Dynamic Topological Predicates and Notifications in
Moving Objects Databases

Goce Trajcevski,Peter Scheuermann*
Department of ECE
Northwestern University
Evanston, Il 60208
goce,peters@ece.northwestern.edu

ABSTRACT

This work addresses the problem of efficient reactive man-
agement of topological predicates in MOD (Moving Ob-
jects Databases) settings. Detecting the satisfiability of such
predicates in mobile and dynamic environments requires man-
agement of continuous and persistent conditions. We intro-
duce two dynamical topological predicates: mouving_along
and moving_towards and we present efficient algorithmic so-
lutions for their processing. Based on this, we subsequently
take a deeper insight in the behavioral aspects of a MOD
which manages them and we argue that the traditional ECA
(Event Condition Action) paradigm, while it may ensure
correct behavior, is not well-suited for enabling the users to
declaratively specify some of the parameters that may af-
fect the efficiency aspect of the reactive behavior. Towards
this end, we introduce the (ECA)? (Evolving and Context-
Aware Event-Condition-Action) paradigm as a tool for spec-
ification of the triggers used by a MOD that handles requests
which span over a time-interval in dynamic environments.

Categoriesand Subject Descriptors

H.2.4 [Database Management]: Systems—query process-
ing; D.3.3 [Programming Languages|: Language Con-
structs and Features—data types and structures, dynamic
storage management

General Terms
Algorithms, Languages

Keywords
Topological Predicates, Moving Objects Databases, Event
Notification Systems

*Research partially supported by NSF grant I1S-0325144

MDM 200505 Ayia NapaCyprus

(c) 2005ACM 1-59593-041-8/05/05.$5.00

Permissionto male digital or hard copiesof all or part of this work for
personalbor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadwantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

Hervé Bronnimann
Department of CIS
Polytechnic University
Brooklyn, NY
hbr@poly.edu

Agneés Voisard
Institut fir Informatik
Freie Universitat
Berlin, Germany
voisard@inf.fu-berlin.de

1. INTRODUCTION AND MOTIVATION

Mobility is one of the most important aspects of applications
like mobile tour guides, dynamic service discovery, on-time
information delivery, digital battlefields [4, 8, 16, 21]. An
essential enabling technology for these applications is loca-
tion management [23, 25], which is, the management of the
transient location information of the (mobile) objects in-
volved. Another relevant aspect of these application is the
concept of contert awareness. First introduced in [24], and
subsequently refined in [1], contezt is basically any infor-
mation pertaining to a given situation, which can be used
to characterize an entity. For example, the GUIDE project
[8], which guides city visitors equipped with a hand-held
device, distinguishes between personal: (preferences, loca-
tion, attractions visited, etc); and environmental: (time of
day, attraction’s opening time, etc.) contexts. In a typical
scenario of a person driving in a given region, the user has
static demands, based on his profile (e.g. a type of restau-
rant, budget, etc.) and he needs to be notified when they are
in certain proximity of his evolving position. However, that
person may also have dynamic information demands which
are functions both of his location and the dynamic environ-
mental conditions (e.g., traffic congestion due to road acci-
dents or bad weather), for which he needs to be notified too
(c.f., IN:SIGHT system [19]). One can typically distinguish
between two broad categories of approaches for managing
requests for notification [25]. In a pull mode, an end user
explicitly asks for information stored in the data sources,
e.g., nearest gas station to his current location. In a push
mode, the system automatically sends the relevant informa-
tion, for which the user may have subscribe beforehand —
according to the profile, context, and so on — without the
user asking explicitly for it. In this case information filtering
and delivery is handled by alerting systems or Event Noti-
fication Systems (ENS) [16]. However, existing systems [8,
16, 19, 21] have only limited capabilities of matching the
dynamics of the location with a static set of preferences.

Location-based services require effective integration of in-
formation originating from a number of data sources, e.g.,
databases about mobile users, environmental conditions, etc.
Clearly, one of the important components is the Moving Ob-
jects Database (MOD), which stores the (location,time) in-
formation of the mobile entities and has the ability to pro-
cess various requests (query and/or notification) pertaining
to the whereabouts-in-time of the entities involved. Database
researchers have addressed many issues related to modeling

and querying moving objects (see the collection [18] and the
references therein). However, the dynamics of the environ-
ment requires a reactive behavior of the underlying MOD
with respect to the pending users requests, which was ad-
dressed only recently [20, 27, 29].

Unlike the traditional database applications where the queries
are instantaneous, many queries of interest to MOD are con-
tinuous and/or persistent (they span over a time-interval
and/or require re-evaluation over the history (c.f. [26]) and,
due to the dynamics of the entities involved, their answers
change over time.

The main goal of this work is to address some of the aspects
of efficient management of the reactive behavior targeted
towards notification requests in MOD settings, considering
the impact of the evolution of various context dimensions.
In order to focus the discussion, we analyze two predicates,
moving along and moving towards, which are of interest not
only for the typical ENS application scenarios [16, 19, 21]
but also for applications like emergency response, homeland
security and digital battlefield [4].

