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Abstract

This work tackles the problem of answer-aggregation for
continuous spatio-temporal range queries in distributed set-
tings. We assume a grid-like coverage of the spatial uni-
verse of discourse, in which each cell is governed by a Base
Station (BS) that communicates with the mobile users in its
zone, and is also equipped with a server that has Moving
Objects Database (MOD) capabilities. The MOD server
stores the data for the moving objects in a given cell, pro-
cesses the continuous queries pertaining to that cell, and is
connected to the MOD servers in the neighboring cells. We
demonstrate that, when a range query that spans over more
than one cell needs to have its answer computed for a user
located in a particular cell, by intelligently combining the
transmission and the aggregation of the partial results, sub-
stantial improvements can be achieved at the global level.
Towards this end, we present the BORA (Bresenham-based
Overlay for Routing and Aggregation) tree, which is used to
combine the transmission and local data aggregation along
the routes to the destination of the query’s answer.

1. Introduction and Motivation

Typically, in cellular settings, a particular Base Station
(BS) is in charge of contacting the mobile users that are
in its area of coverage. However, the actual locations of the
objects are managed by (possibly) a hierarchy of servers and
the choice of the architecture impacts the trade-off between
the cost of lookup of a given user vs. the cost of updating
the location [20]. Majority of the works in Moving Objects
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Database (MOD) research and practice have focused on the
efficient storage and retrieval of spatio-temporal data and
processing various (continuous) queries, however, a typical
assumption in most of them is the existence of a central-
ized server [9, 16, 15, 24]. Some recent works have consid-
ered distributed settings, in which part of the responsibility
for maintaining the answers of the spatio-temporal queries
is delegated to the mobile users [6, 7]. Adding this extra
level of query-awareness to the dead-reckoning update pol-
icy (c.f. [25]) yielded substantial savings in the commu-
nications. However, even in these settings, the MOD-like
capabilities are assumed to be centralized.
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Figure 1. Problem Settings

In this work, we take a step towards a natural augmenting
of a typical cellular architecture with a set of MOD servers.
As a first approximation, we assume that each BS is cou-
pled with a MOD, and that the servers are inter-connected
in a mesh-like fashion. Each individual MOD is in charge
of storage/retrieval of the mobile entities within the zone
of coverage of the accompanying BS, and processes the
spatio-temporal queries pertaining to its local region. An il-
lustration of the settings that we assume is provided in Fig-



ure 1, where the rectangle ABCD indicates the region of
interest R. Assume that at time t = 10 : 00AM the follow-
ing range query is posed:
Q1: Retrieve all the objects that will be inside R between
11:00AM and 11:20AM” (optionally, the user may request a
specific time for the answer to be delivered, e.g., 10:40AM).

One observation is that the user would need to see the an-
swer in some format like: {(oi1, [t1i1, t

1
i2]), (oi2, [t1i2, t

2
i2]),

. . . , (oin, [t1in, t2in]))}, possibly even sorted by the objects
ID (OID) attribute. The answers which are obtained by
the individual MOD servers are relevant only for their cells
and the query region may span over multiple cells. More-
over, the trajectories in the answer-set may also span over
multiple cells throughout the time-interval of interest for the
query, as illustrated by o3 and o7 in Figure 1. In such cases,
if the final recipient is expected to do the aggregations of the
multiple time-intervals per individual OID, it may experi-
ence too large workload, especially if the answer is to be
sorted by the OIDs. In case the answer is to be delivered
to an on-board device (e.g., a PDA) of a mobile unit, e.g, o1

in Figure 1, the situation is even worse, both in terms of pro-
cessing1, as well as unnecessary exploitation of the wireless
communication channel. Hence, it is desirable that, by the
time the BS that controls the region in which the recipient
of the query’s answer is located (BS1,5 in Figure 1) starts
its transmission, the corresponding server has already prop-
erly aggregated the answer-set, in the sense of merging the
time-intervals of relevance for each individual OID and, if
needed, sorting by the OIDs.

