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S E N S O R  A N D  A C T U AT O R  N E T W O R K S

Query Processing in
Sensor Networks

R
ecent advances in computing tech-
nology have led to the production of
a new class of computing devices: the
wireless, battery-powered, smart
sensor. Traditional sensors deployed

throughout buildings, labs, and equipment are
passive devices that simply modulate a voltage on
the basis of some environmental parameter. These
new sensors are active, full-fledged computers,
capable of not only sampling real-world phe-
nomena but also filtering, sharing, and combin-
ing sensor readings with each other and nearby
Internet-equipped end points. 

Smart-sensor technology
enables a broad range of ubiq-
uitous computing applications.
Their low cost, small size, and
untethered nature lets them
sense information at previously
unobtainable resolutions. Ani-

mal biologists can monitor the movements of
hundreds of animals simultaneously, receiving
updates of both location and ambient environ-
mental conditions every few seconds. Vineyard
owners can place sensors on all their plants to
capture an exact picture of how light and mois-
ture levels vary in the microclimates around each
vine. Supervisors of manufacturing plants, tem-
perature-controlled storage warehouses, and
computer server rooms can monitor each piece
of equipment, automatically dispatching repair
teams or shutting down problematic equipment

in localized areas where temperature spikes or
other faults occur. 

Despite hardware and domain-specific differ-
ences, these deployments share a substantial col-
lection of software functionality: They all collect
and periodically transmit information from some
set of sensors, and they all must carefully man-
age limited power and radio bandwidth to ensure
that essential information is collected and
reported in a timely fashion. To that end, we’ve
designed and implemented an architecture on
which we can rapidly develop such data collec-
tion applications. Users specify the data they
want to collect through simple, declarative
queries, and the infrastructure efficiently collects
and processes the data within the sensor net-
work. Unlike traditional, embedded-C-based
programming models in which each device is
treated as a separate computational unit, these
queries are high-level statements of logical inter-
ests over an entire network. The database sys-
tem manages data collection and processing
details, freeing the user from these concerns.
Although other researchers have proposed using
database technology to manage networks of
smart devices,1 it’s only recently that systems pro-
viding this functionality have appeared. At
Berkeley and Cornell, we’ve built two prototype
sensor network query processors (SNQPs)—
TinyDB (http://telegraph.cs.berkeley.edu/tinydb)
and Cougar (http://cougar.cs.cornell.edu)—that
run on a variety of sensor platforms. 

Smart sensors are small wireless computing devices that sense
information such as light and humidity at extremely high resolutions. 
A smart sensor query-processing architecture using database technology
can facilitate deployment of sensor networks. 
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Our query-processing-based approach
can also dramatically improve the
energy efficiency—the typical measure
of performance in sensor networks—of
data-collection applications. This arti-
cle describes our experiences designing
the TinyDB and Cougar query proces-
sors. Although we focus on networks
composed of homogeneous collections
of Mica motes, our work is general
enough to be applicable outside this
regime. Indeed, we implemented initial
versions of Cougar on nodes from Sen-
soria Corporation running both Win-
dows CE and Linux.

Query processing architecture
Sensor networks provide a surpris-

ingly challenging programming and
computing environment: the devices are
small and crash-prone, and the operat-
ing system running on them provides no
benefits (such as fault isolation) to help
mitigate such failures. Debugging is usu-
ally done via a few LEDs on the device.
Programs are highly distributed and
must carefully manage energy and radio
bandwidth while sharing information
and processing.

Because of limitations imposed by this
impoverished computing environment,
data collection systems in sensor net-
works must support an unusual set of
software requirements. For example, 

• They must carefully manage resources,
particularly power. Communication
and sensing tend to dominate power
consumption given the data size and
operation complexity feasible on sen-
sor networks. Furthermore, Moore’s
law suggests that the energy cost per
CPU cycle will continue to fall as tran-
sistors get smaller and lower voltage,
whereas fundamental physical limits
and trends in battery technology sug-
gest that the energy to transmit data

via radio will continue to be more
expensive than the energy density of
batteries. 

• They must be aware of and manage the
transient nature of sensor networks:
nodes come and go, signal strengths
between devices vary as batteries run
low and interference patterns change,
but data collection should be inter-
rupted as little as possible.