Our main contributions can be summarized as follows:

e We introduce two new predicates and we present efficient
algorithms for their processing of based on adaptation of
computational geometry techniques. We also address the
efficiency of their managing from the perspective of the over-
all behavior of the MOD, and we introduce the concept of
dynamic triggers.

o We demonstrate that the traditional approaches for han-
dling the mowing along and moving towards available in the
existing commercial Object-Relational Database Manage-
ment Systems (ORDBMS) are not suitable for ENS which
depend on the dynamics of the objects and their relationship
with the environment.

e We introduce a new paradigm for expressing reactive be-
havior in MOD. The paradigm is geared specifically towards
heterogeneous environments, where the dynamic informa-
tion may be coming from sensors, GPS devices, MOD, tra-
ditional databases changing with time, etc. As such, our
model explicitly allows for self-modifying triggers which take
into account the evolving relationships between values of dif-
ferent context variables. We call our paradigm Evolving and
Context- Aware Event- Condition-Action — (ECA)?

The rest of this paper is organized as follows!. In Section 2
we give a preliminary background and we identify the rele-
vant aspects of our work in the context of our ongoing imple-
mentation of the CAT++ system [28]. Section 3 introduces
the semantics of the two dynamic topological predicates and
addresses their efficient processing from two perspectives —
algorithmic and behavioral, in the sense of the declarative
specification of the reactive behavior of the MOD. These
motivate the (ECA)? paradigm, which is subsequently in-
troduced in Section 4. Section 5 positions our work with
respect to the related works in the literature and Section
6 concludes the paper and presents our directions of future
work.

!Due to lack of space, we omit the technical de-
tails, which can be found in [28], along with the
full list of references. The report is available at
http://www.ece.northwestern.edu/ peters/contextMOD/

2. PRELIMIN ARIES

Typical assumption of MOD settings is that each moving ob-
ject is equipped with some minimal processing power, e.g.,
an on-board GPS to detect its location and the ability to
transmit it, along with transmitting requests and receiv-
ing answers to/from the MOD. The representation of the
object’s motion in a MOD is based on some model of the
transient (location,time) information and different applica-
tion domains have adopted different models. Three models
which are, in a sense, “extrema of the spectra” can be de-
scribed as follows:

e The object is assumed to (periodically) send updates of its
location using, for example, its on-board GPS. The charac-
teristic of this model is that the future of the object’s motion
is unknown and, as a consequence, spatio-temporal queries
pertaining to the future will have to be re-evaluated upon
new updates [20]. The past motion of the object is repre-
sented as a sequence of 3D (2D geography + time) points of
the form (z;,y;,t;) with the intended meaning that the ob-
ject was at the location with the coordinates (z;,y;) at the
time-instant ¢;. Typically, between two points the object is
assumed to move in accordance with some evaluable func-
tion of time, e.g., along a straight line and with a constant
speed in which case its motion is represented as a polyline
in the 3D space.

o Instead of only sending its location, the object also trans-
mits the information about its velocity, whenever it changes.
This is represented as a dynamic attribute (c.f. [26]) in the
MOD. In this model, a “near future” is assumed known and
various queries can be posed pertaining to some future time
(interval) of interest. However, upon update of the dynamic
attributes representing the changes of the object’s motion
plan, the answers of the pending queries may need to be re-
evaluated. Similarly to the previous case, the past motion is
modeled as a 3D polyline, represented as a sequence of 3D
points.

e Given the object’s initial location and a set of the points
that one intends to visit, by using an electronic map aug-
mented with some information about the variations of the
traffic patterns, one could construct the entire future tra-
jectory of the object’s motion plan (c.f. [30]. The MOD
model is again a polyline except now one can pose queries
pertaining to the future of the

In this work, the object is assumed to (periodically) send
updates of its location. The future whereabouts of the ob-
ject are unknown and its past motion is represented as a
sequence of 3D (2D geography + time) points of the form
(zi,yi,t;). Between two points the object is assumed to
move along a straight line and with a constant speed. We fo-
cus on Requests for Notification (RIN) in a push-mode and,
as usual, an event denotes an occurrence of “something of
interest”, e.g., a predicate becoming satisfied or a detection
of an occurrence of external stimuli. We assume a distinct
set of primitive events, which are pre-defined by the system
[6]. An event’s occurrence is assumed instantaneous, in a
distinct time-value, and is registered with the system un-
til deleted. We also assume availability of an event algebra
which enables specifications of composite events using the
primitive ones (e.g., E = e1; e2 — sequence — meaning that £
is detected whenever e occurs, following an occurrence of
e1), with an underlying mechanism for their detection (e.g.,
Event Graphs [6]).

Updates of Environment Users Queries Answers to

Location/Trajectories ~ Updates and Notification Requests
@uests)/

Context Aggregation
and Semantic

CAT++ System Boundaries

Figure 1: Topological Predicates and Declarative
Specification of Reactive Behavior

Figure 1 illustrates the main components of our CAT++
(Optimal Management of Correct Answers to Continuous
and Persistent Requests Using Triggers) system, which we
are currently implementing based on our CAT system [27,
29]. What is relevant for this paper, is that we propose the
algorithms which implement the operators for processing of
the dynamic topological predicates. We also address the is-
sue of executing the triggers which correctly react to the
updates of the moving objects’ locations from the perspec-
tive of detecting the satisfiability of the predicates. However,
we do so in a manner which is aware of the inter-relations
among the values of different context dimensions and we
allow the users to declaratively specify these triggers.