The main problem that we address in this paper is how
to efficiently aggregate the final answer for a given spatio-
temporal query, where the efficiency is measured in terms
of the time that elapses from the moment that the individual
servers begin to communicate with each other (after each
of them has obtained its local answer), until the moment
the particular server whose BS is in charge of transmitting
the answer has all the partial answers properly aggregated.
At the heart of our motivation is the following observation:
Since a trajectory that is part of the answer may span over
multiple cells, and the server of each cell needs to have its
local answer transmitted along a path which involves neigh-
boring cells, the overall time spent on aggregating the an-
swer may be improved if some partial aggregation is per-
formed along the way. Furthermore, if the finals answer
is also to be sorted by the IODs, and assuming that each
MOD server, besides the spatio-temporal indexing struc-
tures, e.g. [23], also has the local OIDs sorted, then let-
ting the destination server do the sorting of all the data from
local partial results may be way too costly. Namely, this
would amount to (an instance of) a k-way merge and, as-
suming that in each of the k sets we have m elements, the

1As an example, the TX PDA operating under GarnetOS, has a
312MHz processor, 128MB of a total memory (http://www.pcworld.com)

complexity is O(km log m) if a heap/priority queue is used
(O(k2m) ”brute-force”) [10]. If no sorting by the OIDs is
required, the problem of aggregating time intervals is essen-
tially a problem of duplicates-elimination which, e.g. with
a global hashing, can be done in linear time. As an illustra-
tion, consider:

Example 1. Assume a 10x10 grid (c.f. Figure 1) in which
query region R is a 5x5 rectangle ABCD, whose lower-left
coordinate is at the cell C3,3 and the upper-right one is at
the cell C7,7 (inclusive). Further, assume that the destina-
tion of the answer is the server in the cell C1,5.

A naive’ approach to aggregating the answer would be to
fully exploit the parallel transmission of the data and aggre-
gate the partial answers at the destination server C1,5. Pos-
sible routes for this are illustrated with the dotted-arrowed
lines in Figure 1 and observe that, besides the destination,
there will be a contention at the nodes C2,4 and C2,6. As-
sume that the average number of trajectories (equivalently,
OIDs) per cell is 5,000 throughout the duration of the
query (20min.). Also, assume that, on the average, a tra-
jectory of a moving objects spans over 4 cells. If the server
at C1,5 receives the partial answer-sets of each individual
server involved in processing of the Q1, then it will end
up having to execute an aggregation of the time-intervals
among 125,000 OIDs, and OIDs are sorted, then it will
need to execute a 25-way merge of (sorted) sets of size
5,000 each. However, if C2,4 and C2,6 begin to aggregate
the data that they have received, while waiting for C2,5 to
finish the transmission, each of them will execute the time-
intervals aggregation for 50,000 OIDs (or 10-way merge
of size 5,000 if sorting is required). An important benefit
is that, since the trajectories span over several cells, once
C2,4 and C2,6 are done with the aggregation, the total data
that each of them will transmit to C1,5 will be much less
than 50,000 (oi, [ti1, ti2]) items (in our experimental setup,
we obtained that the answer sizes in C2,4 and C2,6 was ap-
proximately 25,000). Hence, now the server at C1,5 will
have to aggregate a total of 75,000 elements (or a 7-way
merge; 5 of size 5,000 and 2 of size 25,000). Using our
experimental setup (c.f. Section 4) we obtained that for the
settings above, the total time for completing the aggrega-
tion of all the individual cells’ partial answers at C1,5 was
2.4 sec. (12.5 sec. with sorting), and 1.1 sec. if the par-
tial results were pre-aggregated in C2,4 and C2,6 (4.6 sec.
with sorting). Consequently, an aggregation speed-up of a
factor ≥ 2 can be achieved with performing some partial
aggregation ”on the fly”. However, there is another benefit
– savings in the transmission due to the smaller sizes of the
data after partial aggregation.

