QACHE: Query Cachingin Location-Based Services

Hui Ding?, Aravind YalamancHi, Ravi Kothur?, Siva Ravad Peter
Scheuermann

1 Dept. of EECS, Northwestern Universityi 117, pet er s@ce. nort hwest ern. edu
2 QOracle USAar avi nd. yal amanchi, ravi.kothuri, siva.ravada@racle.com

Abstract. Many emerging applications of location-based services continuouslitonarset
of moving objects and answer queries pertaining to their locations. Quecessing in such
services is critical to ensure high performance of the system. Obgehahone predominant
cost in query processing is the frequent accesses to the database,papar we describe
how to reduce the number of moving object to database server rapsddyr caching query
information on the application server tier. We propose a novel cachargefivork, named
QACHE, which stores and organizes spatially-relevant queries foctedlenoving objects.
QACHE leverages the spatial indices and other algorithms in the datalrase f&e orga-
nizing and refreshing relevant cache entries within a configurablecdiiaterest, referred to
as the cache-footprint, around a moving object. QACHE contains apatepefresh policies
and prefetching algorithms for efficient cache-based evaluationexfegion moving objects.
In experiments comparing QACHE to other proposed mechanisms, @A&tHieves a sig-
nificant reduction (from 63% to 99%) in database accesses therebgnimgithe throughput
of an LBS system.

Key words. location-based services, query processing, caching

1 Introduction

Location-based services (LBS)[10] typically operate irheeg-tier architecture: a
central database server that stores past and currentdosaif all moving objects,
applications that register to the database server theiraguhat are pertaining to the
moving objects locations, and a set of moving objects thaticoously change their
locations (as shown in Fig. 1). As moving objects reportrticbianging locations
periodically, new answers are delivered to the applicatiwhen certain criteria are
met. This queries on moving objects may contain predicatéb® spatial locations
as well as any other non-spatial attributes asociated Wwémtoving objects.
Consider the following motivational scenario: A LBS systfmlocal restaurant

promotion sends appropriate restaurant information tohyeurists. A registered

2 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petereéselnmann

Moving Objects Applicanon Server Database Server

E
/;f_il.f—}.’/’)

Spatial Queries

{11

| Business Rules |

o L5« :
g y
Subscnbe
update -
/ Notification - =
Application
Application User/Service
Server subscriber

Fig. 1. Location-Based Services

restaurant specifies an area around its location using ekpiagdicate(e.g., within-
distance operator in commercial spatial databases: sder[Bjore details) and re-
stricts promotions only to tourists(identified by checkiiog “areacode != restau-
rantareacode”) who are interested in its specific type of food(spedifiy predicate
“userfood.interest == Chinese”). [12] describes how to specify suchrigs in
Oracle database. Upon location updates of all mobile ulees, BS system must
quickly decide whether one (or more) user matches all quétsria of a registered
restaurant so that the promotion message can be sent befshehravels out of the
target area.

A critical problem about answering such queries in LBS ig tnay delay of
the query response may result in an obsolete answer, due tyttamic nature of
the moving objects (in our example, tourists). This recauinghly efficient query
evaluation. On the other hand, while moving objects fretjyeaport their location
updates to the database server, many of the updates do nltimesny new query
answer. Take the above scenario as an example, the sersteensgeceives location
updates from all tourists once every minute; it is too expent® evaluate all location
updates against the query criteria of all registered reatasi in the database server.
Yet it is not necessary to do so because each query includespatial criteria and
non-spatial criteria [8, 12] and an answer update shoulddhigededonly if both
criteria are met, e.g., location updates of tourists preferring Indian icg@isieed not
be evaluated even if they are in the area of Chinatown; likewlbcation updates of
tourists that are too far away from Chinatown need not beuewatl even if they do
like Chinese food. In summary, query evaluation againstesant updates should be
avoided as much as possible to reduce database burden aadeaxesponse time.

