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Figure 10. Response time of PART algorithm compared to SW.

The experiments were performed with the same 4 relations of test sets 1-3, but we varied
the number of total sites available from4 to 7. Thus, with 4 sites, PART does not perform any
partitioning. The results of these experiments are summarized in figure 10. In comparison
with SW, we achieved the following response time improvements: 18-33% for 4 sites, 15—
42% for 5 sites, 19-52% for 6 sites, and 24-57% for 7 sites. Notice that increasing the
number of sites does not guarantee a lower response time for the SW method for certain
join selectivity values. The improvement of response time in PART versus PIPE_CHQ, i.e.,
the gains obtained by additional sites, were as follows: 3-10% for 5 sites, 13-24% for 6
sites, and 19-37% for 7 sites. It is clear that the speed-up in the response time of PART is
not optimal with respect with the number of processors, but the performance of PART is
more stable than that of SW.

5.3. Disk-based systems

In order to assess the effectiveness of our algorithm for disk-based systems where graph
partitioning needs to be performed, we repeated the experiments based on test sets 1-3
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Figure 11. Total time comparison: main-memory vs. disk-based PIPE_.CHQ.

while varying the amount of main memory available for the graphs. We experimented
with three different settings for the size of the main memory buffer available at each site
(including the query site): 10, 100 and 1000 pages respectively, each page being of size
1 Kbyte. In Section 2 we presented two variants of PIPE_CHQ, intended for the extreme
cases where all graphs fit in main memory or none of them fit. In practice, we also encounter
a number of hybrid cases. One such case occurs when each bipartite graph BGg,_, g, fits
in main memory at site S;, but at the query site there is not enough space to store all
reduced bipartite graphs. In this case, step 4 of the disk-based PIPE_CHQ is modified,
since no page identifiers are present. A second hybrid configuration occurs when some
bipartite graphs fit in main memory at their respective sites. Ateach site S; the inclusion of
page(id;_;)’s in BGg,_, », depends upon whether the graph at S;_; is main memory resident
or not.

Figure 11 compares the total processing times of PIPE_.CHQ in a main memory sys-
tem with those for disk-based systems with various buffer sizes. In all test cases run, a
disk-based system with buffers of size 1000 pages behaved identically to a main mem-
ory system: all graphs fit in memory; hence, no deterioration in performance occurred.
In the case of buffers of size 10 pages, on the average, 31% of the graphs fit in main
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memory, while for 100 pages the figure increased to 92%. For buffers of size 10 pages
we observed a performance deterioration in the range of 6-79% as compared to a main
memory system, while for buffers of size 100 pages, this figure dropped to 0-53%. The
539 deterioration occurred for the highest join selectivity in test case 2 where 52% of the
graphs fit in the main memory. In [24] we also compare the performance of our disk-
based PIPE_CHQ with the RK and SJ algorithms and show that our algorithm maintains its
superiority.

6. Discussion and conclusion

We have developed efficient algorithms for distributed join processing that make use of
bipartite graphs in order to represent the joinability of two relations with respect to a
given reduction set. Our algorithms achieve substantial savings in local processing time
by performing a semijoin only once at each site and avoiding the generation of reduced
relations. In addition, at the query site we can traverse these graphs easily in order to
construct the implicit join. This also eliminates the need to send reduced relations to the
query site and to store them there temporarily in order to perform an explicit join. All our
algorithms are full reducers and can be applied to all cases, even to the pathological ones
for which the forward and backward reduction phases do not eliminate any tuples.

Our algorithms are best suited for local area networks where the sites have large amounts
of main memory and hence the bipartite graphs do not need to be written out to disk.
However, we have shown that these algorithms can be extended for disk-based systems
with only a minimal cost incurred for J/O.

Our algorithms are adaptive in number of contexts. Depending upon the objective mini-
mization criteria desired, we can use a pipeline version for minimizing the total processing
time or, we can choose between a partitioned pipeline version and a parallel version for
response time minimization. Furthermore, the partitioned pipeline algorithm considers the
number of additional sites available which gives it an adaptive flavor.