Hence, it is desirable to have a routing strategy that will:
(1.) enable some partial aggregation; (2.) retain a certain
amount of parallelism, for the purpose of avoiding too fre-
quent aggregation of the data. Intuitively, such structure



should be a tree rooted at the (location of the) destination
server which will preserve to some extent the ”locality” of
the geometric shape obtained from the query region and
the collection of the shortest paths towards the destination.
Along these lines, the main contribution of this work are as
follows:
• We introduce the BORA (Bresenham-based Overlay for
Routing and Aggregation) tree, a structure that provides a
balance of parallelism and aggregation.
• We provide algorithms for constructing the BORA tree
and aggregating the answer-set for a range query evaluated
by a distributed set of servers.
• We provide experiments which demonstrate that signifi-
cant improvements of the time-efficiency can be achieved
in comparison with the naive approach.

The rest of this paper is structured as follows. In Section
2 we recollect the preliminary background. In Section 3 we
present our main results, the BORA tree and the algorithms
for routing and aggregation of the answer, and in Section 4
we present our experimental observations. Finally, Section
5 positions our work with respect to the related literature,
concludes the paper and outlines directions for future work.

2. Preliminaries

In this work, we adopt a trajectory as model for the ob-
jects’ motion, which can be defined as a sequence of points
(polyline): (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn) where
t1 < t2 < . . . tn. At each ti, the object is assumed to
be at the location (xi, yi) and in-between two consecutive
points, at time tin ∈ (ti, ti+1), the location of the ob-
ject is obtained by a linear interpolation along the segment
(xi, yi)(xi+1, yi+1). To construct its future motion plan,
an object transmits its start-location, start-time and end-
location (plus a set of to-be-visited points) to the server.
The server has a map available, describing the graph of
the road-segments, as well as the information about the
velocity-distribution patterns on each segment in a given
time-interval. Given the starting and end-location informa-
tion, the server uses a dynamic variant of the Dijkstra’s al-
gorithm [4] in which the cost of the edges in a graph (road
segments) depend on the time, in order to generate a travel-
time optimal trajectory, which is subsequently transmitted
back to the user [24, 3]. In our settings, each MOD man-
ages only the portion of a given object’s trajectory which
is in its cell – the region of coverage of the BS that can
communicate with the object during the time it is inside the
cell. Hence, the servers will need to utilize a distributed
version of the dynamic variant of the Dijkstra’s algorithm
[22]. Efficient algorithms for processing many of the popu-
lar spatio-temporal queries for trajectories are presented in
[12], which can be executed locally by the servers in each
cell. Note that the work in this paper is applicable to both

past and future trajectories. Before we proceed with our
main results, we need to elaborate on two more issues:
Bresenham Algorithm: Bresenham’s line algorithm is an
algorithm that determines which points in a raster should be
plotted in order to closely approximate a line segment be-
tween two given points. It is commonly used to draw lines
on a computer screen, as it uses only integer addition, sub-
traction and bit shifting, all of which are very cheap opera-
tions in standard computer architectures. It is one of the ear-
liest algorithms developed in the field of computer graphics
[5]. The typical assumption is that the end-points of the line
segments have integer coordinates and that the centers of the
cells, i.e., the pixels are also in located in the integer-valued
locations of a 2D mesh. The question is: given two pixel-
points A(xA, yA) and B(xB, yB), end-points of a segment
AB, how do we determine which one of the neighboring
pixels to A should be illuminated? The slope of the line de-
fined by A and B is m = (yb−yA)/(xB−xA), and assume,
for the time being, that 0 ≤ m ≤ 1 1 and that, as usual, the
positive orientation along the X-axis is left-to-right. Now,
the decision that has to be made is, when moving to the next
column of pixels (i.e., increase the value of x by 1, from xA

to xA+1) which pixel in that column should be illuminated.
Given the assumption about m, it will be either the point
with the same value for y (= yA), or the value which is 1-
greater ( = yA + 1). The choice is done by simply rounding
the value of m to the nearest integer, and adding that value
to yA. Clearly, for the subsequent point/pixel (x = xA +2),
the value of 2m will have to be rounded to the nearest inte-
ger and added to the previous value along the y-axis.

