250 SCHEUERMANN AND CHONG

distribute the subrelations to the extra sites. The algorithm determines for each relation R;
the partitioning level, denoted by /;, that should be used. The partitioning level indicates
the number of fragments into which R; should be divided. Each iteration of the algorithm
considers the addition of one extra site if the savings obtained in local processing costs
outweigh the additional data partitioning costs. The complete partitioning algorithm is
given below.

Partitioning Algorithm(PART):
fori = Itordo
I = 1;/*; is the partitioning level of R; */
fork = 1 to (n — r) do begin
fori =2tordo
compute Gain(R,{‘)
Max_Gain = max,-(Gajn(Rf‘));
if (Max_Gain > 0) then
lj =1 + 1;/* R is the relation for which Max_Gain is achieved */
end;
fori =1tordo x
partition R; into /; subrelations of equal size and distribute them to the extra sites;
where Gain(R{) = (S}, + §f},) ~ (Si+! 4 ity 4 (PTY - PTIH,
S," 7 and S,.'f,, are the local processing costs at site S in forward and backward
reduction given that R; is at partitioning level /;; PT:’ stands for the partitioning
cost.

Given n sites and r relations (with n > r), the CPU time complexity of the algorithm is
O(n — r)*r).

Example 6. Let us consider the query Ry p< Ryp<a Rypa Ry, and let us assume that there
are 6 sites in the network. Initially all relations are at partition level 1. The gains to be
computed are (S5; , + S},) — (S, + 52,) — PT? for i = 2.34. Note that PT? denotes
the cost to obtain a partition containing half the tuples of R; at a new site. Let us assume
that Max-gain is the gain obtained by partitioning R; into two equal sized partitions, one
at its original site S and the second at the extra site 5. Since we have one additional site
available, the actual partitioning does not occur yet, but we update the partitioning level of
R; to 2. In the next iteration the gains obtained by partitioning R, and R, are unchanged,
but Gain(Rf) becomes: (53 , +52,) — (83,7 +534) + (PT} — PT3). Now PT3 denotes the
cost of obtaining a partition of R; containing one third of the tuples of R3. It is important
to observe here that we should only consider subdividing a relation into fragments of equal
size. A partitioning into unequal fragments will imply that the largest fragment becomes
the bottleneck with regard to local processing costs. Let us assume that Gain(R?) is largest
among the gains considered. Thus the algorithm terminates with Rj at partitioning level 3
and all other relations at partitioning level 1. This means that the additional sites Ss and Sg

will each receive a fragment of R3 whose cardinality is 1 /3 of the original cardinality of
R;.

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 251

The modified pipeline algorithm, which we shall denote by partitioned pipeline, is almost
identical to the original, except that it makes use of broadcasting in both reduction phases.
Thus, for example, if R;; has to be reduced by R; and R, is fragmented among a number
of sites, then R; will send its tuples identifiers to all these sites. The cost model for the
response time of the modified pipeline algorithm is given in Appendix B.

The adaptive algorithm for response optimization chooses the algorithm best suited for
a particular system and data configuration as summarized below.

Algorithm adaptive response time:
Case 1: no extra sites available
if (Responsep;pr > Responsep,z)
then use Parallel Algorithm;
else use Pipeline Algorithm;
Case 2: extra sites available
if (Responsepp; < Responsep,)
then use Partitioned Pipeline Algorithm;
else if (Responsepypr < Responsep,p)
then use Partitioned Pipeline Algorithm;
else use Parallel Algorithm;

5. Experimental results

We have implemented our experiments on a SUN SPARC-IPX workstation having 16 MB
main memory. The test relations were created from the Wisconsin benchmark database [4],
with some modifications as explained in Section 5.1 below. Our simulation experiments
are based on actual runs which compute the /O time and CPU time explicitly by making
use of the UNIX ‘time’ facility. In the absence of an actual distributed database system, the
communication time was calculated by measuring the amount of data being transmitted and
dividing it by the actual bandwidth. In our experiments we assumed a local area network
with a bandwidth of 10 Mb/sec. The cost model developed in Appendix B is used only in
Section 5.2.3 in order to determine the partitioning levels of the relations in PART, Hence,
it is important to distinguish between the estimated values of the output parameters which
are used in the cost model and the output parameters given in the simulation experiments
which are based on actual runs. The estimated values of the output parameters are used
by the cost model for response time optimization in order to decide which version of the
algorithm to use.