• They must reduce and summarize
data online while providing storage,
logging, and auditing facilities for
offline analysis. Transmitting all the
raw data out of the network in real
time is often prohibitively expensive
(in terms of energy) or impossible
given data collection rates and limited
radio bandwidth. Instead, they can
provide small summaries or aggre-
gates (such as averages, moments, his-
tograms, or statistical summaries) in
real time. 

• They must provide an interface sub-

stantially simpler than TinyOS’s (an
operating system especially suited to
mote capabilities)2 embedded-C-based
programming model; the interface
must also let users collect information
and process it in useful ways.

• They must provide users with tools to
manage and understand the status of
a network of deployed sensors and to
easily add nodes with new types of
sensors and capabilities.

Each of these points represents a dis-
sertation’s worth of research, much of
which is incomplete. This article de-
scribes at a high level the software and
languages we’ve developed to address
these challenges.

Overview
Figure 1 shows a simple block dia-

gram of an architecture for query pro-
cessing in sensor networks. The archi-
tecture has two main parts:
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• Server-side software running on the
user’s PC—the base station. In its most
basic form, the software parses
queries, delivers them into the net-
work, and collects results as they
stream out of the network. A more
detailed discussion of server-side query
processing is available elsewhere.3

• Sensor-side software running on the
motes. As the “Distributed in network
query processor” detail box in Figure
1 shows, this software consists of sev-
eral components built on top of

TinyOS. One of the motes—the root—
communicates with the base station. 

Introducing queries and query 
optimization

In our architecture, users input queries
at the server in a simple, SQL-like lan-
guage that describes the data they wish
to collect and how they wish to combine,
transform, and summarize it. Our SQL
variant differs most significantly from
traditional SQL in that its queries are
continuous and periodic. That is, users
register an interest in certain kinds of
sensor readings (for example, “temper-
atures from sensors on the fourth floor
every five seconds”), and the system
streams the results to the user. Each
period in which a result is produced is
an epoch. The epoch duration, or sam-
ple period of a query, refers to the
amount of time between successive sam-
ples (five seconds in this example). 

As in traditional database systems,
queries describe a logical set of data that
the user is interested in, but don’t
describe the actual algorithms and soft-

ware modules or operators the system
uses to collect the answer set. Typically,
the system can choose from several plans
and operator orderings for any given log-
ical query. For example, to find the aver-
age temperature of the fourth-floor sen-
sors, the system might collect readings
from every sensor, then filter the list for
fourth-floor sensors and compute the
average. Alternatively, it might request
that only fourth-floor sensors provide
their temperatures, and then average the
values it collects. In a sensor network,

the latter plan will be a better choice
because it requires only sensors on the
fourth floor to collect and report their
temperatures.

The process of selecting the best possi-
ble plan is called query optimization. At
a very high level, query optimizers work
by enumerating a set of possible plans,
assigning a cost to each plan based on esti-
mated costs of each of the operators, and
choosing the lowest-cost plan. In sensor
networks, query optimization, because it
can be computationally intensive, occurs
as much as possible on the server-side PC.
However, because the server might have
imperfect state about the sensor network’s
status, and because costs used to optimize
queries might initially change over their
lifetimes, adapting running query plans
after they’ve been sent into the network
is sometimes necessary.

Query language
As in SQL, queries in Cougar and

TinyDB consist of SELECT-FROM-WHERE-GROUPBY-
HAVING blocks to support selection, join,
projection, aggregation, and grouping.

The systems also include explicit support
for windowing and subqueries (via mate-
rialization points in TinyDB). TinyDB
also explicitly supports sampling. In
queries, we view sensor data as a single
virtual table with one column per sensor
type. The systems append tuples to the
table at well-defined intervals specified
as query parameters. The time between
sample intervals is the epoch. Epochs
provide a convenient mechanism for
structuring computation to minimize
power consumption. 

For example, the query (SELECT nodeid, light,
temp, FROM sensors, SAMPLE PERIOD 1s FOR 10s) spec-
ifies that each sensor should report its
own identifer (id), light, and tempera-
ture readings once per second for 10 sec-
onds. The virtual table sensors contains
one column for every attribute available
in the catalog and one row for every pos-
sible instant in time. The term “virtual”
means that these rows and columns are
not actually materialized—the systems
only generate the attributes and rows ref-
erenced in active queries. 

Results of this query stream to the net-
work root via the multihop topology,
where they can be logged or output to
the user. The output consists of an ever-
growing sequence of tuples clustered into
1-second time intervals. Each tuple
includes a time stamp indicating when it
was produced. 