y =  2.5 x

y = 0.4 x

Figure 2. Bresenham’s Algorithm

In case the slope is 1 < m < ∞, then the procedure
above has to be slightly modified, in the sense that one
will certainly move progressively in the values along the y-
axis, increasing the value by 1 in each subsequent column,
however, the check will have to be performed whether the
value along the x-axis should be increased by one or left
unchanged, based on the rounding of 1/m to the nearest
integer. Figure 2 illustrates the main aspects of the Bresen-
ham’s algorithm. Similar categorization applies when the
slope of the line segment AB is negative (m < 0).



Networking Aspects: As indicated in Section 1 (c.f. Fig-
ure 1), we assume a mesh-like connectivity among the
servers in the cells, and the communication between two
is connection-oriented, e.g., TCP-like [21]. However, for
the actual throughput, besides the capacities of the commu-
nication link per se’, in the actual TCP-like communication
one needs to consider various factors, e.g., the round-trip
time (RTT); the size of the receiver/sender window [21];
errors/packet-drops. As a particular example, the measure-
ments reported in [14] indicate that, typically, 20% of the
TCP flows have receiver windows limited to 8KB; 35% to
16KB and the rest 45% to 64KB. Throughout the rest of
this paper, we will assume that the time-cost of the com-
munication when transmitting n data packets between two
hosts can be expressed as b1 + b2 · n, where b1 repre-
sents the round-trip time (ACK) for establishing the connec-
tion and b2 represents the throughput, approximated by re-
ceiving window size / round-trip-time [11]. Assuming that
b1 = 320 milliseconds and that the size of the window is
64KB, we obtain that the throughput is 200KBps (= 1/b2),
and to observe the impact of these parameters, assume that
each element of (oi, [t1, t2]) takes 8B (24B total).
Example 2. In the context of Example 1, assume that, in
case of a contention, C2,5 gets the priority to transmit to
C1,5 (followed by C2,4 and C2,6). The total time-cost of the
transmission for the partial answers to the query Q1 using
the naive approach is (9 x 0.3) + (25 x 5,000x 1/(200 KBps)
x 24B) = 18.7 sec. Note that, past this point, the server at
C1,5 has to aggregate the entire collection of partial results,
which (c.f Example 1) yields 21.1 sec. (31.2 sec. with sort-
ing). On the other hand, if the aggregation is used in C2,4

and C2,6 while waiting to connect to C1,5), then the time-
cost of communication is ((6 x 0.3) + (2 x 6 x 5,000 x 1/(200
KBps)x 24B)) + ((2 x 0.3)+(2 x 25,000 x 1 /(200 KBps) x
24B)) = 14.6 sec., with smaller data sets to be aggregated
both at C2,4 and C2,6 (in parallel), as well as at C1,5 at
the end. The overall time-cost to finalize the aggregation
of the answer now becomes 15.7 sec. (19.2 sec. with sort-
ing). Observe that, in case the network connection is faster
(both smaller b1 and larger b2) the benefits of the partial
aggregation will be more significant.

3 BORA-based Range Query Processing

Now we present the main result of our work – the algo-
rithm for constructing the BORA tree and the algorithm for
aggregation of partial answers which uses a given BORA
tree as a routing structure.

For a given range query, we assume that the query-region
of interest R, is an arbitrary polygon. The cells which in-
tersect R are the ones which participate in the answer to
the query. Let Cxd,yd

denote the cell which is the destina-
tion (e.g., C1,5 in Example 1) where the query’s answer is

needed. Let Si,j denote the location of the MOD server of
a cell Ci,j and, in particular, Sxd,yd

denote the location of
the destination (assume they coincide with the cells’ cen-
troids). Also, assume that the pixels used in the Bresenham
algorithm are located in the points with coordinates Si,j ,
and the appropriate scaling is applied so that the distance
between two consecutive points along each coordinate is 1.
Let CR = {CR

i1,j1
, CR

i2,j2
, . . . , CR

iq,jq
} denote the set of cells

which have a non-empty intersection with the query region
R.