3. DYNAMICS OF THE TOPOLOGICAL PRED-

ICATES AND REACTIVE BEHAVIOR

Now we introduce the semantics of the two dynamic topo-
logical predicates and for each of them we identify the issues
relevant for their processing from two perspectives: opera-
tional (or, algorithmic) efficiency and behavioral, in the sense
of efficiency of the reactive behavior of the underlying MOD.

3.1 The Moving_Along Predicate

In spatial settings, the alongness property has been inves-
tigated both from topological (the 9-intersection model in
[17]) and spatial database [13] perspective. When it comes
to “alongness” in mobile environments, in reality one cannot
expect that a mobile user, say, driving a car, can move ez-
actly along a river. Thus, we introduce a distance threshold
d with its intuitive meaning that for as long as the object is
within distance d from a given 2D polyline P, we will assume
that it is moving “along” it. We are also interested if the
predicate is satisfied within a portion At of a time-interval
[t1,t2]- As a particular example, consider the following re-
quest which is important in scenarios like homeland security
and digital battlefield:

RN2: “Notify me when the object obj1 is moving along the
polyline P and within distance d less than 90% of the time
between 5:00 and 5:30”, or, equivalently:

RIN2’: “Notify me when the object obj1 is moving along the
polyline P and further than distance d for more than 10%
of the time between 5:00 and 5:30”

P d f

Notification May be Sent

Figure 2: Notification for Moving_Along

Figure 2 shows an example scenario, where each circle in-
dicates a (location,time) update sent to the MOD server.
Assume, for this example, that they are sent every two min-
utes. Blank circles indicate the (location,time) pairs which
are of no interest for processing RIN2 because the value of
their time component is outside the time-interval of interest
for RN2 ([5:00,5:30]).

In order to determine the spatial region of interest for RIN2,
one can construct the Minkowski Sum P @ d of the polyline
P and a disk of radius d. Formally, given two sets in R2,
say P1 and P>, their Minkowski Sum, denoted by P, & Ps, is
defined as Py @ P> = {p1 +p2 | p1 € P1,p2 € P>}, where the
summation is of vector p; with vector p» [2]. In our case,
this is the 2D region that is “swept” when the disk with
radius d is moves along P. The evaluation of the moving
along predicate amounts to calculating the time that obj:
spent inside R =P & d.

When it comes to processing RIN2, we have the following
observations:

1. Once the time-interval of interest expires (at 5:30), using
a variant of the red-blue intersection problem over the com-
pleted past motion (c.f. [30]), one can detect the intersection
points of the route (the 2D projection of the trajectory) of
oidy with P @ d, and use linear interpolation to calculate
the total time for which the object obji was (not) within

distance d from P. If that time is less than 27 minutes (the
object was > 3 minutes outside P @ d), the notification can
be send to the user. One may also use (a composition of) the
readily available spatio-temporal operators (c.f. [12] and the
references therein), whose processing is based on the plane
sweep technique.

In practice, however, these kinds of approaches are inade-
quate, because they need the entire history of the objects
motion throughout the time-interval of interest. They may
be suitable for processing a query like: “Retrieve the time
that the object obj1 is (not) moving along P & d between
5:00 and 5:30”. However, this is not acceptable for mission-
critical applications (e.g., detecting an enemy’s activity in a
battlefield). As indicated in Figure 2, the system should be
able to notify the user as early as 5:18 that RN2 is satis-
fied — by then, the object has already spent more than three
minutes (10% of the time-interval) outside R = P & d. Any
further update (lighter-shaded circles in Figure 2) need not
be comnsidered.

2. One may want to utilize the capability of (re)active be-
havior available in most existing commercial systems and
set up a trigger TRIN2, for which the basic elements (in
pseudo-syntax) are:

EVENT: ON location_update(oid_1,x,y,t)
CONDITION: IF time_outside P ®d >3
ACTION: SEND NOTIFICATION

This will achieve the desired behavior — the user will be
notified at 5:18, however, it also has drawbacks. At every
update, the system evaluates the time_outside for the en-
tire past trajectory between 5:00 and the time of the current
update. An intelligent system should know that there is no
need to repeatedly evaluate the condition of TRIN2 on the
entire past trajectory.

3. One may be tempted to impose a spatial index [11] (e.g.,
a variant of the R-tree [14]) on the line-segments of P. Upon
arrival of a new (location, time) update, the last segment of
the object’s route is embedded in a 2D rectangle which ex-
tends its endpoints by some distance d’ and the index is
used to determine the segments of P which intersect the
bounding rectangle. Subsequently, the proximity of each of
these segments of P to the object’s route segment is eval-
uated and used to calculate the total time that the object
was (not) within distance d from P. However, despite seem-
ing the most “spatially-orthodox” approach, the main draw-
back of this idea is that unnecessarily many segments of P
may be tested against the latest route-segment of the mov-
ing object. This, in turn, implies that the approach is not
output-sensitive, which is our goal.