Our workstation was used when the load on the server was low. In order to discount the
VO delay caused by competing users, we replicated each experiment five times and took
the best timing value as the result since the best timing value is the closest to the actual time
taken when the experiment is run stand-alone. Each run was treated as a separate process;
hence all the buffers were flushed before the start of the next run.

The experiments were performed with chain queries. They were further subdivided into
two major categories: one, for which we assumed that the bipartite graphs fit in main
memory and a second, geared toward disk-based systems. Since the Wisconsin benchmark

252 SCHEUERMANN AND CHONG

database contains relations where the attribute values are uniformly distributed, we used

this set-up in most of our experiments. We performed also experiments with skewed data
in order to study the robustness of our PART algorithm.

5.1. The workload

Each of the synthetic databases used consisted of relations having 3 attributes of size = 4
bytes. We deliberately chose small tuple sizes in order to avoid a priori a bias in favor of our
method which uses only bipartite graphs versus the other approaches which use temporary
relations with a variable number of columns., We report here on experiments with 4-way
joins. ;

For the first set of experiments reported here we modified slightly the Wisconsin bench-
mark [4] in order to be able to account for all the cost factors in our model. Thus, in order
to be able to generate backward messages in the pipeline algorithm when we perform a join
Ri—y>a Ry, it is necessary to transmit some forward messages (id;_;, a;_;) for which there
are no matching id;’s at §;. Similarly, to generate Right_messages during right reduction
with the PAR algorithm, it is necessary to have some tuples (id;, a;) for which there are no
matching id;_;’s at S;_,. By using the original benchmark, it is not possible to generate
relations which satisfy these two conditions at the same time.

Our experiments with the modified Wisconsin benchmark were performed with a database
consisting of 4 relations, each having the schema (uniquel, unique2, join_attr). The range
of join_attr in each relation was defined so as to achieve backward messages. Thus join_astr
has a range of [0-4999] in Ry, [50-5049] in Rj, [75-5074] in Rs, and [85-5084] in R4
with uniform distribution. Using these relations and the query class Q, = selects(R,).
Join_attr = R join_attr and R, Join_attr = Rs join_attr and Rs join_attr = Ry join_attr,
where S stands for a selection criterion, we defined three test sets, at shown in Table 2.
The database dependent parameters were varied by changing the cardinalities of the rela-
tions and the 2-way join selectivities between adjacent relations R; and R, in the optimal
join sequence, denoted by g; in Table 2. The query dependent parameters were varied by
choosing different selection criteria S on R, prior to performing the join.

The final join selectivity for an N -way join is computed as follows:

Cardinality of the final join result
niv =] IRkl

Therefore, small variations in the final join selectivity imply quite significant variations in
the cardinality of the final join result for relations of reasonable size.

A second set of experiments was performed with a testbed conforming to the original
Wisconsin benchmark. This testbed was chosen in order to experiment with a workload
for which our approach generated the smallest communication costs; hence no backward
messages were desired. All 4 relations had identical schemas, i.e., R; (uniquel, unique2,
sel_attr), but sel_attr has been used as a dynamic attribute which was substituted for one
of the attributes two, four, ten, twenty, and hundred in different experiments. This en-
abled us to obtain different values for the final join selectivity using the same selection

final join selectivity =

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 253

Table 2. Workload for test sets 1-3.

Test set 1 Test set 2 Test set 3
Database dependent Pparameters
Card(R;) (5000.20000.20000.40000) (5000,20000,40000,30000) (30000.40000,30000.30000)
gi/le—4) (1.86,1.99,1.996) (1.86,1.99,1.996) (1.98,1.99,1.99)
Query dependent parameters
S = (join.arr <) (100, 200, 300, 400) (100, 120, 140, 160)
Output parameters

Card(join) (1920,14720,27520,40320) (2880,22080,41280, 60480) (25920.60480,95040.129600)
final sel./(e-13) (0.24,1.84,3.44,5.04) (0.24,1.84,3.44,5.04) (0.24,0.56,0.88,1.20)

Table 3. ‘Workload for test sets 4 and 5.