In order to find its relative position in the Bresenham-
based tree for a given query region R, the server in each
cell Ci,j executes the following algorithm:

Algorithm 1:
1. If Ci,j ∈ CR OR ((the line through Si,j and Sxd,yd intersects a
cell in CR) AND (Sxd,yd is not between Si,j and the first intersec-
tion of that line with R))

1.1. Draw the line segment Si,jSxd,yd

1.2. Among the neighbors C(i+u),(j+v) (where
u, v ∈ {−1, 0, +1}), detect the pixel S(i+u),(j+v) that
would be illuminated in the Bresenham algorithm for
Si,jSxd,yd

1.3. Select the server in the cell C(i+u),(j+v) to be the
parent of the Ci,j in the tree.
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Figure 3. Constructing the BORA tree

Figure 3 illustrates the main aspects of Algorithm 1 for
constructing the BORA tree, using a query region R rep-
resented by the polygon ABCDEFGH and a destination
point for the query’s answer located at C2,5. The dotted
(and dashed) line segments indicate the inputs to the Bre-
senham’s algorithm for the respective cells, and the thick
lines indicate the corresponding branches of the BORA tree.
Observe that the ancestry line that an individual cell would
obtain using the native Bresenham algorithm need not coin-
cide with the actual ancestry line of that cell in the BORA
tree. The reason for this is that in line 1.3. of Algorithm 1,
an individual ”pixel” chooses only its parent. As an exam-



ple, observe the cell C8,1 in Figure 3. Using the native Bre-
senham algorithm, the grand-parent node of S8,1 towards
S2,5 would be S6,2 of the cell C6,2, as illustrated with the
dotted line. However, in the BORA tree, its actual grand-
parent is S6,3 of the cell C6,3 – the parent of C7,2 (dashed
line). Another interesting property2 of the BORA tree is as
follows. Let VR = {v1, v2, . . . , vk} denote the vertices of
the query region R. If Sxd,yd

is a vertex on the convex hull
of VR ∪ {Sxd,yd

}, then the root has either three children, or
five children (which only happens when the root is collinear
with its two incident vertices on the convex hull. Otherwise,
(Sxd,yd

is in the interior of R or R is concave), the root may
have up to eight children. However, an inner node still has
up to three children.

C81               C82               C83           C84          C85

C71               C72 C73                       C74           C75

C61 C62 C63
C64 C65

C52 C53 C54 C55

C43 C44 C45

C34 C35

C25

Figure 4. BORA Tree for the Region R

The BORA tree corresponding to the example range
query depicted in Figure 3 is illustrated in Figure 4, where
the nodes are labelled with the indices of the corresponding
cells in the grid.

Now we proceed with describing the algorithm for rout-
ing and aggregating the partial results of a given range
query, using the BORA tree. Let LA(Ci,j) denote local
answer that the cell Ci,j ∈ CR has calculated for a given
range query. After it has been transmitted to its parent, call
it P (Ci,j), for the first time, LA(Ci,j) is set to ∅. At any
time, Ci,j may have a local data-set relevant for the query,
denote it LD(Ci,j) which is LA(Ci,j) aggregated with the
data that it has received from its children – where Cc(Ci,j)
denotes the c-th child of the Ci,j , in order from left-to-right
in the BORA tree. We assume a transmit-LD function
which formalizes the request from Ci,j to transmit data to
P (Ci,j) and, when granted (ACK), it sends all the data of
LD(Ci,j) to P (Ci,j Once a given node sends LD(Ci,j) to
its parent P (Ci,j), the value of LD(Ci,j) is set to ∅, and
no transmission can be requested whenever LD(Ci,j) = ∅.
Now we have the following:

2Due to a lack of space, we do not make any formal ”property/proof”
statements.