Conceptually, the sensors table is an
unbounded, continuous data stream of
values. As with other streaming and
online systems, certain blocking opera-
tions (such as sort and symmetric join)
aren’t allowed over such streams unless
the user specifies a bounded subset of the
stream or window. Windows in TinyDB
are fixed-size materialization points over
the sensor streams that accumulate a
small buffer of data for use in other
queries. Similarly, Cougar’s view nodes
can store intermediate query results much
like materialized views in relational data-
base systems: sensors push data to view

48 PERVASIVEcomputing www.computer.org/pervasive

S E N S O R  A N D  A C T U AT O R  N E T W O R K S

In our architecture, users input queries at the server

in a simple, SQL-like language that describes the

data they wish to collect and how they wish to

combine, transform, and summarize it. 



nodes, where interactive queries pull
them or periodically push them to other
view nodes or a base station. 

Consider, as an example, the follow-
ing query (in TinyDB syntax):

CREATE STORAGE POINT recentlight
SIZE 8 seconds
AS (SELECT nodeid, light

FROM sensors
SAMPLE PERIOD 1s)

This statement provides a shared, local
(that is, single-node) location to store a
streaming view of recent data similar to
materialization points in other stream-
ing systems, such as Aurora4 or Stream,5

or materialized views in conventional
databases. Joins are allowed between
two storage points on the same node, or
between a storage point and the sensors
relation, in which case sensors serves as the
outer relation in a nested-loops join.
That is, when a sensors tuple arrives, it
joins tuples in the storage point. This is
effectively a landmark query,6 common
in streaming systems. For example, the
following query outputs a stream of
counts indicating the number of recent
light readings (from 0 to 8 samples) that
were brighter than the current reading. 

SELECT COUNT(*)
FROM sensors AS s, recentLight AS rl
WHERE rl.nodeid = s.nodeid
AND s.light < rl.light
SAMPLE PERIOD 10s

TinyDB and Cougar also support
grouped aggregation queries. Aggrega-
tion reduces the quantity of data that
must be transmitted through the net-
work. Thus, it can reduce energy con-
sumption and bandwidth use by replac-
ing more expensive communication
operations with cheaper computation
operations, extending the sensor net-
work’s life significantly. TinyDB also
includes a mechanism for user-defined

aggregates and a metadata management
system that supports optimizations over
them.

Aggregation is a powerful paradigm
with applicability extending far beyond
simple averaging. For example, the
Cougar system supports object track-
ing: nodes have a signal-processing
layer that generates signatures for
objects in a sensor’s vicinity. Cougar
implements a tracking operator as an
aggregation over a region of sensor
nodes whose detections are aggregated
into an estimation of a track contain-
ing an object’s estimated speed and
direction. Overlap between regions
ensures an accurate track at all times.

In addition to aggregates over values
produced during the sample interval
(for an example, as in the COUNT query
just described), users want to be able to
perform temporal operations. For
example, in a monitoring system for
conference rooms, users can detect
occupancy by measuring maximum
sound volume over time and reporting
the volume periodically.

When a user issues a query in TinyDB
or Cougar, the system assigns the query an
id, which it returns to the user. Using the
id, the user can stop a query via a STOP QUERY
id command. Alternatively, the user can set
queries to run for a specific time period via
a FOR clause, or include a stopping condi-
tion as a triggering condition or event.4

Query dissemination
and result collection

After optimizing a query, the system
disseminates it into the network. A rout-
ing tree is a communication primitive
rooted at either the base station or a
storage point. The routing tree is formed
as nodes forward the query to other
nodes in the network: The network root
transmits the query, and all child nodes
hearing the query process it and forward
it to their children, who forward it to
their children, and so on until the entire
network has heard the query.

Each radio message contains a hop-
count, or level indicating the distance
from the broadcaster to the root. To
determine its own level, each node picks
a parent node that is (by definition) one
level closer to the root than the node is.
The parent will be responsible for for-
warding the node’s (and its children’s)
query results to the base station. If nodes
keep track of multiple parents, the net-
work can have several routing trees,
which can support several simultaneous
queries with different roots. This type of
communication topology, known as
tree-based routing, is common within
the sensor network community.