To improve the performance of LBS on the delivery of in-timeegy answers,
we focus on reducing query evaluation cost by minimizingrthember of database
accesses and the amount of computation required duringati@l. One effective

QACHE: Query Caching in Location-Based Services 3

technique toward this goal is to cache relevant data fordastver delivery. In a
three-tier LBS system, caching can be achieved on any ohtke tiers.

e Onthemobiledevicesof end users. queries are assumed to be issued by mobile
users asking about its vicinity; when a user issues a queyieceived answers are
stored and used for answering future queries since spaiigias issued by the same
mobile user usually exhibit high spatial locality. Unfantitely, this approach can
only be used to cache objects that are static. Moreovergithhirelies on the tight
processing and storage ability of the mobile devices arslithuot widely applicable.

e On the database server: most frequently referenced data and most frequently
executed query plans can be cached by the database serveprtové the perfor-
mance of query processing. However, this approach incsdagéelen on the already
heavily-loaded database server with large volume of inagrfocation updates[13].

e On the middletier, i.e, application server: relevant data items can be stored
in the application server that serves as an external cachenVghation updates are
received, the application server can frequently use thaethdata to process the
updates and respond to the application users efficientipfion updates that cannot
be evaluated are forwarded to the database for further psowe

In this paper, we adopt the third approach because it hasotlusving advan-
tages: (1) caching on the application server does not rethehimited processing
and storage ability of end users and it does not impose additiburden on the
database server; (2) the application server can effegtoathe data coming from
heterogeneous sources to a single application; (3) thécapiph server can provide
caching for each moving object and this granularity is uguddsirable in LBS, be-
cause a moving object may frequently be monitored for a sefievents; and (4)
the application server can filter out many of the updateswliianot result in any
new query answer and thus avoid unnecessary databaseesccess

We present QACHE, a dynamic query caching framework on thpticgtion
server in LBS. This framework builds on and improves exgtiasearch solutions
based on safe distance[7]. The main goal of QACHE is to impthe system per-
formance in spatial query monitoring. To achieve this g@\CHE identifies the
most relevant spatial queries for the moving objects (inserese that the upcoming
location updates may result in new answers to these quegied)cache information
of these queries in the application server. QACHE has theviiodg characteristics:
e The items cached are not the moving objects but are the pgisgatial queries
pertaining to the moving objects. Since moving objects tpdaeir locations fre-
quently, caching their locations would involve frequenttoa replacement and up-
date, and introduce significant overhead. In contrast, ipgrepatial queries are rel-
atively stablé and should be cached to improve query response time.

e The granularity of the cache is per moving object, i.e., iseswise. The cache
entry for a moving object stores queries that are interdastéte moving object and

3 The pending spatial queries may also change due to insertion or deletionddication to
the query pattens etc. However, these changes occur much lesarfiigghan the location
updates.

4 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petereéselnmann

are close to its current location. In addition, differendsiens can share queries in
the cache to minimize the storage requirement.

e For a given moving object, only those queries that match tdregpatial(static)
predicates can be cached in the cache entry.

e The queries cached are carefully organized to supportefiticiccess for query
answer update. In the cases where database access is neeftesacache access,
the number of disk accesses can still be reduced by usingfberiation stored in
the cache.

e Our cache is dynamically updated as moving objects chargjeltitations, so
that queries that become farther away from a moving objextemoved from the
cache to make space for queries that get in the vicinity dfdabgect.

e We propose the concept cdiche-footprint for a cache entry, which is configured
in terms of the minimum time interval between consecutiveéates of the cache en-
tries. This is represented as a distabggy from the location of the moving object
based on its known maximum velocit (.x = refresh_interval x max_vel ocity).
For a fixed size of the cache entry, QACHE employs a two-prdreggroach of
storing the closest queriestirue detail and the rest of the queries in cache-footprint
region as approximations. The queries in true detail pmeichct answers for a mov-
ing object whereas the approximated query regions redwcéatbe-positives. This
two-level filtering improves the cache-effectiveness ¢bgrincreasing the through-
put of the LBS system.

