. In order to obtain
a reasonably simple estimator, f(rt) can be linearized using
Taylor series around a reference point r0:

f(rt) ≈ f(r0) + fr(r0)(rt − r0) (26)

where fr(r0) is a (N−1)×2 (in <2) matrix of partial derivative
of f with respect to r evaluated at r0. A recursive solution to
the ML estimator can then be obtained [47]:

r̂t,k+1 = r̂t,k + (27)(
fr(rt,k)T

S−1fr(rt,k)
)−1

fr(rt,k)T
S−1

[4t̃− f(rt,k)
]

This method relies on a good initial guess of the transmitter lo-
cation. Moreover, in some situations this method can result in
significant location estimation errors due to geometric dilution
of precision (GDOP) effects. GDOP describes a situation in
which a relatively small ranging error can result in a large
location estimation error because the transmitter is located
on a portion of the hyperbola far away from both receivers
[7], [53]. Fang [54] gave an exact solution to the hyperbolic
equations in Eq. 22 when the number of TDOA measurements
are equal to the number of unknown transmitter coordinates.
However his solution cannot make use of extra measurements.
Other techniques that can deal with the more general situation
with extra measurements include the spherical interpolation
method [55], which is derived from least-squares “equation-
error” minimization, and the divide and conquer method [56].
The divide and conquer estimate is formed by combining
the maximum likelihood estimates using possibly overlapping
subsections of the measurement data vector. The divide and
conquer method can achieve the optimum performance but it
requires that the Fisher information matrix is sufficiently large.
Chan et al. [57] developed a closed form solution valid for
an arbitrary number of TDOA measurements and arbitrarily
distributed transmitters. The solution is an approximation of
the maximum likelihood estimator when the TDOA measure-
ment errors are small. Chan’s method performs significantly
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better than the spherical interpolation method and is more
robust against noise than the divide and conquer method. The
computational complexity of Chan’s method is comparable
to the spherical interpolation method but substantially less
than the Taylor-series method [47]. Recently, Doǧançay and
Drake et al. developed a closed form solution for localization
of distant transmitters based on triangulation of hyperbolic
asymptotes [58], [59]. The hyperbolic curves are approximated
by linear asymptotes. The solution exhibits some performance
degradation with respect to the maximum likelihood estimator
at low noise levels but outperforms the maximum likelihood
estimator at medium to high noise levels.

C. Distance-based one-hop localization techniques
The most well-known distance-based localization technique

is based on use of GPS. The GPS space segment consists of
24 satellites in the medium earth orbit at a nominal altitude of
20, 200km with an orbital inclination of 550. Each satellite
carries several high accuracy atomic clocks and radiates a
sequence of bits that starts at a precisely known time. The
location of a GPS satellite at any particular time instant
is known. A GPS receiver located on the earth derives its
distance to a GPS satellite from the difference of the time
a GPS signal is received at the receiver and the time the
GPS signal is radiated by the GPS satellite. Ideally, distance
measurements to three GPS satellites allow the GPS receiver
to uniquely determine its position. In reality, four satellites,
rather than three, are required because of synchronization
error in the receiver’s clock. The fourth distance measurement
provides information from which the synchronization error of
the receiver can be corrected and the receiver’s clock can be
synchronized to an accuracy better than 100ns.

Generally in a WSN, for a non-anchor node at unknown
location xt with noise-contaminated distance measurements
d̃1, . . . , d̃N to N anchors at known locations x1, . . . ,xN ,
the location estimation problem can be formulated using a
maximum likelihood approach as:

x̂t = arg min
[
d(x̂t)− d̃

]T

S−1
[
d(x̂t)− d̃

]
(28)

where d̃ is a N × 1 distance measurement vector, d(x̂t) is
also a N ×1 vector [||x̂t − x1||, . . . , ||x̂t − xN ||] and S is the
covariance matrix of the distance measurement errors. This
minimization problem can be solved using a similar procedure
described in Section III-A and Section III-B.

An interesting development in the area is the use of the
Cayley-Menger determinant [60], [61] to reduce the impact
of distance measurement errors on the location estimate [62],
[63]. To illustrate the concept, consider a non-anchor node xt

having distance measurements to three anchors x1,x2,x3 in
<2, which is shown in Fig. 7.

The Cayley-Menger determinant of this quadrilateral is
given by:

D(x1,x2,x3,xt) =

∣∣∣∣∣∣∣∣∣∣

0 d2
12 d2

13 d2
t1 1

d2
12 0 d2

23 d2
t2 1

d2
13 d2

23 0 d2
t3 1

d2
t1 d2

t2 d2
t3 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣

(29)

Fig. 7. A fully-connected planar quadrilateral in sensor networks.

A classical result on the Cayley-Menger determinant is given
by the following theorem:

Theorem 1: (Theorem 112.1 in [61]) Consider an n-tuple
of points x1, ...,xn in m-dimensional space with n ≥ m + 1.
The rank of the Cayley-Menger matrix M(x1, ...,xn) (defined
analogously to the right side of Eq. 29 but without the
determinant operation) is at most m + 1.
According to the above theorem, in <2,

D(x1,x2,x3,xt) = 0 (30)

Note that the distances between anchors d12, d13 and d23 can
be inferred from known anchor positions. The true distances
between the non-anchor node and the anchors are related to
the measured distances by:

d̃ti = dti + εi, 1 ≤ i ≤ 3 (31)

Putting Eq. 31 into Eq. 30, it can be shown that [62]:

εT Aε + εT b + c = 0 (32)

where ε = [ε1, ε2, ε3]T , the matrix A, vectors b and c can
be expressed in the form of known inter-anchor distances
d12, d13, d23 and measured distances d̃t1, d̃t2, d̃t3. Eq. 32 forms
an additional equality constraint on the non-anchor node
position. For a non-anchor node forming m quadrilaterals with
neighboring anchors, there are m independent equations like
Eq. 32. These equality constraints can be combined with Eq.
28 using Lagrange multipliers [62]. Numerical methods, such
as the gradient descent algorithm, can be exploited to search
for the solution, which gives a location estimate superior to
that obtained using Eq. 28 only.