Algorithm 2
1. If Ci,j has 0 children (leaf)

1.1. transmit-LA(Ci,j) to P (Ci,j)
2. Else-If Ci,j has one child

2.1. If C1(Ci,j) is ready to transmit
2.1.1. receive the data from C1(Ci,j)
2.1.2. aggregate it with LA(Ci,j)
2.1.3. transmit-LD(Ci,j) to P (Ci,j)

3. Else-If Ci,j has 2 children
3.1. If both children ready to transmit

3.1.1. receive data from C1(Ci,j)
3.1.2. receive data from C2(Ci,j)
3.1.3. aggregate the results with LA(Ci,j)
3.1.4. transmit-LD(Ci,j) to P (Ci,j)

3.2. Else-If one child, say C1(Ci,j), is ready to transmit
3.2.1. execute ”2.1” above with that child

4. Else-If Ci,j has three children
4.1. If all three are ready to transmit

4.1.1. Let C2(Ci,j) and C3(Ci,j) aggregate their data
at LD(C2(Ci,j))

4.1.2. Execute ”3.” above for C1(Ci,j) and C2(Ci,j)
4.2. Else-If two children are ready to transmit

4.2.1. Execute ”3.” above for those two children
4.3. Else-If one child is ready to transmit

4.3.1. Execute ”2.1” above with that child

Observe that each child Cc(Ci,j) can inform its parent
when there is nothing else to be transmitted from it, with
respect to the local results for the given query pertaining to
its entire subtree. This information can recursively gathered
in a bottom-up manner. Thus, Algorithm 2 is implemented
to guide the transition of the states of the individual cells,
until their role in the processing of a given query is com-
pleted.

A minor modification of the Algorithm 2 is needed for
the special case of the root node. Namely, the root sim-
ply waits for all of its children to finalize their transmission,
and then aggregates (merges) the collections of data that it
receives. We reiterate that in each cell, the OIDs are sorted
and that in the essence, the aggregate procedure actually
merges its inputs so that it produces the output which is
again sorted by the OID attribute and, in addition, when
a particular OID is an element of more then one partial an-
swer, it combines the time-intervals (union).

As an example, let us illustrate part of the execution of
the Algorithm 2 for the BORA tree depicted in Figure 4 (in a
top-down manner). Firstly, observe that C2,5 will receive all
the collections of partial answers along the path originating
in C6,1. Assume that C4,4 is done aggregating LA(C4,4)
with the data along the path starting at C7,1, before C4,5

is ready for a transmission. Then, C3,5 will aggregate the
result received from C4,4 with LA(C3,5) and transmit it to
the root. Subsequently, C3,5 will forward the aggregated
result that it receives from C4,5 to the root. In a similar
manner, the subtree rooted at C5,4 will generate the data
that will be forwarded to the root via C4,4 → C3,5. At the



end, the root C2,5 will have to merge 8 different data sets
(albeit, of a larger size) sorted by the OIDs of its elements,
instead of the original 24 data sets that would end up being
transmitted by the naive approach.

4 Experimental Observations

To evaluate the benefits of the BORA tree based ap-
proach, we implemented a distributed query processing
scheme in Java on a PC with Pentium IV 3.06GHz, 1G MB
memory and Windows XP platform. For our experiments,
we considered a geographic area of a size 40 × 40miles2

