
QACHE: Query Caching in Location-Based Services

Hui Ding1, Aravind Yalamanchi2, Ravi Kothuri2, Siva Ravada2, Peter
Scheuermann1

1 Dept. of EECS, Northwestern University,hdi117, peters@ece.northwestern.edu
2 Oracle USA,aravind.yalamanchi, ravi.kothuri, siva.ravada@oracle.com

Abstract. Many emerging applications of location-based services continuously monitor a set
of moving objects and answer queries pertaining to their locations. Query processing in such
services is critical to ensure high performance of the system. Observing that one predominant
cost in query processing is the frequent accesses to the database, in this paper we describe
how to reduce the number of moving object to database server round-trips by caching query
information on the application server tier. We propose a novel caching framework, named
QACHE, which stores and organizes spatially-relevant queries for selected moving objects.
QACHE leverages the spatial indices and other algorithms in the database server for orga-
nizing and refreshing relevant cache entries within a configurable areaof interest, referred to
as the cache-footprint, around a moving object. QACHE contains appropriate refresh policies
and prefetching algorithms for efficient cache-based evaluation of queries on moving objects.
In experiments comparing QACHE to other proposed mechanisms, QACHE achieves a sig-
nificant reduction (from 63% to 99%) in database accesses thereby improving the throughput
of an LBS system.

Key words: location-based services, query processing, caching

1 Introduction

Location-based services (LBS)[10] typically operate in a three-tier architecture: a
central database server that stores past and current locations of all moving objects,
applications that register to the database server their queries that are pertaining to the
moving objects locations, and a set of moving objects that continuously change their
locations (as shown in Fig. 1). As moving objects report their changing locations
periodically, new answers are delivered to the applications when certain criteria are
met. This queries on moving objects may contain predicates on the spatial locations
as well as any other non-spatial attributes asociated with the moving objects.

Consider the following motivational scenario: A LBS systemfor local restaurant
promotion sends appropriate restaurant information to nearby tourists. A registered



2 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

Fig. 1. Location-Based Services

restaurant specifies an area around its location using a spatial predicate(e.g., within-
distance operator in commercial spatial databases: see [5]for more details) and re-
stricts promotions only to tourists(identified by checkingfor “areacode != restau-
rant areacode”) who are interested in its specific type of food(specified by predicate
“user food interest == Chinese” ). [12] describes how to specify such queries in
Oracle database. Upon location updates of all mobile users,the LBS system must
quickly decide whether one (or more) user matches all query criteria of a registered
restaurant so that the promotion message can be sent before he/she travels out of the
target area.

A critical problem about answering such queries in LBS is that any delay of
the query response may result in an obsolete answer, due to the dynamic nature of
the moving objects (in our example, tourists). This requires highly efficient query
evaluation. On the other hand, while moving objects frequently report their location
updates to the database server, many of the updates do not result in any new query
answer. Take the above scenario as an example, the service system receives location
updates from all tourists once every minute; it is too expensive to evaluate all location
updates against the query criteria of all registered restaurants in the database server.
Yet it is not necessary to do so because each query includes both spatial criteria and
non-spatial criteria [8, 12] and an answer update should be deliveredonly if both
criteria are met, e.g., location updates of tourists preferring Indian cuisine need not
be evaluated even if they are in the area of Chinatown; likewise, location updates of
tourists that are too far away from Chinatown need not be evaluated even if they do
like Chinese food. In summary, query evaluation against irrelevant updates should be
avoided as much as possible to reduce database burden and average response time.

To improve the performance of LBS on the delivery of in-time query answers,
we focus on reducing query evaluation cost by minimizing thenumber of database
accesses and the amount of computation required during evaluation. One effective



QACHE: Query Caching in Location-Based Services 3

technique toward this goal is to cache relevant data for fastanswer delivery. In a
three-tier LBS system, caching can be achieved on any of the three tiers.
• On the mobile devices of end users: queries are assumed to be issued by mobile
users asking about its vicinity; when a user issues a query, the received answers are
stored and used for answering future queries since spatial queries issued by the same
mobile user usually exhibit high spatial locality. Unfortunately, this approach can
only be used to cache objects that are static. Moreover, it highly relies on the tight
processing and storage ability of the mobile devices and thus is not widely applicable.