The essence of using the Cayley-Menger determinant to
reduce the impact of distance measurement errors is: the six
edges of a planar quadrilateral are not independent, instead
they must satisfy the equality constraint in Eq. 30. This
equality constraint can be exploited to reduce the impact of
distance measurement errors. This idea may also extend to
TDOA and AOA [64] based localization.

D. Lighthouse approach to one-hop localization

The lighthouse approach uses a base station equipped with
three mutually perpendicular parallel optical beams to locate
all optical receivers within the range and line-of-sight of the
beams in <3. In Section II-B.2, we have described the principle
of the lighthouse approach to measure the distance of an
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optical receiver to the rotational axis of a parallel optical beam
[24]. Without loss of generality, assuming the rotational axes
of the three mutually perpendicular parallel optical beams are
X , Y , and Z axes respectively. As shown in Fig. 8, ignoring
the measurement errors, the unknown receiver location xt =
[xt, yt, zt]T is related to the distance measurements to the X ,
Y , and Z axes, denoted by d̃x, d̃y and d̃z respectively, through
the following equations:

d̃2
x = y2

t + z2
t (33)

d̃2
y = x2

t + z2
t (34)

d̃2
z = x2

t + y2
t (35)

Solving the above equations gives eight solutions, each corre-
sponding a point in one of the eight quadrants in <3. By using
priori knowledge of which quadrant the receiver is located in,
only one solution is chosen.

Fig. 8. An illustration of the lighthouse approach to localization.

A practical system using the lighthouse approach for 2D
(XY plane) localization was reported to have a mean relative
error of 1.1% in x axis (i.e., 1

M

∑M
i=1 |x̂t,i − xt,i|/xt,i, M is

the total number of receivers in the experiment) and a mean
relative error of 2.8% in y axis (i.e., 1

M

∑M
i=1 |ŷt,i−yt,i|/yt,i)

[24]. Techniques dealing with non-ideal situations such as
misalignment of the rotational axes of optical beams and non-
parallel beams were also discussed in [24].

E. RSS-profiling based localization

Given the RSS model constructed using the procedure
described in Section II-C, each non-anchor node unaware of
its location uses the signal strength measurements it collects,
stemming from the anchor nodes within its sensing region, and
thus creates its own RSS finger print, which is then transmitted
to the central station. Then the central station matches the
presented signal strength vector to the RSS model, using
probabilistic techniques or some kind of nearest neighbor-
based method, which chooses the location of a sample point
whose RSS vector is the closest match to that of the non-
anchor node to be the estimated location of the non-anchor
node [42]. In this way, an estimate of the location of the non-
anchor node can be obtained. The estimate is transmitted to
the non-anchor node from the central station. Obviously, a
non-anchor node could also obtain the full RSS model from
the central station and perform its own location estimation.

The accuracy of this technique depends on two distinct
factors: the particular technique used to build the RSS model,

with the resultant quality of that model, and the technique used
to fit the measured signal strength vector from a non-anchor
node into the appropriate part of the model. In comparison
with distance-estimation based techniques, the RSS-profiling
based techniques produce relatively small location estimation
errors [42]. In [35], Elnahrway et al. proposed several area-
based localization algorithms using RSS profiling; these al-
gorithms are area based because instead of estimating the
exact location of the non-anchor node, they simply estimate a
possible area that should contain it. Two different performance
parameters apply: accuracy, or the likelihood that an object
is within the area, and precision, i.e., the size of the area.
Reference [35] also considered three different techniques for
the area based algorithms, viz., single point matching, area
based probability and Bayesian networks. The performance
of all three algorithms was compared with the point based
algorithm of [42]. The conclusion was that all algorithms
performed similarly, with a fundamental limit existing in the
case of the RSS-profiling based localization algorithms, a
conclusion also consistent with that of [65]. A rule of thumb
is provided in [35]. Using 802.11 technology, with dense
sampling and a good algorithm, one can expect a median
localization error (i.e., distance between the estimated location
and the true location) of about 3m and a 97th percentile error
of about 9m. With relatively sparse sampling, every 6m, or
37 m2/sample, one can still achieve a median error of 4.5m
and 95th percentile error of 12m.

In [66], Ni et al. presented a weighted version of the RSS-
profiling based localization technique which achieves a more
accurate location estimate. Denote by γ the signal strength
vector of the non-anchor node. Denote by βi and xi the
signal strength vector and the location vector of the ith sample
point respectively. In the weighted version of the RSS-profiling
based localization algorithm, the location estimate of the non-
anchor point is given by:

x̂t =
N∑

i=1

1
||γ−βi||2∑N

i=1
1

||γ−βi||2
xi (36)

where ||γ − βi|| denotes the Euclidean distance between the
two vectors γ and βi, and N is the total number of sample
points. Experimental evaluation showed that Ni’s approach
achieves a median localization error of 1m and a maximum
localization error of 2m, which appears to be better than those
reported in [67].