and we divided the area using a 20×20 grid structure (each
BS is in charge of a cell region of 2 × 2miles2). The mov-
ing object data was generated using a modified version of
the random way-point model [2]. We had a total number
of 1,000,000 moving objects, and each one starts at a ran-
domly selected position in the region of interest. In each
subsequent time stamp, the object picks a random direction
and moves at a speed randomly distributed between 12mph
and 30mph until it stops. The average length of the tra-
jectories is around 10 miles such that an average trajectory
crosses 5 cells. Throughout the experiments, we used rect-
angles and octagons as query regions and we varied their
size so that the covered area grows from 5% to 60% of the
entire geographic zone of interests, in the increments of 5%,
and for each value we averaged the results over 10 runs. The
duration of each query was fixed at 30 min. We had three
groups of measurements for each value of the area of the
query’s region:
(1.) In the first group, the destination cell was at the same
y-value (horizontally) as the centroid of the query’s region.
(2.) In the second group, the destination cell was in a diag-
onal direction from the centroid of the query region.
(3.) In the third group of experiments, we actually generated
a set of ”stretched” rectangles and octagons, where the hor-
izontal dimension was much smaller than the vertical one
(while retaining the value of the area of the query’s region)
In each group, we measured the processing times for: (1.)
Naive approach – the local data from the individual cells is
transmitted ”as is” to the destination, using as much paral-
lelism as possible (contention was resolved based on ”row-
major” order). The destination cell then aggregates the en-
tire collection; (2.) Our approach based on the BORA tree
and using Algorithm 2.

We assumed the communication is carried out in a
per-hop manner, where each server is capable of concur-
rently transmitting and receiving data, where the RTT takes
0.3 seconds and the single-link transmission capacity is
200KBps. For each individual cell that participated in the
answer, we pre-computed its contribution. For the aggrega-
tion of the partial answers when OIDs needed to be sorted,
we implemented the variant of the k-way merge algorithm
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Figure 5. Naive vs. BORA (sorted OIDs)

which also properly aggregates the time-intervals for each
moving object and measured the overall time.
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The total processing times for the different cases are il-
lustrated in Figure 5 and they show that the BORA-based
approach consistently outperforms the naive approach. The
main savings in the processing time comes from two
sources: (1) the distributed merging of the partial results;
(2) the reduced size of query answers subsequently trans-
mitted. The result of group 3 is slightly better than the other
two groups since the BORA tree produced by the stretched
query region has many internal nodes with 3 children, thus
achieving better in-route aggregation.

We repeated the experimental setup and observed the
performance of each approach for the case when the OIDs
were not expected to be sorted. The improvement trends
are similar with the ones observed when a sorted aggrega-
tion was used, however, the respective values are smaller.
This is due to the fact that when a simple partial aggrega-
tion is done, we still save on having smaller sizes for the



subsequent-hop transmissions, but the ”in-site” processing
costs of aggregating time-intervals only are not as high as
when sorting by the OIDs was required. The results are
depicted in Figure 6 and, as can be seen, we did not observe
as significant discrepancies among the three groups for the
BORA-based approach.
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Figure 7. Destination Distance Impact

We also evaluated the impact of the distance between the
destination cell and the (centroid of the) query region. For
a given region, we increased the distance between the desti-
nation cell and the centroid of the query region, from 0 (the
destination cell is at the centroid of the query region), to 0.5
times of the region diameter (the destination cell is close
to the boundary of the query region), and up to 2.5 times
of the region’s diameter, away from the centroid. We av-
eraged the results over 10 runs, using regions of sizes 12%
and 30% of the total geographic area of interest. The ex-
perimental results comparing the naive approach and the
BORA-based approach are shown in Figure 7. When the
destination cell is at the centroid of the query region, the
BORA-based approach yields a greater speed-up because
there are a lot more internal nodes with 3 children, exploit-
ing larger reductions of the data size during partial aggrega-
tions in parallel.

5 Related Work and Concluding Remarks

Much research has been done in the already established
fields of parallel processing/algorithms [8] and distributed
databases [18], compared to which the MOD research [9] is
relatively young. In this work, we addressed some partic-
ular aspects of managing spatio-temporal range queries in
distributed settings, thus bringing the peculiarities of MOD
issues closer to the these traditional fields, as well as the
field of networking [21]. Specifically, we balanced the
merging and transmission of the data, capitalizing on the

property that in the cell-based environment, a given trajec-
tory may spread over more than one cell.