Our cost models developed in Appendix B relied on the knowledge of selectivity factorsin
order to estimate the amounts of data being transmitted and the sizes of the bipartite graphs.
However, it is important to observe that these selectivity factors are not necessary for total
processing time minimization. The cost models and hence, the selectivity factors, are only
used for response time minimization in order to choose between PART and PAR_.CHQ. In
addition, even if the selectivity factors are not known in advance of running the response
time optimization algorithm, they can be estimated quite efficiently and accurately via a
sampling method, like the adaptive sampling method reported in [16].

In contrast to most partitioning schemes, PART divides the relations into equal fragments
without considering the identity of the tuples. Most partitioning schemes assume the ex-
istence of a hash function that evenly distributes the tuples among the sites. This type of
partitioning is difficult to achieve due to the skew in attribute values. We have reported
on the results of simulation experiments that show that PART outperforms the partitioning
method of [25] proposed for response time minimization; similarly PIPE_.CHQ achieves
substantial savings in total time over traditional semi- join methods or the tuple connector
scheme of [21].



ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 261

Appendix A: Parallel chain query algorithm(PAR_CHQ)

Step 1. parbegin
AtSii=1,...,n)do:
if (i < n) then
begin
Temp; = Ri(ID;, Ai);
send Temp; 10 Si415
end;
if (( > 1) then
begin
wait_for(Temp;-1);
perform Ri—i/i-1) >3a,_, Rijirs
build BGg,_, /(i-1).R: /ti-1.i}>
end;
parend;
Step 2. At S, do: /* Right_messages */
Remove all idy’s from BGg, g, that do not have any edges incident to them;
Right_messages, = set of idy’s from BGg, g, that do not have any edges
incident to them;
Remove Right_messages, from BGg, g, and send it to S3;
At S, do: /* Left_messages */
Remove all id,’s from BGg,_, &, that do not have any edges incident to them;
Left_messages, = set of id,_1’s from BGg,__, g, that do not have any edges
incident to them;
Remove Left_messages, from BGg,_, g, and send it to S,_1;
Step 3. parbegin
At §; do:
wait_for(Left_messagess);
Remove id,’s contained in Left_messages, from BGp, g, and remove the
edges incident to them;
Remove id;’s that do not have any edges incident to them from BGg, z,;
At S;(i #2,i #n)do:
parbegin
begin
wait_for(Left_messages, ,,);
Remove id;’s contained in Left_messages; ., from BGg,_, g, and
remove the edges incident to them;
Left_messages; = set of id;_y’s from BGg,_, g, that do not have
any edges incident to them;
Remove Left_messages; from BGg,_, g,
if (Right_messages;_, processed)
then send Left_messages; minus Right_messages;_; to S;i_1;
else send Left_messages; to S;_1;
end;
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begin
wait_for(Right_messages;_,);
Remove id; s contained in Right_messages;_,; from BGg,_, g,
and remove the edges incident to them;
Right_messages; = set of id;’s from BGg,_, g, that do not have
any edges incident to them;
Remove Right_messages; from BGg,_, z,;
if (Left_messages;; processed)
then send Right_messages; minus Left_messages; ;| t0 Si41;
else send Right_messages; to S;;1;
end;
parend,;
At S, do:
wait_for(Right_messages,_,);
Remove id,_;’s contained in Right_messages,_, from BGg, , &, and
remove the edges incident to them;
Remove id,’s that do not have any edges incident to them from BGg, _, &,;
parend; }
Step 4. The same as Step 4 in the algorithm PIPE_CHQ.

Appendix B: Computation of processing times and response times

As we mentioned earlier, we assume that an external merge-sort is used to perform the
semijoin at each site. The local processing times in the formulae given below can be modified
correspondingly if a different semijoin method is used. The parameters used in the Appendix
are summarized in Table 4.