The rest of this paper is organized as follows. Section 2gmtsshe related work.
Section 3 describes the main components of QACHE and Sedtalaborates on
its implementation details. Section 5 describes our erpantal evaluation results.
Finally, Section 6 concludes the paper.

2 Related work

Various techniques have been proposed to efficiently psoggstial queries in LBS.
The main approaches can be categorized as follows: (1) iregitiee amount of com-
putation when location updates are received by groupindipgrgueries using grid
or similar indexing structures and conducting spatial jogtween moving objects
and pending queries[6]; (2) reducing the number of quersgfopmed by introduc-
ing safe distance/region for moving objects[7]; and (3udg the number of disk
access by building a query index for all pending queriedJrfortunately, the above
techniques either focus on optimizing the performanceiwitie database and hence
fail to make use of the processing and storage power prowagdékde middle-tier, or
have certain constraints on realistic applications. Fangxe, many of the frequent
location updates from the moving objects will not generatg mew query answer
and it is thus unnecessary to evaluate the pending quer@ssaghese updates.
Caching has been extensively studied in the area of opgrsyistems, web in-
formation retrieval and content delivery networks. Forrapée, the middle-tier data
caching products developed by Oracle[3] was designed t@ptehe database from

QACHE: Query Caching in Location-Based Services 5

being a bottleneck in content delivery networks. The magait to cache data out-
side of the database server to reduce database access F2dEQliffers from the
traditional caches in that the items cached are queriesadsif data. More impor-
tantly, the cached data is carefully organized for efficartess to minimize over-
head. Recently, caching has also been applied to the arealifencomputing. The
prevailing approach is to cache received answers at thet clide for answering fu-
ture queries. A Furthest Away Replacement (FAR) cache ceph@nt policy was
proposed in [9] where the victim is the answering objectHest away from the
moving object’s current location. Proactive caching faatsgd queries[4] extends the
caching granularity to per query object level. The compattele presented in this
work facilitates query processing when the cached itematzeanmswer the query. We
use a similar approach in QACHE that treats both the dataps¥y) index and
query data as objects for caching and manage them togetreztitoe the cache miss
penalty.

3 Overview of QACHE

In this section, we first briefly state the assumptions heldmltuilding the QACHE
framework and provide an overview of the architecture anéhnsamponents of
QACHE. We then describe how QACHE handles location updatelsnaaintains
correct query answers.

3.1 Assumptions

The basic assumptions of QACHE are as follows:

1. Moving objects have the ability to determine their cutlenation through GPS
device. They also have the ability to communicate with thweseperiodically to
report their location updates.

2. The only constraint on the motion of moving objects is thay are subject to a
maximum speed.

3. All moving objects report their location updates to thevee synchronously.
Please note that this assumption simplifies our simulatimhperformance analysis,
but is not necessary for QACHE to function correctly.

4. The queries stored in the database are indexed usinglspdites, such as the
R-tree [1, 5].

3.2 System architecture

As illustrated in Fig. 2, QACHE has five main components: darface that accepts
location updates from moving objectssession manager that manages the safe dis-
tance for each connected session (moving objectclae manager that manages the
cached contents for selected sessiorshased storage manager that actually stores
the spatial queries loaded from the database, atadte® sweeper that evicts invalid
entries and prefetches new entries into the cache.

6 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petereéselnmann

Location Update

—(Interface

QACHE
Session Manager ——{ Cache Sweeper

Update /
Prefetching

Cache Manager >

Cache EntryA(M\Cache Entry

Fig. 2. System Architecture

e Session manager: The session manager maintaineak-up directory that keeps,
for each moving object, current location, a reference iooatalled the base lo-
cation, the safe distance from the reference location whiatiefined as the dis-
tance to the closest query region [7] and meta informatiarutithe corresponding
cache-entry(such as cache-footprint if relevant). Thakiap directory is indexed
for efficient access. For objects that do not match any natiadgpredicates in any
query the safe distance is set to infinity. The session maraged also maintain
a location-logger that records all location updates andthes flush back to the
database periodically.

