ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 241

identifiers from ID;_;. Therefore, during the forward transmission it maybe necessary to
transmit, conceptually messages of the form (id;, ai, { page(id))}). If a sort-merge is the
method of choice for the join to be performed at §;, then indeed the messages will have the
above format. On the other hand, if pipelining is employed, then this information will be
transmitted with some slight overhead, i.e., a message of the form (id; , a;, page(id;)) needs
to be sent for every distinct page at §; containing tuple identifiers from ID;_; connected
to id;. For example, assume that id; is connected with two identifiers id;_; and id;_, and
that the corresponding tuples in BGg,_, .z, are stored on pages p; and p, respectively. If
pipelining is employed, S; will send the messages (id;, a;, p1) and (id;, a;, p2)- Irrespective
of the join method used at S;1, the graph at this site will contain both tuples (id;, idi41, p1)
and (id;, idi+1, pa) if id;, is connected to id;.

The forward reduction phase starts at each site with the construction of the relation
BGg,_, &, (ID;_y, ID;, PAGE(ID;1)) and its storage on secondary storage. Next, each page
of the bipartite graph is read in order to construct the forward messages, and the page is
written back to storage after it has been sorted on attribute /D;. The sort step is done in order
to facilitate the backward reduction and the graph traversal at the query site. We observe
here that this sorting step does not incur any additional overhead in terms of I/Os, since the
graph had to be stored first on secondary storage in order to obtain the corresponding page
numbers necessary for the transmission.

The backward reduction phase at S; identifies as before all the identifiers id;, that are
not connected to any id;’s and constructs messages of the form (id;_,, page(id;_,)). An
additional step needs to be performed now, before the actual backward transmission can
start, namely all the messages to be sent need to be sorted first by page(id;-1). This step
is necessary in order to guarantee that at the receiving site, S;_;, each page will be read
and written back to storage only once. However, the total amount of memory required at a
given site for its outgoing messages is quite small, and this sort can be performed in main
memory. In addition, since at the receiving site S;_; each page is sorted on id;—, a binary
search can be performed in order to identify the tuples in the relation BGg, _, g,_, that need
to be eliminated. In our current implementation, these tuples are marked as deleted.

After the backward reduction is completed the size of the bipartite graphs, if compaction
were to be executed, could be small enough so that all bipartite graphs fit into main memory
at the query site. Ifthis is the case, then Step 4 of the PIPE_CHQ algorithm can be applied the
same way, by just ignoring the page numbers. Otherwise, this step is modified and proceeds
by interleaving the transmission of bipartite graphs with the construction of temporary
relations holding the implicit join tuples. Letusdenoteby R;>a R, - -- < R}, ; theimplicit
joinof R;, Ri4, ..., Ritj, i.e., the projection of the join on (ID;, IDjy4, . .., IDiy). First,
site S, sends its graph to the query site where the graph is sorted according to page(id,—_1).
Then, we proceed in increasing page number order by joining the tuples in this graph with
those in the graph at S,_;. Note that this implicit join can be performed by sending to the
query site the pages in the graph of S,_; one ata time and then performing a binary search
in the corresponding subgraph of BGg, , g, ,. After finding the implicit join R;_, pa R},
we sort this temporary relation according to page(id,_;) and continue in a similar fashion
to find the implicit join R,_, >« R]_; >« R). We repeat this procedure until we obtain
RipaR)---paRy.