• On the database server: most frequently referenced data and most frequently
executed query plans can be cached by the database server to improve the perfor-
mance of query processing. However, this approach increases burden on the already
heavily-loaded database server with large volume of incoming location updates[13].

• On the middle-tier, i.e., application server: relevant data items can be stored
in the application server that serves as an external cache. When location updates are
received, the application server can frequently use the cached data to process the
updates and respond to the application users efficiently; location updates that cannot
be evaluated are forwarded to the database for further processing.

In this paper, we adopt the third approach because it has the following advan-
tages: (1) caching on the application server does not rely onthe limited processing
and storage ability of end users and it does not impose additional burden on the
database server; (2) the application server can effectively cache data coming from
heterogeneous sources to a single application; (3) the application server can provide
caching for each moving object and this granularity is usually desirable in LBS, be-
cause a moving object may frequently be monitored for a series of events; and (4)
the application server can filter out many of the updates thatwill not result in any
new query answer and thus avoid unnecessary database accesses.

We present QACHE, a dynamic query caching framework on the application
server in LBS. This framework builds on and improves existing research solutions
based on safe distance[7]. The main goal of QACHE is to improve the system per-
formance in spatial query monitoring. To achieve this goal,QACHE identifies the
most relevant spatial queries for the moving objects (in thesense that the upcoming
location updates may result in new answers to these queries), and cache information
of these queries in the application server. QACHE has the following characteristics:
• The items cached are not the moving objects but are the pending spatial queries
pertaining to the moving objects. Since moving objects update their locations fre-
quently, caching their locations would involve frequent cache replacement and up-
date, and introduce significant overhead. In contrast, pending spatial queries are rel-
atively stable3 and should be cached to improve query response time.

• The granularity of the cache is per moving object, i.e., session-wise. The cache
entry for a moving object stores queries that are interestedin the moving object and

3 The pending spatial queries may also change due to insertion or deletion, or modification to
the query pattens etc. However, these changes occur much less frequently than the location
updates.



4 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

are close to its current location. In addition, different sessions can share queries in
the cache to minimize the storage requirement.

• For a given moving object, only those queries that match the non-spatial(static)
predicates can be cached in the cache entry.

• The queries cached are carefully organized to support efficient access for query
answer update. In the cases where database access is necessary after cache access,
the number of disk accesses can still be reduced by using the information stored in
the cache.

• Our cache is dynamically updated as moving objects change their locations, so
that queries that become farther away from a moving object are removed from the
cache to make space for queries that get in the vicinity of that object.

• We propose the concept ofcache-footprint for a cache entry, which is configured
in terms of the minimum time interval between consecutive updates of the cache en-
tries. This is represented as a distanceDmax from the location of the moving object
based on its known maximum velocity (Dmax = re f resh interval ×max velocity).
For a fixed size of the cache entry, QACHE employs a two-pronged approach of
storing the closest queries intrue detail and the rest of the queries in cache-footprint
region as approximations. The queries in true detail provide exact answers for a mov-
ing object whereas the approximated query regions reduce the false-positives. This
two-level filtering improves the cache-effectiveness thereby increasing the through-
put of the LBS system.

The rest of this paper is organized as follows. Section 2 presents the related work.
Section 3 describes the main components of QACHE and Section4 elaborates on
its implementation details. Section 5 describes our experimental evaluation results.
Finally, Section 6 concludes the paper.

2 Related work

Various techniques have been proposed to efficiently process spatial queries in LBS.
The main approaches can be categorized as follows: (1) reducing the amount of com-
putation when location updates are received by grouping pending queries using grid
or similar indexing structures and conducting spatial joinbetween moving objects
and pending queries[6]; (2) reducing the number of queries performed by introduc-
ing safe distance/region for moving objects[7]; and (3) reducing the number of disk
access by building a query index for all pending queries[7].Unfortunately, the above
techniques either focus on optimizing the performance within the database and hence
fail to make use of the processing and storage power providedby the middle-tier, or
have certain constraints on realistic applications. For example, many of the frequent
location updates from the moving objects will not generate any new query answer
and it is thus unnecessary to evaluate the pending queries against these updates.