The major practical obstacle in the RSS-profiling based
localization is the extensive amount of profiling data required.
Substantial and possibly costly initial experiments are needed
to establish the model. Subsequent changes in the environment
(e.g. inside a building, office occupancy can change) can affect
the model, and so a static model derived from a single-shot
experiment may be inadequate in some applications. Recently,
there has been proposed a method of online profiling, which
would reduce or possibly eliminate the amount of profiling
required before deployment, but at the expense of deploying
a large number of additional devices (termed “sniffers”) at
known locations [36], [44]. Together with a large number
of stationary emitters (anchor nodes) deployed at known
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locations, the “sniffers” can be used to construct and update
the RSS model online.

F. Localization based on hybrid measurements

There are a number of other localization algorithms based
on data fusion [68] of hybrid measurements. McGuire et al.
explored data fusion of RSS and TOA measurements for
mobile terminal localization in a CDMA cellular network [69].
Li et al. considered mobile user localization using hybrid
TDOA/AOA measurements in a macrocell wideband CDMA
system with frequency division duplex [70]. Gu et al. con-
sidered mobile user localization in a CDMA cellular network
using hybrid AOA/TOA measurements [71]. Kleine-Ostmann
et al. [72] presented a data fusion architecture for combining
TDOA and TOA measurements. Thomas et al. considered the
fusion of TDOA and AOA measurements [73]. Catovic [74]
computed the Cramér-Rao bounds on the location estimation
accuracy of two different hybrid schemes, i.e., TOA/RSS and
TDOA/RSS, and found that hybrid schemes offer improved ac-
curacy with respect to conventional TOA and TDOA schemes.
Fundamentally, localization based on hybrid measurements
can achieve a performance improvement over that based on
a single measurement type because measurement noise for
different types of measurements comes from different sources.
Therefore errors in the location estimate for each measurement
type are at least partially independent. This independence
between different types of measurements can be exploited by
data fusion techniques [68] to create estimators that have better
accuracy than estimators based on single measurement types.
Among those hybrid techniques, the fusion of RSS and TOA
measurements appears to be the most attractive for a WSN
because of its relatively simple hardware requirement.

IV. NONLINE-OF-SIGHT ERROR MITIGATION

A common problem in many localization techniques is
the nonline-of-sight (NLOS) error mitigation. NLOS errors
between two sensors can arise when either the line-of-sight
between them is obstructed, perhaps by a building, or the line-
of-sight measurements are contaminated by reflected and/or
diffracted signals. As NLOS error mitigation in AOA based lo-
calization [75]–[77] and distance based localization [78]–[81]
share some degree of commonality, we review them together in
this section. Most NLOS error mitigation techniques assume
that NLOS corrupted measurements only constitute a small
fraction of the total measurements. Since NLOS corrupted
measurements are inconsistent with LOS expectations, they
can be treated as outliers. A typical approach is to assume
that the measurement error has a Gaussian distribution, then
the least-squares residuals are examined to determine if NLOS
errors are present [76], [80], [81] (by regarding any large
residual as due to the NLOS signals). Unfortunately, this
approach fails to work when multiple NLOS measurements
are present as the multiple outliers in the measurement tend to
bias the final estimate decision and reduce the residuals. This
behavior motivates the use of deletion diagnostics. In deletion
diagnostics, the effects of eliminating various measurements
from the total set are computed and ranked [80], [82].

Some other approaches are proposed to reduce estimation
errors for time-of-arrival (TOA) [79], [83] and TDOA [75]
respectively when the majority of the measurements are NLOS
measurements. In [79], Venkatraman et al. employed a con-
strained nonlinear optimization approach for TOA NLOS error
mitigation in a cellular network. Bounds on the NLOS error
and the relationship between the true ranges are extracted from
the geometry of the cell layout and the measured range circles
to serve as constraints. Wang et al. proposed an algorithm
which attempts to mitigate NLOS error effect in a TOA
based location system, utilizing the information that NLOS
error causes the measured distance to be greater than the true
distance. A quadratic programming approach is used to solve
for an ML estimate of the source location [84]. Cong et al.
proposed two NLOS error mitigation algorithms assuming a
full knowledge of NLOS error distribution (i.e., the proba-
bility that each measurement is NLOS and the probability
distribution of NLOS error) and a partial knowledge of NLOS
error distribution (i.e., the probability that each measurement
is NLOS and the mean value of the probability distribution of
NLOS error) respectively [75]. However this prior information
may be difficult to obtain in a WSN.

V. CONNECTIVITY BASED MULTIHOP LOCALIZATION
ALGORITHMS

In the following sections, we shall review multihop lo-
calization techniques in which the non-anchor nodes are not
necessarily the one-hop neighbors of the anchors. In particular,
we focus on connectivity-based and distance-based multihop
localization algorithms due to their prevalence in multihop
WSN localization techniques.

There is a distinct category of localization algorithms, called
connectivity-based or “range free” localization algorithms,
which do not rely on any of the measurement techniques in the
earlier sections. Instead they use the connectivity information,
i.e., “who is within the communications range of whom” [85]
to estimate the locations of the non-anchor nodes. The princi-
ple of these algorithms is: a sensor being in the transmission
range of another sensor defines a proximity constraint between
both sensors, which can be exploited for localization. Bulusu
et al. [86] and Niculescu et al. [87] developed distributed
connectivity-based localization algorithms; Shang et al. [85]
and Doherty et al. [88] developed centralized connectivity-
based localization algorithms.

In [86], Bulusu et al. defined a connectivity metric, which
is the ratio of the number of transmitter signals successfully
received to the total number of signals from that transmit-
ter, to measure the quality of communication for a specific
transmitter-receiver pair. A receiver at an unknown location
uses the centroid of its reference points as its location estimate,
where a reference point is a transmitter with a known location
and whose connectivity metric exceeds a certain threshold
(90% in [86]). An experiment was conducted in a 10m×10m
outdoor parking lot using four reference points placed at the
four corners of the 10m × 10m square. The 10m × 10m
square was subdivided into 100 smaller 1m×1m grids and the
receivers were placed at the grid points. Experimental results
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showed that for over 90% of the data points the localization
error falls within 30% of the separation distance between two
adjacent reference points.