Recent works have addressed various aspects of the effi-
cient processing of MOD queries for different motion mod-
els; - a sequence of (location,time) updates [16, 26]; - a se-
quence of (location,time,velocity) updates [25]. However,
for the most part, the works assumed a centralized envi-
ronment with respect to the MOD server. A work that is
similar in spirit to ours is the MobiEyes project [6, 7]. The
authors consider the problem of load balancing between a
server and a set of mobile clients, along with the mini-
mization of the communication overhead. The model of
motion is the one of (location,time,velocity) updates, and
the standard dead-reckoning policy [25] is extended with
techniques that maintain the correctness of the continuous
queries. Our work is both orthogonal and complementary to
[6, 7]. Firstly, we consider the motion model of a trajectory
for the moving objects. Secondly, our problem considered
a distributed set of servers and addressed the problem of ef-
ficient aggregation of the partial/local answers for the case
of range queries.

Routing trees with the aggregation of the (partial) an-
swers have been extensively used in sensor networks set-
tings [1, 27]. Unlike ours, in these settings, the main pur-
pose of the aggregation is to reduce the energy expenditure
in the participating nodes, in order to prolong the networks’
lifetime, while ensuring some quality of data guarantees.
An approach which deals with the issue of the parallelism
and concurrent transmission in sensor networks settings in
presented in [28] and the work tackles the problem of mini-
mizing the packets collision/drop for the purpose of energy-
savings. We are also concerned with the issue of efficient
balancing of transmission and partial results’ aggregation,
however, in completely different settings.

There is a plethora of works from the networking com-
munity that is related to ours, and can be further used to
extend our results. We relied on [11, 14, 19], however,
the ECO project [13] addressed the problem of analyzing
a given network and establishing communication patterns
for the purpose of developing efficient data-parallel appli-
cations. Although in this work we used simple model for
the network infrastructure, the similarity with [13] is due to
the fact that we also exploited the geometric properties of
the queries, destinations, and the spatio-temporal data, all
in order to provide efficient parallel aggregation of a dis-
tributed set of partial answers.

In conclusion, this paper presented an approach for ef-
ficient aggregation of the individual (local) answers for
spatio-temporal range queries in distributed settings. Since
the trajectories of the moving objects can span over more
then one zone of coverage in a cellular environment, we ob-
served that partial aggregations enable a reduction of the
size of the data, thereby relieving the destination server



from merging too many data-sets. Based on the ideas of
Bresenham’s algorithm from computer graphics [5], we in-
troduced the BORA tree as a routing structure, and we pre-
sented algorithmic solution for efficient balancing of the
parallel transmissions and partial aggregations.

We believe that our work can serve as a starting point
for several interesting research directions. As a first ex-
tension, we are planning to incorporate the other categories
of spatio-temporal queries (e.g., k-NN, join) into or frame-
work, and consider the combinatorial optimization prob-
lems of efficient routing and aggregation when multiple
queries and various cell-loads are present. We are also plan-
ning to extend the work so that it can exhibit a reactive be-
havior, in the sense that it can efficiently incorporate the
changes of the queries’ answers due to traffic abnormalities
which affect the trajectories that were used for generating
those answers. It would be very interesting to incorporate
the other motion models in the picture and extend the archi-
tecture in a manner that the set of distributed MOD servers
is not in a 1-to-1 relationship with the set of the BSs. An
ongoing project is the evaluate the Bora-based approach un-
der a larger variety of networking parameters (c.f. [11, 14]).
A particular long-term challenge is how to incorporate the
dynamic geometric properties of the spatio-temporal data
and the recent works on geometric models of the Internet
for performance-aware protocols [17], for the purpose of ef-
ficient management of continuous spatio-temporal queries
in distributed environments.
Acknowledgment: We thank Prof. Aleksandar Kuz-
manovic for his constructive comments.
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