3.1.1 AlgorithmicProcessingftheMoving_Along Pred-

icate

Given the segment between two consecutive location-update
points, say (x;,¥:,t;) and (Tiy1,¥i+1,%i+1), and the region
R = P & d, we would like to avoid the brute-force approach
of testing (x;,¥:), (Ti+1,¥i+1) for intersection against every
(line or circular arc) segment of the boundary of R. The al-
gorithm for calculating the total time that the object moving
along the segment (zi,y:), (Ti+1,¥i+1) and with a constant
speed between t; and ¢;+, spent inside R, can be outlined as
follows:

Moving_Along(R, (zi,yi,ti), (Tit1,Yi+1,tit1))
1. Decompose R
2. Shoot a ray from (x;,y:) towards (Tit1, Yi+1)
and obtain the intersections with R
3. Use linear interpolation to obtain the
total time inside R

Decomposition of R can be done in many ways (e.g., vertical,
or a triangulation [9]), however, an arbitrary decomposition

may cause the segment (i, y:), (i+1,¥i+1) to intersect too
many edges of the decomposition, without ever intersect-
ing the boundary of R. Thus, we propose to use a Steiner
decomposition [15], based on a geodesic triangulation [7],
which guarantees that, if n is the number of segments of the
boundary of R, than any ray will intersect at most O(logn)
edges before “hitting” the boundary. The Geodesic Decom-
position Tree (GDT) structure [15] can be easily adapted to
handle the circular arc segments on the boundary of R. In
case R is non-simple, i.e., it is a multi-connected region with
k simple components, the complexity becomes O(\/Elogn).
Observe that there are two costs which are amortized while
monitoring the moving along predicate:

1. The decomposition itself is used for consecutive up-
dates (and may be re-used for other objects);

2. The point-location is executed only once, for the first
(location,time) update. Subsequently, the terminus of
the previous trajectory segment becomes the origin for
the next one (for which the terminus is the latest up-
date point).

Observe that if the predicate is satisfied after m+1 updates
(let T denote that portion of the object’s trajectory), total
complexity becomes O(m + |T N R|logn), which is output
sensitive.

3.1.2 Behavioal Aspect®ftheMOD

At present, the existing prototype implementations of MOD
and spatio-temporal databases (c.f. [3]) lack the mechanisms
which would enable an elegant and declarative specification
of the desired kind of reactive behavior. One may use the
available extensibility features of the commercial ORDBMS
(e.g., Oracle) , and use them as a MOD [30]. However, a
straightforward application of their available triggers cannot
achieve the reactive behavior that one would desire from
a notification service. Besides the limited set of primitive
events (update, insert, delete on tables), the very model of
a trajectory, typically represented as a User-Defined Type
(UDT) in an ORDBMS, has its own semantic subtleties.
Namely, despite the lexical similarity, the classical meaning
of the update (e.g., a salary of a particular employee) in
relational settings, has different impact from location update
of a particular moving object in MOD. The net-effect of a
sequence of location updates increases the number of points
(in the representation) of the trajectory of a given moving
object. Meanwhile, a sequence of salary updates of a given
employee has the net-effect of one single (lump) increase.
To better illustrate the peculiarities of RIN2, consider the
request RN1, common for ENS:

RN1: “Notify me when I am within & miles from a motel,
between 7:00PM and 9:00PM”.

Setting up a trigger TRN1, of the form:

EVENT: ON location_update(oid,loc,t)
CONDITION: IF within_distance(loc,Motel)
ACTION: SEND NOTIFICATION

would yield a correct behavior, without the processing over-
head exhibited by the similar trigger TRN2 for RN2. How-
ever, in the case of RN2, the condition evolves along with
the modifications to the MOD.

In order properly monitor the event of interest in an effi-
cient manner, we need a trigger that follows the dynamics
of the MOD’s evolution. Let Timelnside (R, (z1,y1,t1),
(2, y2,t2),t"™™) denote a predicate which is true when ¢ is
the total time between 1 and ¢», during which the line seg-

ment (21, y1) (%2, y2) was inside” R. Also, let previous_last(OID)

and last(OID) denote the functions which return the (z,y,t)
values of the next_to_last and the last point, respectively, in
the representation of the Motion_Plan of the object OID.
We have the following dynamic version of the trigger which
monitors RIN2:

TRN2dyn:

1. ON location_update (0id1, z,y,t)

2. IF TimelInside(R,last(oid:), previous_last(oid1),t'")
A 17> (3=t

3 THEN
4. Send_Notification
5. ELSE tzg’ta,l = tzgtal+

TimelInside(R,last(oid:), previous_last(oid1))

The variable t%,,, is the accumulator which denotes the
total time that the object oi¢d; had spent moving along
R(= P@®d) from the begin-time value specified in the request
RN2.

Clearly, in an actual implementation one would not evaluate
the predicate TimelInside(R,last(oid:1), previous_last(oidy))
twice and a separate structure would be set to keep track
of the ¢, accumulator. However, that is a different issue
from what we are trying to tackle in this work — our goal
is to enable the users to declaratively specify the aspects
of evolution of the MOD that are relevant for the efficient

processing of the mowving_along predicate.