Caching has been extensively studied in the area of operating systems, web in-
formation retrieval and content delivery networks. For example, the middle-tier data
caching products developed by Oracle[3] was designed to prevent the database from



QACHE: Query Caching in Location-Based Services 5

being a bottleneck in content delivery networks. The main idea is to cache data out-
side of the database server to reduce database access load. QACHE differs from the
traditional caches in that the items cached are queries instead of data. More impor-
tantly, the cached data is carefully organized for efficientaccess to minimize over-
head. Recently, caching has also been applied to the area of mobile computing. The
prevailing approach is to cache received answers at the client side for answering fu-
ture queries. A Furthest Away Replacement (FAR) cache replacement policy was
proposed in [9] where the victim is the answering object furthest away from the
moving object’s current location. Proactive caching for spatial queries[4] extends the
caching granularity to per query object level. The compact R-tree presented in this
work facilitates query processing when the cached item cannot answer the query. We
use a similar approach in QACHE that treats both the database(query) index and
query data as objects for caching and manage them together toreduce the cache miss
penalty.

3 Overview of QACHE

In this section, we first briefly state the assumptions held when building the QACHE
framework and provide an overview of the architecture and main components of
QACHE. We then describe how QACHE handles location updates and maintains
correct query answers.

3.1 Assumptions

The basic assumptions of QACHE are as follows:
1. Moving objects have the ability to determine their current location through GPS
device. They also have the ability to communicate with the server periodically to
report their location updates.

2. The only constraint on the motion of moving objects is thatthey are subject to a
maximum speed.

3. All moving objects report their location updates to the server synchronously.
Please note that this assumption simplifies our simulation and performance analysis,
but is not necessary for QACHE to function correctly.

4. The queries stored in the database are indexed using spatial indices, such as the
R-tree [1, 5].

3.2 System architecture

As illustrated in Fig. 2, QACHE has five main components: an interface that accepts
location updates from moving objects, asession manager that manages the safe dis-
tance for each connected session (moving object), acache manager that manages the
cached contents for selected sessions, ashared storage manager that actually stores
the spatial queries loaded from the database, and acache sweeper that evicts invalid
entries and prefetches new entries into the cache.



6 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

Session Manager

Cache Entry

Location Update

Cache Manager
Cache Entry

QACHE

1 2 12 13 144 5 6 7 8 9 10 11

Shared Storage Manager

3

Cache Sweeper

Interface

Update /
Prefetching

Fig. 2. System Architecture

• Session manager: The session manager maintains alook-up directory that keeps,
for each moving object, current location, a reference location called the base lo-
cation, the safe distance from the reference location whichis defined as the dis-
tance to the closest query region [7] and meta information about the corresponding
cache-entry(such as cache-footprint if relevant). This look-up directory is indexed
for efficient access. For objects that do not match any non-spatial predicates in any
query the safe distance is set to infinity. The session manager could also maintain
a location-logger that records all location updates and hasthem flush back to the
database periodically.

• Cache manager: For each selected moving object, its cache entry consists of
all relevant query regions in true detail/approximation. The cache manager man-
ages such entries for moving objects whose safe distance does not exceed the cache-
footprint. Due to memory constraints, the cache manager maycreate cache entries
only for a subset of such moving objects based on their probability of being relevant
to a query as described in Section 4.

• Shared storage manager: While the cache manager maintains cache entries for
selected moving objects on a per session basis, it does not store the actual cached
queries. Instead, all cached queries are managed by the shared storage manager to
avoid duplication and thus save memory space. This is because a single query may
be interested in multiple moving objects and hence may be cached more than once
in QACHE. When a cache entry is accessed from the cache manager, a pointer is
provided to visit the shared storage manager where the actual query is stored.



QACHE: Query Caching in Location-Based Services 7

Session in


look-up directory


Location Update


NO
 YES


Within safe


distance


Query the


Database


Compute Safe


Distance


Update look-up


directory


Build Cache Entry


YES


NO


Do nothing


Query the cache


Miss?