e Cache manager: For each selected moving object, its cache entry consists of
all relevant query regions in true detail/approximatiomeTcache manager man-
ages such entries for moving objects whose safe distancendbbexceed the cache-
footprint. Due to memory constraints, the cache manager eregte cache entries
only for a subset of such moving objects based on their piityatf being relevant

to a query as described in Section 4.

e Shared storage manager: While the cache manager maintains cache entries for
selected moving objects on a per session basis, it doesarettsie actual cached
queries. Instead, all cached queries are managed by thedséimrage manager to
avoid duplication and thus save memory space. This is becasmgle query may
be interested in multiple moving objects and hence may bkexhmore than once

in QACHE. When a cache entry is accessed from the cache mamagemter is
provided to visit the shared storage manager where thelapiasy is stored.

QACHE: Query Caching in Location-Based Services 7

Location Update

Session in YES
look-up directory
YES Within safe
distance

Query the cache
Do nothing

NO
Query the
Database

Compute Safe
Distance

Update look-up
directory

Within cache
footprint

YES
Build Cache Entry

—| Update/Invalidate/Evict/Prefetch cache entries |

Access database

server

Update query
answer

Fig. 3. Handling Location Updates in QACHE

e Cache sweeper: The purpose of the cache sweeper is to refresh cache entries,
evict invalidated cache entries and prefetch new entrigisate not currently in the
cache manager. Cache sweeper may refresh a cache entry tairsgrobject as it
approaches boundary of the cache-footprint(refer to 8eeti2) and prefetch those
prospective queries into QACHE. The refreshed/prefetafzetie entry will center
around the latest location of the moving object, i.e., wilDj distance from the lat-
est location. Note that although prefetching introducesaeaccesses to the database
server, the operation is performed asynchronously thudiflieaccess is not on the
critical path for query evaluation. Instead, when the gdfed queries do need to be
evaluated against the next location update, no databasesaischecessary because
those queries are already in QACHE thanks to prefetching.cHthe sweeper can
be implemented as background process that operates ctiopigravith the cache
manager.

3.3 Processing location updates

Fig. 3 illustrates how QACHE handles location updates. Whéwocation update
from a moving object is received, the session manager fisshaes its look-up di-
rectory and checks whether the moving object is a new ses§ien, the moving
object is registered to the session manager, and the lacatid maximum speed
of this moving object are used to query the database serveguiery evaluation
and safe distance calculation. The safe distance calduiatiten inserted into the
look-up directory for future updates. If the calculatedesdistance is less than the

8 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petereéselnmann

cache-footprint for the moving object, the correspondiaghe-entry is created and
inserted into the cache manager. On the other hand, if tidwcupdate is from an
existing session, the session manager first examines kapodirectory and checks
whether the moving object is still in its safe distance. If sothing needs to be
done. Otherwise, the corresponding cache-entry is aatéss#ecide if this mov-
ing object has entered any query region. Note the cache batryjuery regions in
true detail or in approximate form. For all true-detail quezgions that the moving
object matches, the query results are propagated to theajimh. For the match-
ing approximate query regions, additional processing rfop@ed in the database
tier. This database processing is also required when a @ntheis missing (due to
memory constraints, or invalidation by the cache sweeper).

In summary, when a new query is registered to the systemijrittially stored
in the database and evaluated against all moving objecteifobk-up directory of
the session manager. A cache entry may be created, or andalid eatry may be
replaced by the cache sweeper.

4 Design and implementation of QACHE

This section elaborates on the design and implementatithmed key components of
QACHE, i.e., session manager, cache manager, sharedestoeampger. We describe:
(1) how session manager maintains the safe distance foineaghg object; (2) how
cache manager selects moving objects and maintains a catthidéar each selected
object to support efficient evaluation on location updasest (3) how cached items
are managed by shared storage manager and shared acrotsdseleving objects
to avoid duplication.

4.1 Maintaining the safe distance

The safe distance is the minimum distance within which a mgpwibject will not
enter any query region. Location updates of a moving obfettdre not beyond the
safe distance need not be evaluated against any query, widiciates that the safe
distance can serve as a filter in query processing.