Figure 2 shows an example sensor net-
work topology and routing tree. Solid
arrows indicate parent nodes, and dotted
lines indicate nodes that can hear each
other but don’t route through each other.
A node can generally choose a parent
from several possible nodes; a simple
approach is to choose the ancestor node
at the lowest level. In practice, choosing
the proper parent is quite important in
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Figure 2. Sensor network topology with
routing tree overlay. Solid arrows
indicate parent nodes; dotted lines 
indicate nodes that can hear each other
but don’t route through each other.



terms of communication and data col-
lection efficiency. Moreover, network
topologies are much less regular and
more complex than you might expect.
Unfortunately, the details of the best-
known techniques for forming trees in
real networks are complicated and out-
side this article’s scope. For a more com-
plete discussion of these and other issues,
see, for example, recent work from the
TinyOS group at UC Berkeley.7

A plethora of work on routing in ad
hoc and sensor networks exists,8,9

including energy-aware routing10 and
special MAC protocols.11 Our goal here
is different: Instead of using a general-
purpose routing layer, we disseminate
information from sensors to the root,
leveraging knowledge about our com-
munication patterns.

Each node in a completed routing tree
has a connection to the tree’s root that’s
just a few radio hops long. We can use
this tree to collect data from sensors by
having them forward query results up
this path. In both TinyDB and Cougar,
the routing tree evolves over time as new
nodes come online, interference patterns
change, or nodes run out of power. In
TinyDB, nodes maintain the tree locally
by keeping a set of candidate parents and
an estimate of the quality of the com-
munications link with each of them.
When the quality of the link to the cur-
rent parent is sufficiently worse than the
quality to another candidate parent, the
node takes the new parent.

A simple routing structure such as
routing trees is well suited to our sce-
nario: Sensor network query processors

impose communication workloads on
the multihop communication network
that differ from those mobile nodes
impose on traditional ad hoc networks.
Because the sensor network is pro-
grammed only through queries, regular
communication patterns exist, mainly
consisting of the collection of sensor
readings from a region at a single node
or the base station. A query workload
with more than a few destinations
requires routing structures other than
routing trees because the overlay of sev-
eral routing trees neglects any sharing
between trees and leads to performance
decay. The discussion of such routing
algorithms is beyond this article’s scope,
but we’ve begun to explore such issues.

Query processing
After a query has been disseminated,

each node begins processing it. Process-
ing is a simple loop: once per epoch, a
special acquisition operator at each node
acquires readings, or samples, from sen-
sors corresponding to the fields or attri-
butes referenced in the query. The query
processor routes this set of readings, or
tuple, through the query plan built in the
optimization phase. The plan consists of
a number of operators applied in a fixed
order. Each operator can pass the tuple
to the next operator, reject it, or combine
it with one or more other tuples. A node
transmits tuples that successfully pass
the plan up the routing tree to the node’s
parent, which can, in turn, forward the
result or combine it with its own data or
data collected from other children. Table
1 describes some common query pro-

cessing operators used in SNQPs. 
The data acquisition operator uses a cata-

log of available attributes to map names
referenced in queries to low-level oper-
ating system functions that can be
invoked to provide their values. This cat-
alog abstraction lets sophisticated users
extend the sensor network with new
kinds of sensors and provides support
for sensors accessed via different soft-
ware interfaces. For example, in the
TinyDB system, users can run queries
over sensor attributes such as light and
temperature but can also query attrib-
utes that reflect the state of the device or
operating system, such as the free RAM
in the dynamic-memory allocator. 

Figure 3 illustrates query processing
for the simple aggregate query, “Tell me
the average temperature on the fourth
floor once every five seconds.” Here, the
query plan contains three operators: a
data acquisition operator, a select opera-
tor that checks whether the value of the
floor attribute equals 4, and an aggregate
operator that computes the temperature
attribute average from the local mote and
the average temperature values of any of
the mote’s descendents that are on the
fourth floor. Each sensor applies this plan
once per epoch, and the data stream pro-
duced at the root node is the answer to
the query. We represent the partial com-
putation of averages as {sum,count} pairs,
which are merged at each intermediate
node in the query plan to compute a run-
ning average as data flows up the tree.

Several implementation details must
be resolved for this scheme to work: sen-
sors must wait to hear from their chil-
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TABLE 1
Common sensor network query-processing operators.

Operator Description 

Data acquisition Acquire a reading (field) from a sensor or an internal device attribute, such as a light sensor reading or free 
RAM in the dynamic heap.