Testset 4 Testset 5
Database dependent parameters

sel_attr {two, four, ten, twenty, hundred)
Card(R;) (20000,20000,20000,20000) (10000,10000, 10000,10000)
gille-4) (0.5,0.5,0.5) (1.0,1.0,1.0)

Query dependent parameters
S sel_attr=0

Output parameters

Card(join) (200,1000.2000,5000,10000) (100,500,1000,2500,5000)
Final sel./(e-14) (0.125,0.625,1.25,3.!?5,6.25) (0.125.0.625,1.25,3.125,6.25)

criterion sel_attr=0 in the query class. The query class for this set of experiments
was Oy = (Selecty) ur—g (Ry)).uniquel = Ry.unique? and Ry.uniquel = R3.unique2 and
Ri.uniquel = Ry.unique?. Using these relations and the query class Q;, we generated two
additional test sets, 4 and 5, whose parameters are summarized in Table 3.

The parameters used by the cost model are given in Table 4. We used the following
values for the hardware related parameters:

Ceompare =3 s, Cooq =4's, P =1 Kbytes,
m =1 Kpages, C;/, =25 ms, TR =10 Mb/s

The values of the remaining parameters are determined from the Wisconsin benchmark.

3.2 Main-memory systems

We report here on experiments falling in three subcategories. In the first subcategory of
experiments we compared the performance of our PIPE_CHQ algorithm with the approach

254 SCHEUERMANN AND CHONG

Table 4. Parameters used for cost estimation.

n number of sites

r number of relations

S site i

R; relation i

1D (or ID;) stands for the tuple identifier (or key) of a relation
R(ID) denotes the set of distinct values of /D in relation R
Roatiributes) denotes the projection of R on attributes

n; cardinality of R;

|Ri (X)) size of attribute X of R; in bytes

1Ri| size of a tuple in R; in bytes

TR data transmission speed in bytes/sec

Cito 1/O time per page

m mximumnnmberofpagsmmmbesoneduadminnminmemory
Cxin CPU time to sort m pages

Ceompare CPU time for one comparison

B size of R; in pages

P page size in bytes

PT; time to partition R;

fij semijoin selectivity of R; by R;

& join selectivity between R; and R;.{

of Roussopoulos and Kang [21] (to be abbreviated as RK) and the semijoin approach of
Bernstein and Chiu [2] (to be abbreviated by SJ). In the second subcategory of experiments
we compared the performance of the PART algorithm with the partition-based scheme
developed by Shasha and Wang [25] (to be abbreviated as SW).

5.2.1. PIPE_CHQ versus RK and SJ. The SJ method performs forward and backward
reduction using semijoins. Forward reduction is being performed from site 1 until site n,
while backward reduction is being performed from site n until site 1. The reduced relations
are then sent to the final site where the join is being computed. We use merge-sort to perform
the reductions and the final join. The RK method requires constructing for each relation
tuple connectors that consist of the projection of the relation on all its joining attributes and
a tuple identifier. These tuple connectors are being constructed during the forward phase
and then are reduced during a backward phase. In addition to tuple connectors, each site
also constructs during the backward phase an incremental pipeline planner, with the final
pipeline planner constructed at site 1 corresponding to our implicit join of the bipartite
graphs. The reduced tuple connector at site i is constructed by performing a semijoin
between the original tuple connector constructed in the forward phase and the incremental
pipeline planner of site i + 1. In order to perform this semijoin in the backward phase site
i + 1 needs to send to site i its incremental pipeline planner. It is important to note here that

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 255

Legend: 0-¢: PIPE_CHQ

o-o: RK
+-+: §J
total total.
time time
(scc) (sec)
>
e -
%g } 1 1 L
le-13 2e-13 3e-13 4de-13 5e-13 le-13 2e-13 3e-13 de-13 He-13
final join selectivity final join selectivity
Ta: test set 1 7h: test set 2
160 T
140
» 120
total.
time 100
60
40
20

1e-13
final join selectivity

Te: test set 3

Figure 7. ‘Total time of PIPE_.CHQ algorithm compared to other methods.

the incremental pipeline planners are increasing in size as we proceed towards site 1 and,
hence, are much larger than our bipartite graphs. Finally, the pipeline planner constructed
at site 1 is sent to the query site where the actual Join is computed.

We first compared the performance of PIPE_.CHQ with RK and SJ on the modified
Wisconsin benchmark, i.e., using test sets 1-3. Figure 7 shows the total processing times
of the three algorithms using the workloads of test sets 1-3, while the communication costs
are compared in figure 8.