When a moving object first registers to the application seaseinitial safe dis-
tance is calculated for it by performing a nearest neighbarch on queries from the
database server; the safe distance is then stored in thaipdkectory of session
manager. When a cache entry is created for this moving olijepending on the
cache replacement policy such as LRU, the new safe distansebe recalculated
and updated by the cache sweeper that mediate between sfens@anager and the
database.

4.2 Building a cacheentry

For each moving object, its corresponding cache entry @6@nts) stores selected
queries that are interested in the object. The selectiouefigs is decided by: the

QACHE: Query Caching in Location-Based Services 9

QACHE refresh period(QRP), i.e., the time interval between two consecutive each
updates, the maximum speed of the moving objkgk, and the cache entry siB
i.e., the maximum number of items that can be stored in eadtecantry.

QACHE attempts to cache queries within taehe-footprint of the moving ob-
ject. Cache-footprint is described by a maximum distadDgs:

Ideally, any query within distandgax to the moving object should be cached since
the moving object is very likely to enter the query regiondsefthe next cache re-
freshing. However, if the number of such queries exceedsnimamum sizeB of
each cache entry, QACHE can't possibly cache all queriesilirdétail and has to
aggregate some of them. Based on our assumption 4 in Seclipguiries are in-
dexed using an R-tree in the database and hence the intexded of the R-tree can
be used as an approximation of query aggregation.

As a consequence, each cache entry with a capaciB/stbres two categories
of items: (1) query regions that are stored in true detaiy mroving object that
satisfies such query regions igrae-positive match. A hit on this cached item in-
dicates the moving object is a query answer; (2) query regtbat are stored us-
ing approximations: any moving object that satisfies any such query approxanati
could be afalse-positive. Additional processing needs to be done for such queries
in the database. Moving objects not intersecting eithexgmaly of regions is &rue-
negative and no further processing is required. This multi-categmayed filtering
serves as the backbone for the performance of QACHE in majert evaluation.

To efficiently process location updates, QACHE organizesciched items of
each cache entry using an in-memory R-tree, i.e., the cbafezach cache entry is
the internal nodes of the R-tree, while the actual cachedsitare managed by the
shared storage manager (please refer to Section 4.3). Gteéthin used in QACHE
for the construction of a cache entry is presented below. alperithm starts by
descending the query-index tree in the database from rabtegursively explores
child nodes that may contain eligible objectspAority queue stores all nodes that
are within distanc®« of the moving object. When a node is met, its children are
enqueued; when a query object is met, it is addeddoeay list given that the non-
spatial criteria of the query are also satisfied. This pretesninates when the total
size of the priority queue and the query list reaches theecaditry capacityd, or
when the priority queue becomes empty. The query list stallegueries that are
explicitly cached and the priority queue stores all cachedes that aggregate the
rest of eligible queries.

For example, in Fig. 40 is the current location of a moving object for which
a cache entry is to be constructeds the root of the database R-tree with three
children:ly, I, andls. The circle illustrates the region that is within distaitgy to
the moving object; queries that intersect this region sthbelexplicitly or implicitly
cached. Suppose that the cache entryBizeset to fivel is first dequeued, it’s three
children are then examined. Only andl, are enqueued because they are within
Dmax (Step 2).11 is then dequeued and its three children are added to the tisery
(Step 3,4,5). So far, four items are cach&d; Q, Qs in the query list ands in

10 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petdreésermann

Algorithm 1 Create a cache entry

Input: Query-index tree in the databaRelocation{x,y}, maximum speeWmx, QRP,cache
entry sizeB
Output: Cache tred®R
1: Priority queueQ < 0, query listL < 0
2: Dmax <= Vimax X QRP
3: Enqueua(ot(R))
4: while Q not empty AND(Q.size() +L.size()) < Bdo