Select Reject readings that don’t satisfy a particular Boolean predicate. For example, the predicate temp > 80°F
rejects readings under 80°F.

Aggregate Combine readings according to an aggregation function. For example, AVG(light) computes the average 
light value over each mote.

Join Concatenate two readings when some join predicate is satisfied. For example, the predicate mat-point.light >
sensors.light joins (concatenates) all the historical tuples in mat-point with current sensor readings for 
any pair of tuples in which the current light value exceeds the historical value.



dren before reporting their own aver-
ages, and average records must be rep-
resented in such a way that they can be
combined as they flow up the tree (in this
case, as a sum and a count, rather than
a simple average).

Finally, for this example, if the nodes
are known to be immobile, the predicate
over floor will be constant valued, mean-
ing that nodes on floors other than the
fourth will never produce values for the
query. TinyDB includes the notion of a
semantic routing tree,4 which lets nodes
opt out of queries with nonsatisfiable
predicates over constant-valued attri-
butes. However, such nodes might still
have to forward packets on behalf of
other nodes that satisfy the predicate.

Sensor-network-specific
techniques and optimizations

A number of unusual optimizations
and query processing techniques arise in
the SNQP context.

Lifetime clause
In lieu of an explicit sample period clause,

we let users specify a query lifetime via a query

lifetime<x> clause, where <x> is a duration
in days, weeks, or months. Specifying a
lifetime lets the user reason about power
consumption more intuitively. In envi-
ronmental monitoring scenarios in par-
ticular, scientific users might not be espe-
cially concerned with small adjustments
to the sample rate, nor do they under-
stand how such adjustments influence
power consumption. Such users, however,
are very concerned with the lifetime of the
network executing the queries. 

For example, the query (SELECT nodeid, accel,
FROM sensors, LIFETIME 30 days) specifies that the
network should run for at least 30 days,
sampling light and acceleration sensors
at as fast a rate possible while still satis-
fying this goal. To satisfy a lifetime clause,
the SNQP applies lifetime estimation,
which computes a sampling and trans-
mission rate given a number of joules of
remaining energy (which can usually be
estimated from the mote’s battery volt-
age) and a specific query or set of queries
to run. As with query optimization, life-
time estimation can be performed when
a query is initially issued at the PC, or
applied periodically within the network

as the query runs. We’ve currently imple-
mented the former approach in TinyDB,
but the latter approach will be more
effective, especially in a network with a
lot of nodes communicating in unpre-
dictable ways.

To illustrate this estimation’s effec-
tiveness, we inserted a lifetime-based
query (SELECT voltage, light FROM sensors LIFETIME x)
into a sensor with a new pair of AA bat-
teries and asked it to run for 24 weeks.
The result was a sample rate of 15.2 sec-
onds. We measured the remaining volt-
age on the device nine times over 12
days. The first two readings were out-
side the mote voltage detector’s range
(they read 1,024—the maximum value).
On the basis of experiments with our test
mote connected to a power supply, we
expected the device to stop functioning
when its voltage reached 350. Figure 4
shows the measured lifetime, linear fit,
and expected voltage at each point in
time, which we computed using a sim-
ple cost model. The resulting voltage lin-
ear fit is near the expected voltage. The
linear fit reaches V = 350 about five days
after the expected voltage line.
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Lifetime estimation is a simple opti-
mization technique that the sensor net-
work can apply to give users a more use-
ful, expressive way of interacting with a
network of sensors.

Pushing computation
Among the most general techniques

for query optimization in sensor net-
work database systems is pushing com-
putation, or moving processing into the
network, toward the origin of the data
being processed. 

We divide a query plan for a simple
aggregate query into two components.
Because queries require data from spa-
tially distributed sensors, we must deliver
records from a set of distributed nodes
to a central destination node for aggre-
gation by setting up suitable communi-
cation structures for delivering sensor
records within the network. This is the
communication component of a query
plan. The query plan’s computation
component computes the aggregate at
the network root and potentially com-
putes already partial aggregates at inter-
mediate nodes. 