242 SCHEUERMANN AND CHONG

Example 2. Letus consider again the chain query R; o<p Ry--- ><p Rs. Wc will‘a.s-
sume that at each site sort-merge has been selected as the optimal jou? methpd in our join
sequence. The bipartite graphs to be constructed at each site together with their cm¢
ing partitioning into subgraphs (pages) are shown in figure 3(a). Note.that the underlying
database used for this example is slightly modified from the one given in Table 1. We hz.wc
deliberately changed the database in order to illustrate some de§ails about the partitioning
of the bipartite graphs. Figure 3(b) shows the results of the modified PIPE_.CHQ algo.nthm
aftter the execution of the forward reduction. Note that at site S,, the page numbers in the
relation BGr, g, are left null. During forward reduction, S, sends the augmented messages
(1,a3,1), (2,a4,2), etc. to Ss. Since the graph BGg, g, has crossing edges (2,4) and (5,4), the

BGry 5, BGr, r BGgy,n,
m, 1D, Dy 1Dy ID; 1Dy

A\

Ja: Graphs to be constructed

BGr,.m: BGr,.py BGpy.n
1D, ID; P# 1,103 P# ID;IDy P#
14 &2 1 3 4 1
1 .3 3 3 1 3 1 1
9 -1 ? ,a3,1 4 2 1 &1 .b?,ﬂ; - - | 1
< I 2,012 472 2 2,b3,1 1 3 2
32 (3,al,1 « Sl | 1| (3bL1) 2 A 1
3 5 (4,a2,{1 .;]) 2 A 2
g 3 (5,35,2) IS 2

3b: Graphs with page numbers in forward reduction

BGr,.R, BGR, 1, BGRy.r,

D, ID, P# ID;IDs P# ID;ID, P#
3 iy —F—2— | | 3 4 |1
.y —~4—0- |1 31 41
53 m; —+—2— | 2 3.4 14
g i & 2,2 33 [1] (@Y I“%Fs
e (4.2) Eo1 I -2t | 1
———2— 5 1 2

3 5 o

3c: Graphs with page numbers in backward reduction

Figure 3. Graphs for disk-based systems.

244 SCHEUERMANN AND CHONG

site 3 site 4
1 8
1.l :
zE.cZ} 2 9
(3,c2 3 A
v _/_ | 8 1
4
9 12
By MBGgr,r, |(8.42)
D 8 8 |}(9.41)
& (5,d1) 5 9
&ﬁ,d?} 7 A
7,44
R ” MBGp,.ns MBGri,p,
4a: Join sequence tree 4b: Configuration after Step 2

Figure 4. Construction of MBGg, z;'s for the query {(R; ¢ Rys<p Rs) A (Rypap R3)}.

Example 3. Consider the tree query whose join sequence tree is shown in figure 4(a). The
configuration after Step 2 is executed is shown in figure 4(b). Observe that although the
message (1, cl) is transmitted from site S; to Sz, the modified bipartite graph MBGg, g, at
site S3 does not contain the edge (1, 10) since the node 10 is not present in BGg, g,. After
performing the traversal, the resulting implicit join tuples are 1-6-8-11 and 1-5-9-12.

We shall proceed now to show how the PIPE_CHQ algorithm can be modified to handle
cyclic queries of the form: Ryp<s, Ryp<y, Ry« -« Rypas, Ry Our basic data structure is
modified to become a labeled bipartite graph (LBG). The structure of the message ex-
changes between two adjacent sites is also modified. In the forward step, site S; where
R; resides sends messages that consist of triplets of the form (id;, a;, {labels(id;)}) where
{labels(id;)) is a set of labels identifying the tuples in R;, the relation at the front of the
chain, to which id; is transitively related. In the backward step, R; sends compensating
messages of the form (id;_,, {antilabels(id;_,)}) where {antilabels(id;)} denotes the set
of tuples in R, that should no longer be considered related to id; . The complete algorithm
is described in detail below.

Pipeline cyclic query algorithm(PIPE_CYQ)
Step 1. Tempplus; = Ri(IDy, Ay);
S, sends Tempplus; to S;.
Step 2. for i = 2 to n do /* forward reduction */
begin

/* receiving phase */

S; receives Tempplus;—y from S;_; and constructs

LBGg,_,/q1.2....i-1). Ri/i1.2.....1y as follows:

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 245

if (i = 2) then label each edge (id;_,,id;) in LBGg,_, g, with ‘id; ;’
else label the edge with the labels of Tempplus;_i(id;_1);
/* construct Tempplus; */
S; prepares Tempplus; for shipping as follows:
temp; = .4, (Ri-i/{1,2...,0 — 1} >aR;);
for all temp; = (id;, a;) € Temp;
tempplus; = temp; || labels(id;)
where if (i = 2) then labels(id;) = {id;_ | (id;-1, id;) €
LBGg, r,)} else labels(id;) = union of labels
of edges incident to id; in LBGg,_, r,
/*sending phase */
Si sends Tempplus; 10 S(+1ymodn
end;
At site S we receive Tempplus, and construct LBGg,/12....n,1).R/{1.2...n,1) 88
follows: (id,, id;) € LBGg, g, iff id, € labels of Tempplus,(id,);
label (id,, idy) as ‘id;’;
Step 3. a) S; computes for all tempplus, = <id,, a, labels(zd) > €Tempplus,

antilabels(id,) where
- ., « _ | tempplus, .labels — {id,} if (id,,id,) € LBGg_g,;
i b [tempplus, labels if (idy, A) € LBGg, p.;

Tempminus, = set of all tuples (id,, antilabels(id,)) which have a non-empty
antilabel set;
Sy sends Tempminus; to S,;
/* process antilabels received */
b) fori =nto2do
begin
S; receives Tempminus (i+1y modn from Sg4+1)modn;
for each tenzpnzinus(,~+;) modn = (id;, antilabels(id;)) do
remove all labels in antilabels(id;) from the edges incident to id; in
LBGg,_, &;
if there are no labels left on the edge (id;_,, id;) then delete the edge
from LBGg,_, &;;
delete all vertices id;_, id; in LBGyg,_, g, not connected anymore;
/* prepare new antilabels */
c) for (each id;_; incident to an edge whose label has been changed) do
antilabel(id; ;) = union of labels of edges incident to id;_, before
step 3b minus current set of labels;
for (each id; that has been deleted in Step 3b) do
antilabel(id;_;) = union of labels of edges incident to id;_,

before step 3b;
Tempminus; = set of tuples (id;,, antilabel(id;_,)) which have a
non-empty antilabel set;

S; sends Tempminus; to S;_y;
end;

246 SCHEUERMANN AND CHONG

Step 4. Each site S; sends LBGg,_, &, to the query site where we traverse LBGRg, g,,
LBGR,,RS,...,LBGR,_M, to construct the implicit join and assemble the final
results.

Example 4. Letus consider the sample database given in Table 1 and the cyclic query:
R] D<ig RzMA R3><lp R4(>dp Rl.

During Step 2, Sz labels the edge (1,5) with ‘1’, and the edges (2,6) and (3,6) with ‘2’
and ‘3’, respectively. S then sends the messages (5,a2,{1}) and (6,a2,{2,3}) to S3. Note
that when S3 builds LBGg, k. it labels the edge (8,6) with the set (2,3} and the edge (8.5)
with ‘1°. It then sends the message (8,d2,{1,2,3}) whose labels set is the union of the labels
on edges incident to the tuple with identifier 8. S4 sends the messages (11, d2, {1,2,3}) and
(12, d1, {1,2,3})) to S;. Since the tuple with identifier 11 has a labels set {1,2,3}, it suffices
to check only these tuples in R to find out if they contain the value ‘d2’. The results of the
algorithm after processing Step 2 are given in figure 5(a).

During the backward reduction, 5, sends the compensating messages (11, {1,2}) and (12,
{2,3}) to indicate that tuples with identifiers ‘11° and 12’ cannot be joined with the tuples
with identifiers {1,2}, respectively {2,3} in R,. Further down the pipeline, after S3 removes

site 2 site 3 site 4 site 1

1 3

1——5 5 8 8—2211 11 1
0,0} 2 123 2><
(2.62,(2)) 276 (8.42,011) = 9 |se023| 9——12 [nd2,012230] 1 3

3

@asEn| 3 (sa2.(23)) | & e

10 |man 0280] 10———A [(1241.01.23)