3.2 The Moving_Towards Predicate

Now we consider a predicate which is concerned with de-
tecting if a particular mobile object is continuously moving
towards a given static entity like a point-object, region or a
(poly)line. We would like to point out that a variant of the
problem — the necessary and sufficient conditions on the ob-
ject’s trajectory for the purpose of missile guidance towards
a point-target — has already been addressed by the control
community [5]. To illustrate the aspects of the reactive be-
havior that we are investigating in this paper, we will use
the following:

RN3: “Notify me when the object obja is moving towards
the landmark LM continuously for 5 minutes between 5:00
and 5:307.

tin

?In reality, is the value returned by the algorithm Mowv-
ing_Along (R; (.’131, Y1, tl); (m27 Y2, tQ))

Figure 3: Notification for Moving_Towards

A possible scenario is illustrated in Figure 3 and we have
similar observations as in Section 3.1 for the case of moving
along predicate, except, now the semantic implications of
the continuous satisfaction of the predicate for the desired
interval (5 minutes) brings some other specific issues:

1. A purely query-like approach in which one would wait
until 5:30 and then pose the corresponding query is, again,
unacceptable. As shown in Figure 3, RN3 is satisfied at 5:18
because between 5:12 and 5:18 the object was continuously
moving towards LM for 6 minutes. Hence, the correspond-
ing notification should have been sent at 5:18.

2. Again, one may be tempted to set up a trigger, say
TRN3, which upon every location update (EVENT) would
check if the distance between obj, and LM was non-increasing
for an interval of 5 minutes (CONDITION) and, subse-
quently, notify the user (ACTION). However, aside from
the questions regarding the issues of how to exactly express
it, the “classical” trigger may involve unnecessary calcu-
lations for processing the RN3, by using the entire “cur-
rent_history” of the object’s motion. As a particular exam-
ple, at 5:14 there is absolutely no need to query any history
before 5:12.

3. A peculiarity brought by this example is that within the
time-interval of interest for the request, multiple notifica-
tions may be generated. The source is two-fold:

e Although this is not illustrated in Figure 3, one can easily
think of settings in which a satisfaction of the particular
moving towards is followed by moving away which, in turn, is
followed by another mowving towards time-interval. This can
cause multiple notifications to be sent for a given request.

e A more intriguing reason is that at 5:20 the object has
completed another interval of 6 (> 5) minutes ([5:14,5:20])
during which it was continuously moving towards the target
— landmark LM. One may object that the location updates
at 5:16 and 5:18 were already used for the notification sent
at 5:18 — and the objection may be either “sustained” or
“over-ruled”. This is due to the fact that it was not spec-

ified what is to be done to the primitive events that were
already used throughout the history. To cope with such is-
sues, the notification system must allow an explicit choice
of a policy for consuming primitive events upon detection
of the composite event. The Events Management System
SNOOP [6] proposed several different policies for consump-
tion of the constituent primitive events upon a detection of
a composite event. Each policy specifies what happens with
the set of instances of the primitive events in between (and
including) the particular pair of (initiator event, terminator
event). Thus, for the scenario illustrated in Figure 3, if one
does not want a notification sent at 5:20 (i.e., a brand new
“observation-interval” is started at 5:18), then all the up-
dates at 5:12, 5:14 and 5:16 should be, in a sense, flushed out
from consideration and a new initiator event will be sought
for, with the location update at 5:18. In the parlance of the
SNOOP system, this is similar to the cumulative consump-
tion of the primitive constituent events. The other option
is to flush out only the location update from 5:12 as a pos-
sible initiator, and use the one at 5:14 as the new initiator.
This will combine with the next location update (5:20) as
the new terminator event and generate another notification.
This behavior corresponds to the chronicle consumption pol-
icy in SNOOP. Thus, when monitoring a particular request,
one may have to choose the consumption policy beforehand.

3.2.1 Algorithmic Processingf the Moving_Towards

Predicate

We use ideas similar to the ones in Section 3.1.1, in the
sense of accumulating the time that a given line-segment
s of the trajectory of obji is moving towards the landmark
LM for each location update. The algorithm which cal-
culates the portion of the time that a given line segment
(s, Yi,t:), (Tit1, Yit1, ti+1) has spent moving_towards a given
polygon can be outlined as follows:

Moving_Towards(LM, (xi,yi,ti), (Tit1,Yi+1,tit1))
1. Construct the Voronoi diagram Vg(LM) of LM
2. Decompose each cell of the diagram
3. Shoot a ray from (xs,y;) towards (Tit1,Yit1)
and obtain the intersections with Vy(LM)
4. Use linear interpolation to obtain the
total time spent towards LM

Observe that, when constructing V4z(LM), the Voronoi di-
agram of the landmark LM [9], even if LM is bounded by
line segments, the cells of V3(LM) need not be convex. We
separate between the cells of the edges and those of the ver-
tices of LM, and apply geodesic triangulation to each one of
them [7, 15]. Recall (c.f. Section 3.1.1) that this is needed
to answer ray shooting queries in O(logn) time.

During an update, we trace the segment s inside the dia-
gram by shooting rays, and the calculation of the time spent
moving towards the (boundary of the) LM is based on the
following observations:

1. For as long as the (route of the) segment remains
within the cell of an edge, it can only move towards
all the time, or move away all the time. We add the
length of the part of the trajectory inside the cell to
the $1°¥974¢ accumulator.

2. If (part of) the segment s is inside the cell Vy(LM)

belonging to a vertex, it can first move towards, then
away — possible critical point is at the projection of
the vertex on the trajectory.