We describe two simple schemes for
pushing computation; more sophisti-
cated push-based approaches are also
possible.12,13

Partial aggregation. For aggregates that
can be incrementally maintained in con-
stant space (or, in database terminology,
for distributive and algebraic aggregate
operators), we push computation from
the root node down to intermediate
nodes. Intermediate sensor nodes com-
pute partial results containing sufficient
statistics to compute the final result. We
can use this scheme to distribute the
aggregate AVERAGE, which has constant
intermediate state. The example in Fig-
ure 3 illustrates the concept of pushing
partial aggregation into the network.

Packet merging. Because sending multi-
ple small packets is more expensive than
sending one large packet (considering the
cost of reserving the channel and the
packet header payload), we merge sev-
eral records into a large packet and only
pay the packet overhead once. For exact
query answers with aggregate operators

that don’t have a compact incremental
state representation such as Median (that
is, holistic aggregates), packet merging
is the only way to reduce the number of
bytes transmitted.

Cross-layer interactions
These in-network aggregation tech-

niques require internal nodes to inter-
cept data packets passing through them.
However, with traditional network-layer
send-and-receive interfaces, only the
routing tree root receives the data pack-
ets. The network layer on an internal
node automatically forwards the packets
to the next hop toward the destination,
with the upper layers unaware of data
packets traveling through the node. Thus
a node must be able to intercept packets
routed through it, and the sensor net-
work query processor needs a way to
communicate to the network layer when
it wants to intercept packets destined for
another node.

Cougar uses network filters to imple-
ment this interception. With filters, the
network layer passes a packet through a
set of registered functions that can mod-
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ify it (and possibly even delete it). In the
query layer, if a node n is scheduled to
aggregate data from all children nodes,
it intercepts all data packets received
from its children and caches the aggre-
gated result. At a specific time, n gener-
ates a new data packet representing the
incremental aggregation of it and its chil-
dren’s data and sends it toward the net-
work root. All this happens transpar-
ently to the network layer.

TinyDB implements this interception
by collapsing the network stack and
merging the routing layer with the appli-
cation layer. In this case, the application
controls the routing layer completely, and
the application-level routing layer han-
dles each packet routed through a node.

Both approaches are instances of
cross-layer interactions. To preserve
resources, we believe future sensor net-
work generations will take an integrated
approach to system architecture design,
cross-cutting the data management and
communication (routing and MAC) lay-
ers using one of two approaches: 

• In the top-down approach, we design
and adapt communication protocols
and their interfaces to the communi-
cation needs of the sensor network
query processor. Adding filters to
existing routing protocols is a top-
down technique. Because in-network
query processing must intercept each
message at each node for possible
aggregation, we adapt the routing-
layer interface to let the application
layer filter messages routed through a
node. 

• In the bottom-up approach, we design
new communication patterns opti-
mized for query-processing workloads
(for example, a routing tree). 

Cross-layer interactions are a fertile
area of sensor network research, and
TinyDB and Cougar have only made
preliminary steps in this direction.

Data collection experiments
We’ve studied the performance and

behavior of our SNQP implementations,
both in simulation to demonstrate the
potential of our algorithms and ap-
proaches and in real-world environments
to observe their overall effectiveness.

Berkeley Botanical Garden 
deployment

In June and July 2003, we deployed
the TinyDB software in the Berkeley
Botanical Garden, located near the Uni-

versity of California, Berkeley, campus.
The deployment sought to monitor envi-
ronmental conditions in and around
coastal redwood trees (the microclimate)
in the garden’s redwood grove, which
consists of several hundred new-growth
redwoods. Botanists at UC Berkeley
actively study these microclimates with
a particular interest in the role the trees
play in regulating and controlling their
environment, especially how they affect
the humidity and temperature of the for-
est floor on warm, sunny days.14

The initial sensor deployment con-
sisted of 11 Mica2 sensors on a single
36-meter redwood tree. Each sensor was
equipped with a weather board provid-
ing light, temperature, humidity, solar
radiation, photosynthetically active radi-
ation, and air pressure readings. We clus-
tered the sensors at different altitudes
throughout the tree. We placed the
processor and battery in a watertight
PVC enclosure, with the sensors exposed
on the outside. A loose-fitting hood cov-
ered the bottom of the sensors to protect
humidity and light sensors from rain. We

sealed the light and radiation sensors on
the top of the assembly against moisture
and thus left them exposed. 

Sensors on the tree run a simple selec-
tion query that retrieves a full set of sen-
sor readings every 10 minutes and sends
them to the base station, which is
attached to an antenna on a nearby field
station’s roof, about 150 feet from the
tree. The field station is connected to the
Internet, so users can easily log results
into a PostgreSQL database for analysis
and observation. The sensors have been

running continuously for about three
weeks.