(.53, 041 X (10,d3,{1.2,3})
Gy
LBGn,,Rr, LBGp,.ns LBGry R, LBG R, 1,
5a: Configuration after step 2
site 2 site 3 site 4 site 1
1——5 5~ /8 g ——I1 11 1
/6 ©642)) ><9 @02)| 9——12 |(1.{1.2}) 12><3
¥ 6 ,(23) (12,{2:3))
10,{1,2.3)]
LBGR, 1, LBGR, R, LBGp, R, LBGp, g,

5b: Configuration after step 3

Figure 5. Construction of LBGg,,g, ’s for the query Ry >ap Rpp<q Ryvap Revap Ry,

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 247

the labels it has received in the antilabels set from Sj, it sends to S, only the compensating
message (6,{2}). Observe that although the label ‘1’ has been removed from the edge (5,8),
we do not send the message (5,{1}) since there is another edge, namely (5,9), that is still
labeled “1’. The resulting labeled bipartite graphs after Step 3 is executed are shown in
figure 5(b). Doing a traversal of these graphs, we find the implicit join tuples: 1-5-9-12 and
3-6-8-11.

We observe here that the labeling of edges is not necessary at sites S; and S, but was
performed here in order to simplify the notation in the algorithm.

Theorem 2. At the end of Step 3 in algorithm PIPE_CYQ we obtain:

LBGR, Rysoes = LBGR /11,20, 1) Rysymosn /11.2,.cm. 1)+

Proof: Observe that the reduction set of each relation contains the index ‘1’ twice, since
R, has been reduced twice. The rest of the proof is similar to that of theorem 1 and is
omitted here. The details are given in [11]. 0

4. An adaptive algorithm for response time optimization

The pipeline algorithm presented in the previous section is geared towards total time mini-
mization. We present in this section an adaptive algorithm for response time optimization
that takes into account the system configuration, i.e., the additional resources available
and the data characteristics, e.g., join selectivities, in order to select the best strategy. The
adaptive algorithm actually selects from a class of algorithms the one that is best suited
for a particular configuration. In addition to the original pipeline algorithm, we con-
sider two additional choices. For certain join selectivities and relation sizes, a parallel
version of our algorithm which performs forward computations and reductions concur-
rently among the sites may be the better choice. When additional sites are available, beyond
those where the relations are originally stored, a partitioning step can be applied first to
some of the relations and then a modified pipeline algorithm may be the most cost effective
method.

4.1. A parallel algorithm with bipartite graphs

The pipeline distributed join algorithms described in the previous section can be modified
in order to take advantage of the potential for parallel computations and transmissions in
the forward reduction phase. The reduction in response time is obtained at the expense of
a moderate increase in total processing time. We shall restrict our discussion here to the
handling of chain queries. Thus, in the forward reduction phase, all sites S; send in parallel
tuples of the form (id;, a;) to their right neighbor, and upon receiving the tuples (id;_1, a;—1)
from the left neighbor, they construct an augmented bipartite graph BG}, | » . The original

248 SCHEUERMANN AND CHONG

definition of a bipartite graph is changed as follows:
BG'y,_, /Ra(R,-1)-Ri/RA(R) =[V=(XUY),E] where X € Ri-1(IDi-1)Y (A}
Y € Ri{UD) U (AL
(id;-1, idi) € E iff [r.-d,_‘ € Ri_i/RA(R;-1) and rig; € R;/Rd(R;) and
(ridis Iria) € (Rim paR;)] and
(idiy, A €E iff [, € Rizy JRA(R;-1) and idi—1 & 7R,y @i (Ri-1>2 R))
and (A, id;) € E iff [fgd, € R,-/Rd(R;) and id; ¢ ”&(D;)(Ri—l MR,)]

In the forward reduction phase the augmented bipartite graphs BGYy, g, only reflect the
effect of one semijoin operation, i.e., the reduction set of R; is {i = 1,1}, and the reduction
setof R;_; is {i —1}. Thisis due to the fact that in the forward reduction phase of the parallel
algorithm each site starts transmitting data before it received anything from its neighbor.