In any case, each update-segment s; takes time proportional
to the number k; of cells it traverses (with an overhead
of O(logn) due to the ray shooting query), which is again
output-sensitive, since k; is the number of times the closest
feature of the landmark LM may change.

3.2.2 Behavioal AspectoftheMOD

Again we observe that the desired operational behavior cor-

responding to the invocations of the algorithm in Section

3.2.1 upon successive updates, cannot be declaratively spec-

ified using the existing, commercially available, ORDBMS.

In order to illustrate how to achieve it in MOD settings,

we will assume that we have readily available the predicate

TimeTowards(LM, (x1,y1,t1), (%2, y2, t2), t°¥*"4®), which is
true whenever %74 is the total time between t; and to,

during which the object obj> was moving towards the target

landmark LM . Assume that (z',y',t') = previous_last(0bj_2),
and and (z,y,t) = last(0bj-2). Then, the syntactic elements

of the dynamics-aware trigger which monitors the request

RIN3 are:

TRN3dyn:
1. ON location_update (oid2, z,y,t)
2. TF TimeTowards(LM, (z,y,t), (z', 3, t'), t#0¥7 A

(ttowards =t— t’) A (t - t'reference 2 5)
3. THEN
4. Send_Notification AND
Ezecute the chosen consumption policy
5. ELSE
6. trefe'rence =t

The specification states the intended behavior for the pro-
cessing of the moving towards predicate. The only ambiguity
may arise with the value of t,¢ference, Which is the only non-
bound variable in the IF part. Initially, it is set to the begin-
ning time of the RN3 interval of interest —t,¢ference = 5 : 00
— and it acts, in a sense, like a global variable for detecting
the desired condition (continuously for 5 minutes). Subse-
quently, it is maintained up-to-date any time the condition is
invalidated by a particular location update in the MOD (for
clarity of presentation, we assume that it can be only (re)set
to the values of time of a particular (location,time) update).
The second conjunct in line 4 (Ezecute the chosen consump-
tion policy) pertains to the discussion about multiple notifi-
cations and it affects the value of the t,cference variable. In
particular, in case the application would like another notifi-
cation sent at 5:20 (chronicle consumption), then t,eference
is set to the value of the next point of the trace which sat-
isfied the condition in line 2 (treference = 5 : 14). On the
other hand, if the application at hand does not want another
notification sent at 5:20 (i.e. it requires a “fresh” sequence
of 5 minutes during which oids is continuously moving to-
wards the landmark LM), then the effect of the Ezrecute the
chosen consumption policy (cumulative one) conjunct in line
4. would set treference = 5 : 18.

4. THE (EcA)’ PARADIGM

The results in the “classical” EC A paradigm abound [22, 32]
and we will not re-hash all the possible classifications of the
different semantic dimensions and their respective choices
in a particular Active Database System, for which a very
comprehensive analysis is provided in [10].

In the (EC A)? paradigm, we allow the user to declaratively
specify modifications to a given trigger, upon the failure of
the condition part. Intuitively®, an active rule in the Evolv-
ing and Context-Aware Event-Condition-Action paradigm,
for the purpose of processing the dynamic predicates like
the ones introduced in this paper, can be formulated as fol-
lows:

ON EVENT <trigger consumption>
<composite event consumption>
IF CONDITION
THEN ACTION
ELSE <parent consumption>
MODIFY EVENT/CONDITION/ACTION

Similarly to the Eztended Event-Condition-Action (EECA)
paradigm in [10], we allow the option of a particular rule
to consume its triggering event — (trigger consumption)
in three ways: locally; globally (i.e., no other rule can be
triggered by the same event); and no-consumption (i.e., the
event can re-trigger the same rule). However, in addition to
EECA, we also consider composite events that can trigger
a particular rule and the choice of policy for consuming the
primitive constituent events, which can occur either upon
the detection of the triggering event, or upon the condition
evaluation, or upon the execution of the action part of the
trigger (not shown in the above syntax). In this work we
do not explicitly consider different coupling modes between
the detection of the event; evaluation of the condition; and
execution of the action, which can be immediate, deferred
and detached (in a separate transaction) [10]. The main
idea of the (ECA)? is to allow the users to specify which
particular evolution (among possible ones) is of interest, and
what is to be monitored. In Section 3 we presented the
triggers TRN2dyn and TRN3dyn used in the reactive
management for the predicates moving along and moving
towards, respectively, which illustrated the evolution of the
condition part.

Due to lack of space, we cannot elaborate formally all the
aspects of the (ECA)? (c.f. [28]), but we would like to ex-
plain the semantics of one particular syntactic element of
(ECA)? rules that we did not address so far. The value of
the <parent consumption> can be either yes or no, and to
explain its role, consider the following request:

RN4: “Notify me when an object is moving towards the
landmark LM continuously for 5 minutes between 5:00 and
5:80”, if I have less then 5 armored vehicles in the Base B1”.
Even though obj, may be moving continuously towards B1,
for as long as there are > 5 armored vehicles there, the
user will receive no notification. However, once it has been
detected that obj, is moving towards B1l, the user may be
interested in monitoring another criterion:

RIN4’: “Subsequently, notify me when that object is closer

3See [28] for a detailed domain description and declarative
semantics.

than 10 miles to B1”.