The “DV(distance vector)-hop” approach developed by
Niculescu et al. [87] starts with all anchors flooding their
locations to other nodes in the network. The messages are
propagated hop-by-hop and there is a hop-count in the mes-
sage. Each node maintains an anchor information table and
counts the least number of hops that it is away from an anchor.
When an anchor receives a message from another anchor, it
estimates the average distance of one hop using the locations
of both anchors and the hop-count, and sends it back to the
network as a correction factor. When receiving the correction
factor, a non-anchor node is able to estimate its distance to
anchors and performs trilateration to estimate its location. The
algorithm was tested using simulation with a total of 100 nodes
uniformly distributed in a circular region of diameter 10. The
average node degree, i.e., average number of neighbors per
node, is 7.6. Simulation results showed that the algorithm has
a mean error of 45% transmission range with 10% anchors;
and has a reduced mean error of about 30% transmission range
when the percentage of anchors increases above 20%.

Shang et al. [85] developed a centralized algorithm by using
multi-dimensional scaling (MDS). MDS was originally used
in psychometrics and psychophysics and it is a set of data
analysis techniques that displays the structure of distance-like
data as a geometric picture. In their algorithm, the shortest
paths (i.e., the number of hops) between all pairs of nodes are
first computed, which are used to construct a distance matrix
for MDS. Then MDS is applied to the distance matrix and
an approximate value of the relative coordinates of each node
is obtained. Finally, the relative coordinates are transformed
to the absolute coordinates by aligning the estimated relative
coordinates of anchors with their absolute coordinates. The
location estimates obtained using earlier steps can be refined
using a least-squares minimization. Simulation was conducted
using 100 nodes uniformly distributed in a square of size
10×10 and four anchors were randomly placed in the region.
The average node degree is 10. Simulation results showed
a localization error of 0.35. Shang et al. further improved
their algorithm in [89] by dividing the entire sensor network
into overlapping local regions. Localization is performed in
individual regions using the earlier described procedures. Then
these local maps are patched together to form a global map
by using common nodes shared between adjacent regions.
The improved algorithm can achieve better performance on
irregularly-shaped networks by avoiding the use of distance
information between far away nodes. The improved algorithm
can also be implemented in a distributed fashion.

In the centralized algorithm of Doherty et al. [88], the
connectivity-based localization problem is formulated as a
convex optimization problem and solved using existing al-
gorithms for solving linear programs and semidefinite pro-
gramming (SDP) algorithms. Semidefinite programs are a

generalization of the linear programs and have the form:

Minimize cT x (37)
Subject to: F(x) = F0 + x1F1 + · · ·+ xnFn (38)

Ax < b (39)
Fi = FT

i (40)

where x = [x1,x2, ...,xn]T and xi represents the coordinate
vector of node i, i.e., xi = [xi, yi]. The quantities A, b,
c and Fi are all known. The inequality 39 is known as a
linear matrix inequality. A connection between node i and
j can be represented by a “radial constraint” on the node
locations: ||xi−xj || ≤ R, where R is the transmission range.
This constraint is a convex constraint and can be transformed
into a LMI using Schur complements [88]. A solution to
the coordinates of the non-anchor nodes satisfying the radial
constraints can be obtained by leaving the objective function
cT x blank and solving the problem. Because there may be
many possible coordinates of the non-anchor nodes satisfying
the constraints, the solution may not be unique. If we set the
element of c corresponding to xi (or yi) to be 1 (or -1) and
all other elements of c to be zero, the problem becomes a
constrained maximization (or minimization) problem. A lower
bound or an upper bound on xi (or yi) satisfying the radial
constraints can be computed, from which a rectangular box
bounding the location estimates of the non-anchor nodes can
be obtained. The algorithm was tested using simulation with
a total of 200 nodes randomly placed in a square of size
10R×10R and the average node degree is 5.7 [88]. Simulation
results showed that the mean location error is a monotonically
decreasing function of the number of anchors. When the
number of anchors is small, the estimated location is as poor as
a random guess of the node’s coordinates. The mean location
error reduces to R when the number of anchors increases to
18; it reduces to 0.5R when the number of anchors increases
to 50.

In comparison with other localization algorithms, the most
attractive feature of the connectivity-based localization algo-
rithms is their simplicity. However they can only provide
a coarse grained estimate of each node’s location, which
means that they are only suitable for applications requiring
an approximate location estimate only. Also the localization
error is highly dependent on the node density of the network,
the number of anchors and the network topology. The location
error will be larger in a network with a smaller node density,
fewer anchors, or irregular network topology.

VI. DISTANCE-BASED MULTIHOP LOCALIZATION
ALGORITHMS

The core of distance-based localization algorithms is the use
of inter-sensor distance measurements in a sensor network to
locate the entire network. Based on the approach of process-
ing the individual inter-sensor distance data, distance-based
localization algorithms can be considered in two main classes:
centralized algorithms and distributed algorithms. Centralized
algorithms use a single central processor to collect all the
individual inter-sensor distance data and produce a map of
the entire sensor network, while distributed algorithms rely
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on self-localization of each node in the sensor network using
the distances the node measures and the local information
it collects from its neighbors. Next we review the main
characteristics as well as relevant studies in the literature for
each of the two classes and compare them at the end of the
section.