Instead of a backward reduction, we now use a left /right reduction process that proceeds
in parallel from both ends of the chain towards the middle and employs two types of
messages, namely left and right messages, denoted as Left_messages; and Right_messages;.
A high level description of the parallel distributed algorithm for chain queries is given
below. During Step 2, two transmissions are executed in parallel, namely Left_messages,
and Right_messages,. InStep 3 these left and right messages continue to be propagated until
they reach S, and Sa, respectively. Note that animprovement in the response time is obtained
by taking advantage of the fact that the communication lines are full duplex, hence a site
may receive (or send) a left message and send (or receive) a right message simultaneously.
Furthermore, these messages are processed asynchronously at each site and it makes no
difference which message is received first. In the worst case, some transmitted messages
are superfluous, but the final result is not affected. The complete Parallel Chain Query
Algorithm, abbreviated as PAR_.CHQ, is presented in Appendix A.

Example 5. 'We shall consider the same chain query as in Example 1. The configuration
at the end of Step 1 is illustrated in figure 6(a). Identifiers in the graphs that do not have any
edges incident to them are shown connected to the null value A. The left and right messages
sent in Steps 2 and 3 abbreviated as L; and R;, respectively, are shown in figures 6(b)—
(d). Double arrows are used to indicate the transmissions that may proceed in parallel.
During Step 2. S; removes the unconnected identifiers ‘4’ and ‘7’ and sends a R, message
consisting of ‘7", At the same time, S4 removes the unconnected identifiers ‘10’ and ‘13’
from its bipartite graph and sends a left message L, consisting of ‘107 The configuration
at the end of Step 2 is shown in figure 6(b). The actions taken during Step 3 are depicted in
figures 6(c) and (d). S3 processes R, by removing the identifier *7’ and the edges incident
to it, and, similarly, it receives asynchronously L4 and removes the identifier ‘10° and the
edges incident toit. Following the corresponding receive and local processing operations, S3
sends asynchronously a left message L3 and right message R3. L consists of the identifier
*6’, which is the only id; not connected in BGY, g, Rs is an empty message since all ids’s
in BGY, g, have edges incident to them. o

The detailed cost model for response time estimation is given in Appendix B.

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 249

Query: Ry »=g Ry g Ryvap Ry

site 2 sile 3 site 4
» 1] —35 5 8 8 1
1]
&w{ Ao gt ST 7] X 9| (842) |9 12 e
DG NEERE 10~ ®an 10 A
Em} 4 7,1 (10,d3)
A—1 6 A A 13
] ——— 5 5 8 8 1
2 6 RoT) Z 9| Lg10) |9 121
b ; step 2
i 3 7 10
6 A
] ——— 35 5 i 8 8 1l
© 2 7 6| Ls(6) 9 Rs() 9 12 o
c
3
1] —5 5 ? 8 8 11
9 9 12
(d) step 4
BGh, n, BGR, i, BGR, r,

Figure 6. Construction of BGy, z 's during PAR_CHQ execution.
4.2. A pipeline partitioning algorithm

Partitioning [7, 25, 31] is a frequently used technique for parallel or distributed query
processing. If all relations are stored in fragmented fashion before the start of the query,
then partitioning will result in substantial performance improvement if the relations are
partitioned on the appropriate join attributes. However, when this is not the case, additional
work is required in order to repartition the relations on the appropriate join attributes.
Repartitioning all relations may require substantial data transmissions and 1/0 costs which
may offset the gains obtained by parallelism in local processing.

‘We shall employ a partitioning scheme that utilizes the resources of the sites that don’t
originally hold any relations involved in the join in order to improve the response time of
the pipeline algorithm. We illustrate here our algorithm only for chain queries; extensions
to tree queries and cyclic queries are presented in [11].

Our partitioning strategy uses a greedy approach in order to determine at each iteration
which relation should be subdivided into subrelations of equal sizes and to conceptually