This is an example in which, once certain event is detected
but the condition fails, a new trigger is spawned (MODIFY
the EVENT) and the original (parent) trigger ceases to ex-
ist: parent consumption = yes. On the other hand, the
user may be interested in continuing to monitor the original
criterion along the development of (the model of) the bat-
tlefield, together with the new criterion, in which case:
RN4”: “Subsequently, also notify me when that object is
closer than 10 males to B1”.

Thus, in the case of RN4” the parent trigger will con-
tinue to exist along with the newly created trigger (parent
consumption = no) which, again, was generated due to the
failure of the condition part of the parent when its event was
detected.

We would like to point out that one of the main moti-
vations behind the (EC A)? paradigm was enabling reactive
behavior in heterogeneous environments. In this work we
focused on MOD settings and notification services, how-
ever, one may very well observe that even in the scenarios
for RN2 and RN3, introducing the moving along and mov-
ing towards predicates, it may be the case that the (loca-
tion,time) information will be actually detected by a set of
sensors deployed in a given area (it is unlikely that an enemy
unit will voluntarily send GPS updates).

5. RELATED WORK

Due to the specific nature of the spatio-temporal domain,
the abundance of works in active databases (e.g., [22, 32])
cannot be applied directly to the MOD settings, although,
as we indicated, they provide a solid foundation for exten-
sion of the management of reactive behavior. In particular,
the Ezxtended Event-Condition-Action (EECA) model in [10]
took a step towards more “event-aware” active rules. Al-
though it utilizes the notion of querying over the history of
the evolution based on specification of the proper events, the
work did not have the full concept of composite events (i.e.,
it only considers a disjunction of primitive events). None of
the works addressed the problem of evolution of the triggers
in a context-awareness manner.

MOD research has brought many interesting results and the
recent collection [18] provides an extensive list of references.
However, none of these works has explicitly addressed the
problem of managing continuous requests in a reactive man-
ner. In particular, [26] introduced the category of persistent
queries. Since, in our paradigm, the condition evaluation is
contert-aware about the impact of the changes of the (loca-
tion,time) updates on the overall content and we also con-
sider different event consumption policies, we believe that
our work provides a good framework for managing. persis-
tent queries.

Efficient maintenance of the answers to continuous queries in
the settings where the Motion_Plan of the objects is obtained
by a sequence of location updates in time is addressed in
[20]. Although we did not address the issues of scalability,
our work is complementary to [20], in the sense of evolution
of conditions and/or events.

Many works on Event-based and Context-Aware Notifica-
tion systems: the GUIDE project [8], TIP system [16], CATIS
system [21] (to name a few), are concerned with the filter-

ing, formating and delivering the desired information to a
mobile user based on his current location, preferences and
communication device. However, these works mostly match
static conditions with the dynamically changing information
of the user’s location.

The CAT system [27, 29] addressed the problem of manag-
ing continuous spatio-temporal range queries using triggers.
Orthogonally to this work, the proposed framework assumed
that the Motion_Plan was represented as a complete future
trajectory and the main focus of the context-awareness was
to correctly identify and update the trajectories that may
be affected by abnormal traffic conditions, and update the
answer sets of the pending queries. In this work we focused
on dynamic topological predicates and on the aspects of the
reactive behavior which enable the MOD users a more flexi-
ble specification of the triggers, for the purpose of an overall
optimization of the processing of the predicates.

6. CONCLUSIONS AND FUTURE WORK

We introduced two dynamic topological predicates used in
Requests for Notification and addressed their efficient pro-
cessing from two perspectives: algorithmic and reactive be-
havior of MOD. We demonstrated that for some requests,
besides the dynamics of the (location,time) information of
the objects, its impact on (the dynamics of) other values
in a given state may have to be taken into consideration,
along with the evolution which brought the system to that
particular state. To address this, we argued that the “clas-
sical” ECA paradigm may not be well-suited for specifying
the reactive behavior in MOD settings and we proposed the
(ECA)? paradigm.

Part of our ongoing work is considering the impact of the
different models (e.g., (location, time, velocity) updates [26]
or full-future trajectory, based on electronic maps [30]) on
the types of requests and their processing, by developing
a comprehensive type system and carefully identifying the
set of operators and their processing for various argument
signatures, similarly to [12]. Since in our paradigm the con-
dition is, in a sense, context-aware about the impact of the
changes of the (location,time) updates (event generation)
on the overall content, and we also consider different con-
sumption policies for composite events, we believe that our
work provides a good foundation for managing persistent
queries [26].

Novel paradigms need to be “brought to life” in an actual
implementation, and a possible approach is to implement
this type of reactive behavior anew, over a platform with a
rich type system e.g., SECONDO (surveyed in [3]). Along
the terminology used in the recent survey [3] and based on
our experiences with the CAT system [29], we believe that
the paradigm which we proposed in this work can be im-
plemented on top of an extensible ORDBMS, which is the
goal of our CAT++ project [28]. This has advantages, to
say the least, of pushing the processing of the rule as much
as possible into the underlying ORDBMS (c.f. [31]). Along
this work, we are also investigating the limits that the un-
derlying ORDBMS may impose on the expressiveness of the
(ECA)’ paradigm.

Acknowledgments: The authors are grateful to the anony-

mous reviewers for their comments and suggestions.