A. Centralized algorithms
In certain networks where a centralized information archi-

tecture already exists, such as road traffic monitoring and
control, environmental monitoring, health monitoring, and
precision agriculture monitoring networks, the measurement
data of all the nodes in the network are collected in a central
processor unit. In such a network, it is convenient to use a
centralized localization scheme.

Once feasible to implement, the main motive behind the
interest in centralized localization schemes is the likelihood of
providing more accurate location estimates than those provided
by distributed algorithms. In the literature, there exist three
main approaches for designing centralized distance-based lo-
calization algorithms: multidimensional scaling (MDS), linear
programming and stochastic optimization approaches.

The MDS approach used in the connectivity-based local-
ization algorithms mentioned in Section V, e.g., [85], can be
readily extended to incorporate distance measurements into
the corresponding optimization problem. Such an extension of
the algorithm in [85] using the MDS approach can be found
in [90]. In this work, the whole sensor network is divided
into smaller groups where adjacent groups may share common
sensors. Each group contains at least three anchors or sensors
whose locations have already been estimated. MDS is used
to estimate the relative locations of sensors in each group
and build local maps. Local maps are then stitched together
to form an estimated global map of the network by utilizing
common sensors between adjacent local maps. The estimated
locations of the anchors in this estimated global map are
later iteratively aligned with the true locations of anchors to
obtain the final estimated global map. Although this algorithm
appears to have a distributed architecture, since a large number
of iterations (implies a high communication cost) are required
for the algorithm to converge, it is more appropriate to be
implemented using a centralized architecture. Ji’s algorithm
was tested using a total of 400 nodes (10% anchors) uniformly
distributed in a square of 100× 100 and a transmission range
of R = 10. The distance measurement error was assumed to
be uniformly distributed in the range [0, η]. It was shown that
when η is 0, 0.05R, 0.25R and 0.5R, the localization error is
0.1R, 0.15R, 0.3R and 0.45R respectively.

Similarly to the MDS approach, the semi-definite program-
ming (SDP) approach used for connectivity-based localiza-
tion algorithms can also be extended to incorporate distance
measurements [88]. In [91] the distance-based sensor network
localization problem is formulated in a quadratic form and
solved using SDP; and in [92] the result in [91] is improved
using a gradient search procedure to fine-tune the initial
solution obtained using SDP.

The stochastic optimization approach suggests an alternative
formulation and solution of the distance-based localization

problem using combinatorial optimization notions and tools.
The main tool used in this approach is the simulated annealing
(SA) technique [93], which is a generalization of the well
known Monte Carlo method in combinatorial optimization.
One particular property of the SA method is its robustness
against converging to a false local minimum. In order to apply
this tool to the problem of localizing a sensor network with m
anchor nodes numbered from 1 to m and n non-anchor nodes
numbered from m+1 to m+n, the location estimation problem
is reformulated in an optimization framework as minimization
of the cost function

J =
m+n∑

i=m+1

∑

j∈Ni

(
‖x̂i − x̂j‖ − d̃ij

)2

(41)

over {x̂i|m + 1 ≤ i ≤ m + n} , where Ni, x̂i and d̃ij denote,
respectively, the neighborhood of node i, the estimate of the
location xi of node i, and the measured distance between nodes
i and j.

An algorithm to solve the above optimization problem using
the SA method is provided in [93]. The performance of this
algorithm is improved in [94] utilizing the information about
the sensor locations hidden in the knowledge of whether a
given pair of sensors are neighbors and mitigating a certain
kind of localization error caused by flip ambiguity, a concept
which is described in detail in Section VII. The effectiveness
of the enhanced algorithm in [94] is also demonstrated via
simulations where the relation between the actual value dij

and the measured value d̃ij of the distance between nodes i
and j is assumed to be d̃ij = dij(1 + 0.1ξij), where ξij is a
zero-mean Gaussian noise of unit variance. The simulations
were performed in a sensor network of 200 nodes uniformly
distributed in a square of size 10 by 10. The results of these
simulations were compared with the ones obtained using the
SDP approach with gradient search improvement [92] in Fig.
9, where the location estimation error is normalized by the
transmission range. As can be seen in the figure, the SA
algorithm has better accuracy than the SDP algorithm with
gradient search. This is an expected result of robustness of
SA against convergence to false local minima; however it is
worth noting that the computational cost of the SA approach
is higher.

B. Distributed Localization

Similarly to the centralized ones, the distributed distance-
based localization approaches can be obtained as an extension
of the distributed connectivity-based localization algorithms
in Section V to incorporate the available inter-sensor distance
information. In [87], after developing the “DV-hop” algorithm
described in Section V, a modified version of this algorithm
which includes distance measurements into the localization
process, the “DV-distance” algorithm, is presented as well.
The main idea in the “DV-distance” algorithm as compared to
the “DV-hop” algorithm is propagation of measured distance
among neighboring nodes instead of hop count.

Two similar approaches are the two-stage localization
scheme of Savarese et al. [95] and the four-stage algorithm
of Savvides et al. [96]. In the first stage of the scheme in
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Fig. 9. Performance of SA algorithm with flip ambiguity mitigation and
SDP algorithm with gradient search improvement.

[95], a “hop-terrain” algorithm, which is similar to the “DV-
hop” algorithm, is used to obtain an initial estimate of the
node locations. In the second stage, the measured distances
between neighboring nodes are used to refine the initial
location estimates iteratively. At each iteration step, each node
updates its location estimate by a least-squares trilateration
using the location estimates of its neighbors and the measured
distances. To mitigate location estimate errors caused by error
propagation and unfavorable network topologies, a confidence
value is assigned to each node’s location, where an anchor
has a higher confidence value (close to 1) and a non-anchor
node with few neighbors and poor constellation has lower
confidence value (close to 0). The proposed algorithm is tested
via simulation as well in [95] using a sample network with 400
nodes, 5% of which are anchor nodes, uniformly placed in a
100 by 100 square and an average node degree greater than 7.
The simulation results demonstrated that the algorithm is able
to achieve an average location estimation error of less than
33% of the transmission range in the presence of 5% distance
measurement error (normalized by the transmission range).