5: e« dequeue(Q)
6 if eis a leaf node oR then
7: c < e’s closest child tdx, y}
8: e« e—c, // remove the child from the node
9: if distance(c, {x,y}) < Dmax AND Expression€) evaluates to 'truethen
10: Enqueue)
11: end if
12: if enot empty ANDdistance(e, {x,y}) < Dmax then
13: Enqueudd)
14: end if
15: dseif eis an internal node dR then
16: c< e’s closest child tdx, y}
17: e < e—c, // remove the child from the node
18: if distance(c, {X,y}) < Dmax then
19: Enqueud)
20: end if
21: if enot empty ANDdistance(e, {x,y}) < Dmax then
22: Enqueudd)
23: end if
24: ese{/ eis a qualifying query objegt
25: AddetoLC
26: endif
27: end while
28: Create R-tre®from objects inQ andL
29: return R

the priority queue. Subsequently,is dequeued; its closest chif@ is added to the
query list, whileQ4 andQg are re-aggregated to a new node which is put back to the
priority queue (Step 6). At this time we have exactly five iteim total: Q1, Q2, Q3
andQs in the query list and4 + Qg in the priority queue. These five items are then
used to build a in-memory R-tree for the cache entry.

4.3 Sharing cache contents among sessions

One novelty of QACHE is its session-wise granularity. Whemeation update is
received, it need not be evaluated against all queries irtdbobe because queries
that are interested in this particular moving object arealy selected into its own
cache entry. Unlike conventional approach, this prevdmsnion-spatial predicate

QACHE: Query Caching in Location-Based Services 11

o] 12

Stepl Step2 Step3 Step4 Step5 Step6

Priority - 7] [][t [Q | [] [Q+Cd
queue A A I
Query (&1 & 1[G Q
st [[Q
Q Q
[0

Fig. 4. Example: create a cache entry

of a query to be evaluated every time: the non-spatial pageliis evaluated exactly
once when the cache entry is created, while the spatial gaeimay be evaluated
on every subsequent location update.

However, this session-wise granularity has its own defigiepotential waste of
memory space. A query may be interested in multiple movinigais, and hence
may be cached in multiple cache entries. To solve this pnoplee implemented a
shared storage manager that actually holds the data catmeemory. Each cache
entry only stores pointers to the corresponding slots irsttered storage manager.
This guarantees that only one copy of each query/node isikepemory at any
time.

The shared storage manager is implemented as a hash tafiedttaple of in-
dex, data, and a reference counter. When a query or an intett@edde is selected
for caching, only its index is stored in the cache entry. Ttiea data, i.e., the ge-
ometry of a query or the minimum bounding box (MBB) of an intediate node,
will be stored in an entry in the storage manager based omtiexi During a query
evaluation, the storage manager identifies the locatioheofiaita using a hash func-
tion and the ID of the query/node as a hash key. When the stonagager receives
a request for a data insert, it first checks whether the deda@dy exists. If so, the
storage manager increases the reference counter by oeewtl, a new entry is
created. When a cache entry is evicted, all queries/nodéedaill have their ref-
erence counter decreased by one. When a counter becometheeaotual data can
be safely removed from the shared storage manager.

5 Performance evaluation

We have built a simulation environment for QACHE with tBeva programming
language. We compare QACHE with two other approaches: €l h#tive approach
where location updates are directly sent to the databasersend evaluated ev-
ery time; (2) thesafe distance approach (SD) where only safe distance is used to
reduce number of query evaluation. We examined the numbdiskfaccesses to

12 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petdreésermann

the database(R-tree) as well as storage requirement ofaggebach. With the ex-
perimental data, we also analyzed the processing time fdrdift approaches to
demonstrate the efficiency of QACHE.

5.1 Simulation setup

Using our own data generator modified from the GSTD tool [&1data set is gen-
erated that simulates a mobile environment wherebjects moves following the
Random Waypoint Model [2], a well accepted model in the mobile computing com-
munity. Each object starts at a randomly selected locatithe region of0..1,0..1],
moves for a period randomly generated betwf@RP] at a speed randomly se-
lected betweef0,Vinax], and sends its new location to the application server at time
QRP; after this the same process repeats. When a object hits timglagy, its moving
direction is adjusted to guarantee constant number of ngodijects in the simula-
tion space. The query workload contains 1000 queries tieag\anly distributed in
the simulation space; currently only static range queniecansidered.