7. REFERENCES
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In
Handheld and Ubiquitous Computing: First
International Symposium, 1999.

[2] P. K. Agarwal, E. Flato, and D. Halperin. Polygon
decomposition for efficient construction of minkowski
sums. Computational Geometry, 21(1-2), 2002.

[3] M. Breunig, C. Tirker, M. Bohlen, S. Dieker, R.H.
Giiting, C. Jensen, L. Relly, P. Rigaux, H.-J. Schek,
and M. Scholl. Architectures and implementations of
spatio-temporal database management systems. In
Spatio- Temporal Databases — the Chorochronos
Approach. 2003.

[4] F. S. Brundick and G. W. Hartwig. Model — based
situational awareness. In Proceedings of the Joint
Service Combat Identification Systems Conference
CISC-97, April 1997.

[6] A. Chakravarthy and D. Ghose. Capturability of
realistic generalized true proportional navigation.
IEEE Transactions on Aerospace and Electronic
Systems, 32(1), 1996.

[6] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and
S.K. Kim. Composite events for active databases:
Semantics, contexts and detection. In 20th VLDB
Conference, 1994.

[7] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas,
J. Hershberger, M. Sharir, and J. Snoeyink. Ray
shooting in polygons using geodesic triangulations.
Algorithmica, 12, 1994.

[8] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a
contex-aware tourist guide: The guide project. In
MOBICOM, 2000.

[9] M. de Berg, M. Overmars, M. van Kreveld, and
O. Schwartzkopf. Computational Geometry:
Algorithms and Applications. Springer, 2 edition, 2000.

[10] P. Fraternali and L. Tanca. A structured approach for
the definition of the semantics of active databases.
Transactions on Database Systems, 20(4), 1995.

[11] V. Gaede and O. Giinther. Multidimensional access
methods. ACM Computing Surveys, 30(2), 1998.

[12] R. H. Giiting, M. H. Bohlen, M. Erwig, C. S. Jensen,
N. Lorentzos, E. Nardeli, M. Schneider, and J. R. R.
Viqueira. Spatio-temporal models and languages: An
approach based on data types. In Spatio-Temporal
Databases — the Chorochronos Approach. 2003.

[13] R.H. Giiting and M. Schneider. Realm-based spatial
data types: The rose algebra. VLDB Journal, 4, 1995.

[14] A. Gutman. R-trees: A dynamic indexing structure
for spatial searching. In ACM SIGMOD, 1984.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

27]

28]

[29]

J. Hershberger and S. Suri. A pedestrian approach to
ray shooting: Shoot a ray, take a walk. Journal of
Algorithms, 18, 1995.

A. Hinze and A. Voisard. Location-and time-based
information delivery in tourism. In SSTD, 2003.

W. Kainz, M. Egenhofer, and I. Greasley. Modeling
spatial relations and operations with partially ordered
sets. International Journal of Geographical
Information Systems, 7(3), 1993.

M. Koubarakis, T. Sellis, A.U. Frank, S. Grumbach,
R.H. Giiting, C.S. Jensen, N. Lorentzos,

Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J.
Scheck, M. Scholl, B. Theodoulidis, and N. Tryfona,
editors. Spatio-Temporal Databases — the
CHOROCHRONOS Approach. Springer-Verlag, 2003.

U. Meissen, S. Pfennigschmidt, A. Voisard, and

T. Wahnfried. Context- and situation-awareness in
information logistics. In International EDBT
Workshop on Pervasive Information Management
(PIM), 2004.

M.F. Mokbel, X. Xiong, and W.G. Aref. Sina:
Scalable incremental processing of continuous queries
in spatio-temporal databases. In ACM SIGMOD

Internation Conference on Management of Data, 2004.

A. Pashtan, R. Blatter, A. Heusser, and
P. Scheuermann. Catis: A context-aware tourist

information system. In International Workshop on
Mobile Computing (IMC), 2003.

N. W. Paton. Active Rules in Database Systems.
Springer-Verlag, 1999. New York.

E. Pitoura and G. Samaras. Locating objects in
mobile computing. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 13(4), 2001.

B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In Workshop on Mobile
Computing Systems and Applications, 1994.

J. Schiller and A. Voisard. Location-based Services.
Morgan Kaufmann Publishers, 2004.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In 13th
International Conf. on Data Engineering (ICDE),
1997.

G. Trajcevski and P. Scheuermann. Reactive
maintenance of continuous queries. ACM
SIGMOBILE Mobile Computing and Communications
Review, 8, 2004.

G. Trajcevski, P. Scheuermann, H. Bronnimann, and
A. Voisard. Dynamic content and context-aware
reactive behavior in moving objects databases.
Technical Report TR-25-04, Department of ECE,
Northwestern University, 2004.

G. Trajcevski, P. Scheuermann, O. Wolfson, and

N. Nedungadi. Cat: Consistent answers to continuous
queries using triggers. In International Conference on
Eztending Database Technology (EDBT), 2004.

(30]

31]

32]

G. Trajcevski, O. Wolfson, K. Hinrichs, and

S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Transactions on Database
Systems, 29(3), 2004.

J. Widom. The starburst active database rule system.
IEEE Transactions on Data and Knowledge
Engineering, 8(4), 1996.

J. Widom and S. Ceri. Active Database Systems:
Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, 1996.