Figure 5 shows data from five of the
sensors, collected during the second week
of July 2003. Sensor 101 was at a height
of 10 meters, sensor 104 at 20 meters,
109 at 30 meters, 110 at 33 meters, and
111 at 34 meters. We exposed 110 and
111 but kept the others shaded in the for-
est canopy.

The periodic bumps in the graph cor-
respond to daytime readings; at night,
the temperature drops significantly and
humidity becomes very high as fog rolls
in. Notice that 7 July was a cool day,
below 18 degrees Celsius and likely over-
cast. On such days, all sensors recorded
approximately the same temperature
and humidity. On warmer days, how-
ever, the temperature was as much as 10
degrees cooler at the bottom of the tree
and 30 percent more humid.

Although this fairly basic deployment
runs only a simple query, we programmed
the sensors to begin data collection in just
a few minutes. By far the most time-
consuming aspects of the deployment in-
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volved packaging the devices, obtaining
access to the various spaces, and climb-
ing the tree to place the sensors.

One interesting future direction related
to this deployment involves tracking cor-
relations between sensors and using those
correlations to improve query-process-
ing efficiency. In Figure 5, temperature
and humidity are highly correlated; thus,
knowing the humidity and sensor num-
ber lets us predict the temperature to
within a few degrees Celsius. This obser-
vation suggests an interesting query opti-
mization possibility: We can evaluate
queries containing predicates over tem-
perature by instead looking at humidity.
This could be an energy-saving alterna-
tive if we need a humidity sample for
other purposes or the energy costs of
acquiring a humidity sample are low.

Simulation experiments
Several simulations of our approach

showed that it works well in a controlled

environment (often, simulation is the
only way to get repeatable results out of
noisy, lossy sensor networks). We have a
prototype of Cougar’s query-processing
layer running in the ns-2 network simu-
lator.15 Ns-2 is a discrete-event simulator
aiming to simulate network protocols to
highest fidelity. Because of the strong
interaction between the network layer
and our proposed query layer, we simu-
late the network layer to a high degree of
precision, including collisions at the
MAC layer and detailed energy models
developed by the networking community. 

In our experiments, we used IEEE
802.11 as the MAC layer, setting the
communication range of each sensor to
50 meters and assuming bidirectional
links. In our energy model, the receive
and transmit power dissipation is 395
and 660 milliwatts. We assumed energy
usage in the idle state is negligible. We
ran a simple query that computes the
average sensor value over all sensor

nodes every 10 seconds for 10 continu-
ous rounds.

Figure 6 illustrates the benefit of the
in-network (push-down) aggregation
approaches for a simple network topol-
ogy—a uniform distribution of sensors
in a square region with a gateway sen-
sor in the top-left corner. We set the aver-
age sensor node density to eight sensors
per 100 m2, while increasing the region
size to fit 40 to 240 sensors. Partial
aggregation and packet merging dra-
matically reduced the amount of energy
used by reducing the amount of data sent
to the gateway node.

D
atabase approaches to sensor
network data management
are promising, as initial expe-
riences with users of our

technology show. Declarative queries
offer both an easy-to-interface and
energy-efficient execution substrate. Fur-
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Figure 5. Humidity and temperature readings from five sensors in the Berkeley Botanical Garden.



thermore, our approach has unearthed
a plethora of interesting research prob-
lems in this domain. Future challenges
include

• Multiquery optimization. At any time,
several long-running queries from
multiple users might run over a sensor
network. How can we share resources
among these queries to balance and
minimize overall resource usage?

• Storage placement. Storage points or
view nodes provide an abstraction for
in-network sensor data storage. Where
should we place view nodes to balance
and minimize resource usage? What
type of fault tolerance can prevent the
query from losing data if a view node
fails?

• Heterogeneous networks. So far we’ve
only considered relatively homoge-
neous sensor networks in which all
nodes are equally powerful. Future
networks will likely have several tiers
of nodes with different performance
characteristics. How can sensor net-
work query processors take advantage
of this heterogeneity?

These problems suggest that sensor
network database research will continue
to be a rich and exciting field for many
years to come.
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Figure 6. Simulation results of different
approaches for answering an aggregate
query.
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