The four-stage scheme of [96] is based on introduction
of the notion of “tentative uniqueness”, where a node is
called “tentatively uniquely” localizable if it has at least three
neighbors that are either non-collinear anchors or “tentatively
uniquely” localizable nodes. In the first stage, the “tentatively
uniquely” localizable nodes are selected. The locations of
these tentatively uniquely localizable nodes are estimated in
stages two and three. In the second stage, each non-anchor
node produces its estimated distances to at least three anchors
using a “DV-distance” like algorithm. An estimated distance
to an anchor node allows the location of the non-anchor node
to be constrained inside a square centered at that anchor
node. In comparison with a circle, the use of a square may
simplify computation. The estimated distances to more than
three anchors allow the location of the non-anchor node to be
confined inside a rectangular box, which is the intersection
of the squares corresponding to each of these anchors. The
location of the non-anchor node is estimated to be at the

center of the rectangular box. The initial location estimates
obtained in the second stage are refined in the third stage by
a least-squares trilateration using the location estimates of the
neighboring nodes and the measured distances. In the final
stage of the algorithm, the location of each node deemed not
tentatively uniquely localizable in stage one is estimated using
the location estimates of its tentatively uniquely localizable
neighbors.

All of the above three algorithms [87], [95], [96] have three
phases [97]: a) determination of the distances between non-
anchor nodes and anchor nodes; b) derivation of the location
of at least some non-anchor nodes from their distances to
the anchors; c) refinement of the location estimates using
measured distances between neighbors. In [97] the perfor-
mances of the three algorithms and some variants of them
were compared and it was concluded that the algorithms
have comparable performance and which algorithm has better
accuracy depends on the specific application conditions such
as distance measurement error, vertex degree and percentage
of anchors. The algorithm proposed by Nagpal et al. [98] more
recently can be classified into the same category as the above
three algorithms.

There exists another category of distributed localization
algorithms in the literature, where local maps are constructed
using distance measurements between neighboring nodes first
and then common nodes between local maps are used to
stitch them together to form a global map. The localization
algorithms by Ji et al. [90] and Čapkun et al. [99] are typical
examples of this category. In the algorithm of Čapkun et al.
[99], each node builds its local coordinate system and the
locations of its neighbors are calculated in the local coordinate
system. Then the directions of the local coordinate systems
are aligned to be the same using common nodes between
adjacent local coordinate systems. Finally, the local coordinate
systems are reconciled into a global coordinate system using
linear translation. Error propagation and the large number of
iterations required for the algorithm to converge are the major
problems in these algorithms.

A recent direction of research in distributed sensor network
localization is the use of particle filters [100]. Particle filters
have been used in navigation and tracking [101]. In [102],
Ihler et al. formulated the sensor network localization problem
as an inference problem on a graphical model and applied a
variant of belief propagation (BP) techniques, the so-called
nonparametric belief propagation (NBP) algorithm, to obtain
an approximate solution to the sensor locations. In [102],
the NBP idea is implemented as an iterative local message
exchange algorithm, in each step of which each sensor node
quantifies its “belief” about its location estimate, sends this
belief information to its neighbors, receives relevant messages
from them, and then iteratively updates its belief. The iteration
process is terminated only when some convergence criterion is
met about the beliefs and location estimates of the sensors in
the network. The main advantages of the NBP algorithm are its
easy implementation in a distributed fashion and sufficiency
of a small number of iterations to converge. Furthermore it
is capable of providing information about location estima-
tion uncertainties and accommodating non-Gaussian distance



14

measurement errors. It is demonstrated via simulations [102]
that the overall performance of NBP is comparable to that
of a centralized MAP (maximum a posteriori) estimate. Some
future research directions to further improve the NBP approach
can be found in [102].

C. Centralized versus Distributed Algorithms

Centralized and distributed distance-based localization al-
gorithms can be compared from perspectives of location
estimation accuracy, implementation and computation issues,
and energy consumption. It is worth noting that decentralized
localization is strictly harder than centralized, i.e., any algo-
rithm for decentralized localization can always be applied to
centralized problems, but not the reverse.

From the perspective of location estimation accuracy, cen-
tralized algorithms are likely to provide more accurate location
estimates than distributed algorithms. However centralized
algorithms suffer from the scalability problem and generally
are not feasible to be implemented for large scale sensor
networks. Other disadvantages of centralized algorithms, as
compared to distributed algorithms, are their requirement of
higher computational complexity and lower reliability due to
accumulated information inaccuracies/losses caused by multi-
hop transmission over a wireless network.

On the other hand, distributed algorithms are more difficult
to design because of the potentially complicated relationship
between local behavior and global behavior, e.g., algorithms
that are locally optimal may not perform well in a global
sense. Optimal distribution of the computation of a centralized
algorithm in a distributed implementation in general is an
unsolved research problem. Error propagation is another po-
tential problem in distributed algorithms. Moreover, distributed
algorithms generally require multiple iterations to arrive a
stable solution which may cause the localization process to
take longer time than the acceptable in some cases.