The PIPE_CHQ method produced substantial savings in the total processing time: 23-59%
as compared to the RK method and 19-60% as compared to the SJ. As expected, the savings
become more substantial for higher values of final Join selectivity. In this set of experiments
all the attributes of the relations appear in the query target and SJ has the smallest commu-
nication costs, while RK is 4 to 20 times worse than PIPE_.CHQ. The high communication
costs of RK are due to the fact that it needs to transmit the incremental pipeline planners
during the backward phase and the pipeline planner during the final step. We observe here
that their final pipeline planner containing n-tuples of /Ds exceeds by far the space needed
by the (n — 1) bipartite graphs shipped in our method. A second set of experiments were
conducted with the original Wisconsin benchmark, using test sets 4 and 5. As explained
above, this workload generated fewer communication costs for PIPE_CHQ. In addition, we

256 SCHEUERMANN AND CHONG

Legend: O-C: PIPE_.CHQ

o-o: RK
+~+: §J
160() L] 1 8y § 2500 |1 T i 1
1400 + &
1200 | 1 it
data 1000 ¢ 1 data 1500
trans. 800 + <4 trans.
(KB) ggg F 4 (KB) 1000
400 + -
200 | P "
04 0
le-13 2e-13 3e-13 4c-13 5¢-13 le-13 2e-13 3Je-13 4e-13 5e13
final join selectivity final join selectivity-
8a: test set 1 8b: test set 2
2500 T
2000
data 1500
trans,
(KB) 1000
500
09

le-13
final join selectivity

8c: test sel 3

Figure 8. Comm. costs of PIPE.CHQ algorithm compared to other methods.

now varied the number of attributes from each relation to be included in the query target.
Since our method does not require that the join attributes be sent to the query site in the
final step, as is required in SJ, it achieves lower communication costs when some or all
of the join attributes are not part of the query target. Figure 9 shows the communication
costs of the three algorithms using the workload of test sets 4 and 5 and a variable number
of target attributes. As expected, the smaller the number of target attributes from each
relation is, the larger are the gains in communication costs of PIPE_CHQ. Thus, on this
testbed for two target attributes from each relation, the communication costs of SJ are about
13% higher than those of PIPE_CHQ, while RK is 25% worse than PIPE_.CHQ. In the
case of one target attribute from each relation, the communication costs of SJ and RK are
33% higher than those of PIPE_CHQ. In [24] we also report on experiments with 10-way
Jjoins. These results show that as the cardinality of the final join increases, the predomi-
nant cost of the total processing time is the /O cost necessary to materialize the implicit
join.

5.2.2. PART versus SW. In order to compare the performance of our partitioned pipeline
algorithm (PART) with other leading methods based on partitioning, we used the test sets 1-3
for which the response time of PIPE_CHQ is smaller than the response time of PAR_CHQ. If

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 257

Legend: O-0: PIPE.CHQ

o-o: RK
+ +: 8
800 400 T T T T T
700 350 >
600 300 =
data 500 data 250 ‘
trans. 400 trans. 200 =
(KB) 300 (KB) 150 ;
200 100]
100 50 A
0 i 1 1 1 i N 0 L i 1 1 i 1
le-142e-143e-144e-145¢-146e-14 le-142e-143e-144e-145e- 14 6e-14
final join selectivity final join selectivity
9a: test set 4 9b: test set 5

2 target attributes from each relation

350
300
250
date 200
(KB) 150
100
50

data
trans.
(KB)

1 1 1 1 1 1 1 1 1 1 1 1

0
1e-142e-143e-144¢-14 5¢-146e-14 1e-142¢-143e-144e-145e-146e-14
final join selectivity final join selectivity
9¢: test set 4 9d: test set 5

1 target attribute from each relation

Figure 9. Comparison of communication costs for different numbers of target attributes.

extra sites are available, our adaptive procedure will select PART as the algorithm of choice,
As a competitor to PART, we chose the SW partitioning method proposed in [25] which
partitions the relations across all sites using a hashing method. A dynamic programming
algorithm was developed to determine the optimal Join sequence assuming that all relations
are partitioned. At each step a new intermediate relation of minimum cost is generated and
distributed across the sites. For our test queries we computed the optimal join sequence
using the SW method and used it for the evaluation of both methods. We assumed that none
of the relations were originally partitioned and then generated the appropriate partitioning
scheme as required by SW. In our simulation experiments we calculated the response time
for SW by including the time to partition the relations, i.e., transmission time and /O time.
In order to decide on the partitioning level of the relations in PART we employed the cost
model developed in Appendix B. Note again the distinction betweeen the estimated values
of the output parameters which are used in the deciding the partitioning levels in PART and
the actual simulated output parameters given by the experiments.