In our simulation, new location updates from Bllobjects are collected at the
same time and processed before the next round of locaticetepdrrives. Our sim-
ulation processes 5000 rounds of location updates. All iaxgats were performed
on a 3.0 GHz Pentium 4, 1 GB memory workstation running Winslai.

5.2 Disk access and memory requirement

We conducted three sets of experiments where the numbendhgobjects Nimo.)
grows from 1000 to 10000. In each set, we varied the numbexadfeentriesNc.e)
from 5% to 20% ofNy,o.. The cache entry capaciB, i.e., the number of cached
items in each entry, is set to 10. A fixed number of queries @L@0e organized
in the database server as an R-tree, the size of which is 648}d€Bding the non-
spatial predicates. For the three approaches (in showte n@D, and QACHE), we
collected the expected number of disk page acce&Selpé)) to the R-tree on every
round of location updates. We also recorded the memory rexgeint and the cache
hit ratio when applicable. The performance of QACHE and theiotwo approaches
are presented in Table 1.

Compared to the safe distance approach, QACHE redH¢egpa) by at least
63%. In each set of experimenis(dpa) for the other two approaches remains con-
stant for a given number of moving objects, but decreasesfisigntly for QACHE
when the number of cache entries is decreased. Whens 20% 0fNno., the ex-
pected disk page accesses is almost negligible. This isibe@most all query eval-
uation can be completed by QACHE and only a few disk page aesese generated
from false-positive hits in the cache.

Another major observation from Table 1 is that QACHE is dolglan terms of
memory storage requirement. We recorded the total numidgyte$ required by the
look-up directory, cache manager and the shared storagaegegrhe results indicate
that the total memory requirement does not grow in proportmthe number of
moving objects. Moreover, considering the total size ofrgletree in the database,
QACHE is highly efficient in utilizing memory space and pradivig a high hit ratio.

QACHE: Query Caching in Location-Based Services 13

Nm.o. 1000 5000 10000
Nce 50 100 200| 250 500 100Q 500 1000 2000
naive | 3626 3626 362618255 18255 182586191 36191 36191
E(dpa) SD | 374 374 374/2051 2051 20514009 4009 4009
QACHE| 137 49 2 | 754 193 7 |[1310 353 15
cache naive | - - - - - - - - -
hit SD - - - - - - - - -
ratio |QACHE| 56% 85% 99% 54% 88% 99%) 56% 89% 99%
memory | naive - - - - - - - - -
requirement SD | 4000 4000 400020000 20000 2000@0000 40000 4000D
(Byte) |QACHE|11283 18035 242062074 73773 938093850 124740 150021

Table 1. Disk access and memory requirement of the naive, SD, and QACHBaghes

Trem (NS) Teval (NS) Taisk (NS) Ho B
100 100 5000000 10 10

Table 2. Estimations of the required time for each operation

5.3 Processing time

While the number of disk accesses is an important criterianvévaluating the ef-
fectiveness of QACHE, a quantitative analysis is hecessadgcide the exact per-
formance improvement. In this section we demonstrate tlezativspeed up that
QACHE can achieve in query evaluation over the naive appread the safe dis-
tance approach. In our analysis, the following terms arquieatly used: (1) disk
page access timRyig; (2) memory access timBnem; (3) query evaluation timeég ;
and (4) and the height of the query R-tree in the datalbgeFor simplicity, we
assume that an access to the query R-tree in the disk re#sis B disk pages. We
also assume that the cache entry R-tree has a fan out of Zhthirsmemory cache
R-tree has a height of lg@. The average response time to a location update can be
calculated as follows:

e Naive approach:

Thaive = 0.75x Hg x (Teval + Taisk)

e Safe distance approach: assuming that in each round ofdaagidates, 10% are
beyond the safe distance so that database accesses aredgting average response
time is:

Tsd = Tmem+0.1x 0.75x Hg x (Teval + Taisk)
e QACHE: assuming thal;e is 20% of Nmno., then only 02% of the location
updates will result in database access (Table 1), the aveesgonse time is:

Tyache = Trnem+ 0.75 % 100, B % (Teval + Trrem) + 0.0025 0.75x Hg X (Teval + Taisk)

Based on a reasonable estimation of the relative paranmtesented in Table 2,
QACHE achieves a 498 times speed up over the naive approdchZihtimes speed
up over the safe distance approach.