A. Pipeline algorithm

We shall compute the following components of the total processing time:
§;,y = time to construct BGg,_, &,
Sip = time to reduce the graph BGR,-,,R,
T; s = data transmission time from S; to S;,; in forward reduction
T;.j.» = data transmission time from S; to §; in backward reduction
T; , = graph transmission time from §; to the query site
G; = size of the graph after the forward reduction at S;
GT = graph traversal time
I,y = size of input data received at §; from S;_, in pages (in forward phase)
I;+1.» = size of input data received at §; from S;; in pages (in backward phase)
Tiar = target attributes transmission time
Totalpjpg = total time for pipeline algorithm
Responsep;py = response time for pipeline algorithm
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In the forward reduction the processing times at each site are:

Si.p = (1 - [RD/P % Cigo

Sip=lic1y X Cipp+2 % Lici g X Ciga+ iy g/ m X Coont
+ logy(li-1.7/m) X (i1 X Coompare +2 X Ii—1.5 X Cijo)
+I¢'_.Lf X C;/o +ni X CW +2x P x C,'/o
+ P;/m % Cgon + 10g,(P;/m) X (n; X Ceompare +2 X Pi X Ciso)
+ P; x C,‘/,,-!-n,' ® Cmm+0,-/m Lt

whete Ii_1; = (ioi(TTi3 feas) - IRiiUDict, Ai-))D/P, Py = (i - |RiD/P, Gy =
ni-ini TTio) &k % (Ri-1UDi-)| + [RID)D/P, (i =2,...,n). :

At S;, we need to read R; and send to S; its IDs and join attributes. The first term in Sif
(i =2,...,n)denotes the /O cost to store the incoming data received from S;_;, while the
next two terms account for the /O costs and CPU costs in the sorting of the incoming data.
The fourth term accounts for the merge costs in completing the external sort of the incoming
data: a total of log,(f;—1, s /m) passes are required since we have (/;_; y/m) runs after the
sort step. The next two terms in §; ; account for the component of the time spent in finding
matching tuples in the incoming data. The next 5 terms repeat the same calculation for R;,
the relation stored at S;. The last term accounts for the sort cost of the graph assuming that the
graph fits in main memory. If the graph does not fit in main memory, the sort cost can be rep-
resented similar to terms 3 and 4. In the backward stage the processing times at each site are:

=1 n—1
Sip=2%Ilis1p % Ciso + ("i n Jeksr =i n fk.k+l)
=1

k=1 k

i-1
x log, (nl'—lni Hgk) X Ceompares

k=1

where I = (i [Tich fewsr =1 [lic) fewnr) - [RUDDI/P, (i =2,...,n—1).

The first term in S; » accounts for storing and retrieving the incoming data from S;4;. The
second term represents the cost of doing a binary search for all ID’s received from ;4 to
reduce the graph whose size is n;_n; ﬂz;'l g The data transmission times in the forward
and backward phases are:

i—1
Tiy= "i(n fk.k+l) R(ID;, ADI/TIR, i =1,...,n=1)
k=1
i-1 a-1
Trip = (n,- [ fewss —=m 1 fml) AR(UD)I/TR, (i =2,...,n=1)
k=1 k=1

The time to transmit the final graph to the query site is:

n—1

Tog = niciti X | | 8 X (R UDi-))l + IRUDHD, G =2, ..., n)
k=1
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The number of edges in each bipartite graph after the reduction is n;—jn; X ﬂ:;} gk The
graph traversal time is:

n n—1 n=1 n—1
GT = (n ny X ngh) (Zk’gz ("k"k-H gz) +n X Ci/a)
k=1 =1

k=1 k=2

For each tuple in the join result we need to perform (n — 2) binary search operations and,
in the worst case, n I/Os to retrieve the target attributes. The number of tuples in the join
result is [Ty M X [Ti2) g The total time Totalpipg is:

n n—1 n—1 n—1 .
Totalppe = Responsepppp = Z Sky+ Z Sep + E T+ z Tet1.kb
k=l k=2 k=1 k=2
n
+ 2Tk_g+GT+Tm

k=2

B. Parallel Algorithm

In order to compute the response time of the parallel algorithm, we need to compute a
number of additional processing terms as well as elapsed times. The elapsed time for an
operation performed at S; or for a message received at S; accounts for the delays due to
other operations/messages that need to be completed/received earlier.