To compare the centralized and distributed distance-based
localization algorithms from the communication energy con-
sumption perspective, one needs to consider the individual
amounts of energy required for each type of operation in the
localization algorithm in the specific hardware and the trans-
mission range setting. Depending on the setting, the energy
required for transmitting a single bit could be used to execute
1,000 to 2,000 instructions [103]. Centralized algorithms in
large networks require each sensor’s measurements to be sent
over multiple hops to a central processor, while distributed
algorithms require only local information exchange between
neighboring nodes but many such local exchanges may be
required, depending on the number of iterations needed to
arrive at a stable solution. A comparison of the communication
energy efficiencies of centralized and distributed algorithms
can be found in [104]. It was concluded in [104] that in
general, if in a given sensor network and distributed algorithm,
the average number of hops to the central processor exceeds
the necessary number of iterations, then the distributed algo-
rithm will be more energy-efficient than a typical centralized
algorithm.

VII. GRAPH THEORETIC RESEARCH PROBLEMS IN
DISTANCE-BASED SENSOR NETWORK LOCALIZATION

Despite a significant number of approaches developed for
WSN localization, there are still many unsolved problems
in the area. The challenges to be addressed are both in
analytical characterization of the sensor networks (from the
aspect of localization) and development of (efficient) localiza-
tion algorithms for various classes of sensor networks under
a variety of conditions. In this section, we present some
of these research problems with a discussion on possible
approaches to them. Although these problems may also exist
in localization using other types of measurement techniques
(e.g., TDOA and AOA), we focus on distance-based sensor
network localization.

A fundamental problem in distance-based sensor network
localization is whether a given sensor network is uniquely
localizable or not. A framework that is useful for analyzing and
solving the problem is graph theory [105]–[109]. In a graph
theoretical framework, a sensor network can be represented by
a graph G = (V,E) with a vertex set V and an edge set E,
where each vertex i ∈ V is associated with a sensor node si in
the network, and each edge (i, j) ∈ E corresponds to a sensor
pair si, sj for which the inter-sensor distance dij is known.
The location information about the sensors corresponds to a
representation of the representative graph. In general, a d-
dimensional (d ∈ {2, 3}) representation of a graph G = (V,E)
is a mapping p̄ : V → <d, which assigns a location in <d

to each vertex in V . Given a graph G = (V,E) and a d-
dimensional representation of it, the pair (G, p̄) is called a
d-dimensional framework.

A particular graph property associated with unique local-
izability of sensor networks is global rigidity [106], [108],
[109]. A framework (G, p̄) is globally rigid if every framework
(G, p̄1) satisfying ‖ p̄(i) − p̄(j) ‖=‖ p̄1(i) − p̄1(j) ‖ for
any vertex pair i, j ∈ V , which are connected by an edge in
E, also satisfies the same equality for any other vertex pairs
that are not connected by a single edge. A relaxed form of
global rigidity is rigidity: A framework (G, p̄) is rigid if there
exists a sufficiently small positive constant ε such that every
framework (G, p̄1) satisfying (i) ‖p̄(i) − p̄1(i)‖ < ε for all
i ∈ V and (ii) ‖ p̄(i) − p̄(j) ‖=‖ p̄1(i) − p̄1(j) ‖ for any
vertex pair i, j ∈ V , which are connected by an edge in E,
also satisfies the equality in (ii) for any other vertex pairs that
are not connected by a single edge.

If a framework (G, p̄) is rigid but not globally rigid, like
the ones in Fig. 10, there exist two types of discontinuous
deformations that can prevent a representation of G consistent
with p̄, i.e., a representation (G, p̄1) satisfying ‖ p̄(i) −
p̄(j) ‖=‖ p̄1(i) − p̄1(j) ‖ for any vertex pair i, j ∈ V ,
which are connected by an edge in E, from being unique
(in the sense that it differs from other such representations
at most by translation, rotation or reflection) [107], [110]:
flip and discontinuous flex ambiguities. In flip ambiguities in
<d, (d ∈ {2, 3}), at least a vertex (sensor node) v has a
set of neighbors which span a (d− 1)-dimensional subspace,
which leads to the possibility of the neighbors forming a
mirror through which v can be reflected. Fig. 10(a) depicts an
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example of flip ambiguity. In discontinuous flex ambiguities,
the temporary removal of an edge or, in some cases, a set
of edges allows the remaining part of the graph to be flexed
to a different realization (which cannot be obtained from the
original realization by translation, rotation or reflection) and
the removed edge reinserted with the same length. Fig. 10(b)
depicts an example.
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Fig. 10. An illustration of discontinuous deformations on non-globally rigid
frameworks: (a) Flip ambiguity: vertex 4 can be reflected across the edge (2,3)
to a new location without violating the distance constraints. (b) Discontinuous
flex ambiguity: removing the edge (1,4), flexing the edge triple (1,5), (1,2),
(2,3), and reinserting the edge (1,4) so that the distance constraints are not
violated in the end, we obtain a new new framework.

Use of graph rigidity and global rigidity notions in sensor
network localization are well described and their importance is
well demonstrated from both the algorithmic and the analytic
aspects in the recent literature [98], [106], [108], [111]. Par-
ticularly, it is established in [105], [106] that a necessary and
sufficient condition for unique localization of a d-dimensional
sensor network is global rigidity of any d-dimensional repre-
sentation (G, p̄), where G is the representative graph of the
sensor network and the edge lengths ‖p̄(i)− p̄(j)‖ imposed by
p̄ are equal to the corresponding known inter-sensor distances
dij , assuming that the absolute positions of at least three
sensors in <2 (which do not lie on the same line) or four
sensors in R3 (which do not lie on the same plane) are known.
Formal statement of this relation can be found in [105], [106].