14 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Petdreésermann
6 Conclusions

We have described and evaluated QACHE, a novel query cadtangework for
LBS systems. By caching spatial queries for appropriateingogbjects on the ap-
plication tier, a significant amount of database accessebe@liminated, resulting
in a dramatic performance improvement of LBS. We examine®rs¢ important
implementation issues and proposed effective solutionthdm for QACHE to be
deployed in real LBS systems. We compared QACHE with exgssiolution based
only on safe distance. Our simulation results indicate ittt the cache capacity
20% of total number of moving objects, and the memory requénat ranging from
3% to 20% of the query R-tree size in database (dependingeamuimber of moving
objects), QACHE is capable of eliminating 99% of the diskemses. On real LBS
systems, this memory requirement is totally affordabletiar more, our quantita-
tive analysis shows that QACHE achieves a 50 times speederioy safe distance
approach and a 498 times speed up over the naive approachk alh&rcation up-
dates are directly processed in the database.

7 Acknowledge

This work was started when one of the authors was doing amstig in Ora-

cleUSA. We would like to thank Dr. Goce Trajcevski who kindéviewed the paper
and provided constructive suggestions on improving théesysiesign. We would
also like to thank Lei Yang for assisting the experiments i@vitwing and provid-
ing suggestions on the paper.

References

1. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, andhaed Seeger. The R*-
Tree: An Efficient and Robust Access Method for Points and RectsndleS GMOD
Conference, pages 322-331, 1990.

2. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, anged® Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routintpgols. In
Mobile Computing and Networking, pages 85-97, 1998.

3. Rick Greenwald, Robert Stackowiak, and Jonathan S@racle Essentials. O'Reilly &
Associates, Inc., CA, 2001.

4. Haibo Hu, Jianliang Xu, Wing Sing Wong, Baihua Zheng, Dik Lun Led,\Afang-Chien
Lee. Proactive caching for spatial queries in mobile environmentsCIhE, pages 403—
414, 2005.

5. Kothuri Venkata Ravi Kanth, Siva Ravada, Jayant Sharma, an@dnerjee. Indexing
medium-dimensionality data in oracle. ®iIGMOD Conference, pages 521-522, 1999.

6. Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. SINA: Sbdancremental
processing of continuous queries in spatio-temporal databas&GMOD Conference,
pages 623-634, 2004.

10.

11.

12.

13.

QACHE: Query Caching in Location-Based Services 15

. Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref,caBusanne E. Ham-
brusch. Query indexing and velocity constrained indexing: Scalablaitposs for con-
tinuous queries on moving object€EE Trans. Computers, 51(10):1124-1140, 2002.

. Ravi Kothuri and Albert Godfrind and Euro Bein&to Oracle Spatial. Apress, 2004.
. Qun Ren and Margaret H. Dunham. Using semantic caching to méoeg®n depen-

dent data in mobile computing. MOBICOM, pages 210-221, 2000.

Jochen Schiller and Agns Voisatdbcation-Based Services. Morgan Kaufmann Publish-
ers, CA, 2004.

Yannis Theodoridis, Jefferson R. O. Silva, and Mario A. Nascime@n the generation
of spatiotemporal datasets. 8D, pages 147-164, 1999.

Aravind Yalamanchi, Kothuri Venkata Ravi Kanth, and Siva Rav&patial Expressions
and Rules for Location-based Services in OradlEEE Data Eng. Bull., 28(3):27-34,
2005.

Aravind Yalamanchi, Jagannathan Srinivasan, and Dieter GaMigkaging expressions
as data in relational database system<IDR, 2003.