S; 1 = time to reduce the graph BGg,_ &, using Left_messages

S;,r = time to reduce the graph BGg,_, , using Right_messages
Ii+1.n = size of input data received at S; from S, in left reduction
Ii—1.»r = size of input data received at S; from S;_; in right reduction

E;, = elapsed time to finish the semijoin at site 5;.

E;j,m = clapsed time to receive Right_messages from S at §;

Ej 1 = elapsed time to receive Left_messages from S, at S;
The processing times for the semijoins performed during forward reduction are:

Si,; = (- [RD/P x Cipo
Siy = licig X Cipo+2 % Licag % Cijo + Licyp/m X Coon + log, (Ii—1,7/m)
x (1i-1 X Ceompare + 2 X Tic1,f X Ciso) + lic1.y X Cigo
+ni xceomp(e+2x P; x Cl/a+' Pi/m x Csont
+ log,(P:/m) x (n; X Coompwre +2 % Pi X Cifo)
+ P; x Cijo + ni X Ceompare + Gi/m X Csons

where Ii_i s =(i-1 - |Rici(Dir, Ai-))D/P, Pi=(ni - [Ril)/ P, Gi=ni-1nigi-1 X
(IR (ID; )| + |RUDHD/P, (i=2,....n)
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Note that the formula above is the same as the one used in the pipeline algorithm except
for the different definitions of /;_; ; and G;. In the backward phase, the processing times
for Left_messages at each site are:

a—1

Sin=2%xLiqinxCipt (ﬂi iR n fk+l.k) 1582(".'-1&8.‘-1) % Ceompares

k=i

where Lipia=mi —ni ﬂ:;‘; Sexr) - |RiID)HY/P, (i =2,...,n=1)

Similar to the pipeline algorithm computation, the first term in S, accounts for the
storing and retrieving of the incoming data from S;, and the next term stands for the cost
of the binary search to be performed for all IDs received from S, to reduce further the
graph whose size is n;_(n;gi-1. Similarly, processing time for Right_messages at each
site is:

i-2

Sirr =2 X fioy,0r X Cpo + (nm =Ny n fk‘kH) logy(ni—1nigi-1) X Cecompare,
k=1

where [i_yr = izt — it [Ii2: ferat) - IRiciiUDi-DI/P, (i =3,...,n)
The elapsed times to finish the semijoin at each site are:

E;; = max(ni_; - |[Ri—-1(UDi~1, Ai-)I/TR, n; - |Ri|/P x Cyj) + Si,
(i=2,....,.n=1)
E.; = ny—y - |Ra—t(UDp—1, Ap-)I/TR + Sp ¢

We observe here that a semijoin at site S; cannot be performed until we receive the incoming
data from S;_; and we send the outputdatato S;,;. This is the reason for taking the maximum
of these operations in E;,. Note that at S, there is no data to be sent out in forward
reduction. Let §; (2 < j < n) denote the meeting point of the left and right messages, i.e.,
the first site to receive both types of messages. Then E; ;, and E; ,,, can be computed as
follows:

k=1

j=2
Ejwm = Ej 15+ (nj-x = Wi n fk.lz+l) |Rj1(ID;_)I/TR

a=1

Ejim = Ejqus+ (nj L n fk+l.l:) - |R;(ID))1/TR

k=j

Let us denote by 7, and 7; the elapsed times for the right and left messages to travel to §,
and S, and be processed there, respectively. T, and 7; can be computed by the following
recurrence formulae:
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Case 1: Ej_,-m < Ej.lm
fori = jton—1do
begin i
T, = max(E; rm, Eis) + Sirr + (i — i ﬂi;'l feasr) - |RiUDDV/TR;
Eipim=Tr
end;
T, = max(E, rm, Eps) + Sn.rrs
Ejim= max(E; rm. Ej,:) + 8j.rrs
fori = jto3do
begin
T, = max(E; m, Eis) + Sirt + (ic1 — i oo finin):
[ Ri 1 ID;-)I/TR:
Eiam=Ts
end;
T, = max(Ea m, Ez5) + S2.rt3

The above calculations are based on the following observations. Each site S; can start
processing its incoming Right.messages;_; only after it has received the message from
S;_; and it has finished its semijoin operation. Only after it has finished processing the
incoming message Right_messages;_,, can S; proceed to send Right_messages; to site Si1.
This explains the use of the maximum in the calculation of T,. Lefi_messages;,, can
be processed asynchronously from Right_messages;_,; in this case, the left message is
processed after its right counterpart. The calculations for case 2 are almost identical with
those for case 1, with only one exception. Since incase2, Ejrm > E j im, the right message
is processed after the left message; the statement above E; jm = max(Ejm, Ejs) + Sjrr
should be removed and the statement E ;. = max(Ej im, Ej)+Sjn should be inserted
at the beginning of the algorithm. The response time Responsepyp is:

n
Responsepyg = max(T,, T) + ) _ Teg + GT + Tr
k=2

C. Partitioned pipeline algorithm

Let /; denote the partitioning level of relation R;.
Total PT! = total partitioning cost for R!
PT}" = cost to obtain one partition of R! at an extra site
These costs can be computed as follows:

Total PT! = (l; = 1) x PT}'

1 1
PT} = Pir % Cijo + 7i |R((ID;, Ai-1, ADI/TR
i i

1
+ 'i;”i - |Ri(ID;, Ai=1, ADI/P X Ciso,
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where P, =n; - |Ri|/P, li # 1)
PT) =0,(i=1,...,1)

The first term in PT“ accounts for the cost of retrieving one partition at level /; from disk;
the second term stands for the data transmission cost and the third one for cost of storing this
partition at the new site. The modified local processing costs during the forward reduction
phase are:

= li1.; X Cijo+2 X lic1,p X Cigo + liz1,p/m X Coon
+ logy(li—1,5/m) % (i1 X Ceompare + 2 X Ii—1,5 X Ciso)
+ li-t.5 X Cigo + izt X Coompare +2 % Pi' x Cigo
+ Pl fm x Con +lagz(P,."/m) X (M % Coompare +2 X P} x Cipo)
4P % Cijo + My X Coompare + G /m X Coon,

where Ii_1,7 = (u-1([Tiy fiks) IR (IDiy, Ai i)l)/P Pl =(tn; - |RD/P, G} =
’nu 17 nk—l gk X (|Ri-1(ID;i-)| + |Ri(ID)D/P, (i =2,...,n).
Observe that this formula is almost identical to that of S ;s in the pipeline algomhm

except for the terms P} and G, which take into account that the cardinality of R; is L of
the original cardinality. The backward processing costs become:

1
Sip = 2% lisip X Cipo+ (n, [T fexsr—m n Ji. k+l) log, (""-—l": I1 Slz)

k=1
X Ceompm,

whereli1,5= 1 (u n;;:‘l Serrr = [0} feast) - IR(UDDI/P, G =2,....n = 1).
S; receives only + of the data in backwa:d reduction and the size of its graph is also
reduced by + i The response time of the partitioning algorithm Responsepyzr is:

n—1

Responsem Z kf+z kb+ZTOtal_PTh+ZTk]
k=2 k=1
n—1

+ Zmuwgngwum
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