Note that the necessity of global rigidity for unique local-
ization as stated is valid for general situations where other
a priori information is not helpful. Rigidity is needed, in
any case, to have a finite number of solutions. However, in
some cases where (G, p̄) is rigid but not globally rigid, some
additional a priori information may compensate the need for
global rigidity. For example, consider a sensor network that
can be represented by a unit disk graph, where there is an edge
between representative vertices of two sensor nodes if and only
if the distance between them is less than a certain threshold
R > 0, which is called the transmission range or sensing
radius [106]. Then the ambiguities due to the non-globally
rigid nature of the representative graph may sometimes be
eliminated using the unit disk graph properties as demonstrated
in Fig. 11. In practice, a wireless sensor always has a limited
transmission range, which implies that a WSN may have the
property of a unit disk graph. Therefore global rigidity is only
a sufficient condition for unique localization of a WSN; the
necessary condition for unique localization is still an open
research problem.

A more challenging research problem is analyzing the
characteristics of wireless sensor networks (from the aspect
of localization) in the case of noisy distance measurements.

3

2

4  (Case 2)

1

4  (Case 1)

R

Fig. 11. Localization of a non-globally rigid unit-disk framework in <2:
assume that the location of vertices 1, 2, 3 and the lengths of the edges (2, 4)
and (3, 4) are known and that there is no edge between 1 and 4. There exist
two possible locations for vertex 4 in general: Case 1 and Case 2. We can
eliminate Case 2 using the unit-disk property since for this case there had to
be an edge between vertices 1 and 4 since d14 < R. Hence Case 1 gives the
correct unique location of vertex 4.

We have little knowledge in this area. For example, it is a
common knowledge that in the presence of noisy distance
measurements, a node (in <2) is likely to have flip ambiguity
problem if its neighbors are nearly collinear. However there
is little work in quantifying this relationship. A recent work
focusing on robust distributed localization of sensor networks
with certain distance measurement errors and ambiguities
caused by these errors is presented in [107]. In this paper,
certain criteria are provided in selection of the subgraphs of the
representative graph of a network to be used in a localization
algorithm robust against such errors. The analysis in [107],
however, is not complete and there may be other criteria that
may better characterize robustness of a given sub-network
against distance measurement errors.

Another relevant research problem is understanding and
utilizing the error propagation characteristics in a sensor
network. This issue emerges especially in estimation of the
location of non-immediate neighbors of anchor sensors, i.e.,
k-hop neighbors of anchor nodes with k ≥ 2. Other things
being equal, a node further away from anchor nodes is likely
to have a larger location estimation error, because its location
estimation error is not only affected by the distance measure-
ment errors to its neighbors but also affected by the location
estimation errors of its neighbors using which the node’s
location is estimated. Numerous simulations and experimental
studies suggested that in addition to distance measurement
error, error propagation (as well as location estimation error)
may be affected by node degree, network topology, and the
distribution of both non-anchor and anchor nodes. Some of
the related tools can be seen in [102]. Other relevant work
includes the papers by Niculescu et al. [112] and by Savvides
et al. [113]. In [112], Niculescu et al. used a combination
of the Cramér-Rao bound and simulations to investigate the
error characteristics of four classes of multihop APS (Ad Hoc
positioning systems) algorithms. In [113] Savvides et al. also
used a combination of the Cramér-Rao bound and simulations
to investigate the error characteristics for a specific scenario
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in which anchors are located near the boundary of the region
and non-anchor nodes are located inside the region. Some
qualitative trends on how localization error varies with average
node degree, number of anchors and distance to anchors are
observed. A potential problem with using the Cramér-Rao
bound to study the performance of a localization algorithm is
that the Cramér-Rao bound assumes the underlying estimator
is unbiased. This assumption needs to be validated with the
estimators used in various localization algorithms, and in
particular, the class of algorithms which minimize the sum of
the square of the difference between measured distances and
estimated distances. The aforementioned flip ambiguity and
discontinuous flex ambiguity problems make such validation
particularly difficult. An estimator may produce an unbiased
estimate in one topology (e.g., a dense network with high node
degree) but give a biased estimate in another topology (e.g., a
spare network with low node degree). We are yet to develop
more comprehensive knowledge in this large and fascinating
area.

Still another research area is concerned with reducing the
computational complexity of location algorithms. It is con-
cluded in the literature that the computational complexity of
an arbitrary location procedure is, in general, exponential in
the number of sensor nodes, unless an iterative procedure is
applied to sensor networks with certain classes of representa-
tive graphs such as trilateration and quadrilateration graphs
[105], [106], [108]. Since trilateration and quadrilateration
representative graphs provide proven reduced computational
complexity in localization and actually there are systematic
methods to locate networks with such representative graphs, it
is of interest to develop mechanisms to make these methods
applicable for certain other classes of representative graphs as
well.

Finally, we note current interest in characterizing statistical
properties of random sensor networks which will ensure, at
least with high probability, that the network is localizable,
or even possesses trilateration structure, so that localization
computations are straightforward and indeed decentralizable
[105], [108], [114].

VIII. SUMMARY

Wireless sensor network localization has attracted signifi-
cant research interest. This interest is expected to grow further
with the proliferation of wireless sensor network applications.
This paper has provided a review of the measurement tech-
niques in WSN localization and the corresponding localization
algorithms. These localization algorithms were divided into
one-hop localization algorithms and multi-hop localization
algorithms. A detailed investigation on connectivity-based and
distance-based localization algorithms were presented because
of their popularity in wireless sensor network localization.
Despite significant research developments in the area, there
are still quite many unsolved problems in wireless sensor net-
work localization. A discussion on some fundamental research
problems in distance-based location and possible approaches
to these problem was also presented in this paper.
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