Update query


answer


NO


Access database


server


YES


Update/Invalidate/Evict/Prefetch cache entries


Within cache


footprint


YES


Fig. 3. Handling Location Updates in QACHE

• Cache sweeper: The purpose of the cache sweeper is to refresh cache entries,
evict invalidated cache entries and prefetch new entries that are not currently in the
cache manager. Cache sweeper may refresh a cache entry for a moving object as it
approaches boundary of the cache-footprint(refer to Section 4.2) and prefetch those
prospective queries into QACHE. The refreshed/prefetchedcache entry will center
around the latest location of the moving object, i.e., within Dmax distance from the lat-
est location. Note that although prefetching introduces extra accesses to the database
server, the operation is performed asynchronously thus thedisk access is not on the
critical path for query evaluation. Instead, when the prefetched queries do need to be
evaluated against the next location update, no database access is necessary because
those queries are already in QACHE thanks to prefetching. The cache sweeper can
be implemented as background process that operates cooperatively with the cache
manager.

3.3 Processing location updates

Fig. 3 illustrates how QACHE handles location updates. When alocation update
from a moving object is received, the session manager first examines its look-up di-
rectory and checks whether the moving object is a new session. If so, the moving
object is registered to the session manager, and the location and maximum speed
of this moving object are used to query the database server for query evaluation
and safe distance calculation. The safe distance calculated is then inserted into the
look-up directory for future updates. If the calculated safe distance is less than the



8 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

cache-footprint for the moving object, the corresponding cache-entry is created and
inserted into the cache manager. On the other hand, if the location update is from an
existing session, the session manager first examines its lookup directory and checks
whether the moving object is still in its safe distance. If so, nothing needs to be
done. Otherwise, the corresponding cache-entry is accessed to decide if this mov-
ing object has entered any query region. Note the cache entryhas query regions in
true detail or in approximate form. For all true-detail query regions that the moving
object matches, the query results are propagated to the application. For the match-
ing approximate query regions, additional processing is performed in the database
tier. This database processing is also required when a cacheentry is missing (due to
memory constraints, or invalidation by the cache sweeper).

In summary, when a new query is registered to the system, it isinitially stored
in the database and evaluated against all moving objects in the look-up directory of
the session manager. A cache entry may be created, or an old cache entry may be
replaced by the cache sweeper.

4 Design and implementation of QACHE

This section elaborates on the design and implementation ofthree key components of
QACHE, i.e., session manager, cache manager, shared storage manager. We describe:
(1) how session manager maintains the safe distance for eachmoving object; (2) how
cache manager selects moving objects and maintains a cache entry for each selected
object to support efficient evaluation on location updates;and (3) how cached items
are managed by shared storage manager and shared across selected moving objects
to avoid duplication.

4.1 Maintaining the safe distance

The safe distance is the minimum distance within which a moving object will not
enter any query region. Location updates of a moving object that are not beyond the
safe distance need not be evaluated against any query, whichindicates that the safe
distance can serve as a filter in query processing.

When a moving object first registers to the application server, an initial safe dis-
tance is calculated for it by performing a nearest neighbor search on queries from the
database server; the safe distance is then stored in the look-up directory of session
manager. When a cache entry is created for this moving object,depending on the
cache replacement policy such as LRU, the new safe distance must be recalculated
and updated by the cache sweeper that mediate between the session manager and the
database.

4.2 Building a cache entry

For each moving object, its corresponding cache entry (if presents) stores selected
queries that are interested in the object. The selection of queries is decided by: the



QACHE: Query Caching in Location-Based Services 9

QACHE refresh period(QRP), i.e., the time interval between two consecutive cache
updates, the maximum speed of the moving objectVmax, and the cache entry sizeB,
i.e., the maximum number of items that can be stored in each cache entry.

QACHE attempts to cache queries within thecache-footprint of the moving ob-
ject. Cache-footprint is described by a maximum distanceDmax:

Dmax = Vmax ×QRP

Ideally, any query within distanceDmax to the moving object should be cached since
the moving object is very likely to enter the query region before the next cache re-
freshing. However, if the number of such queries exceeds themaximum sizeB of
each cache entry, QACHE can’t possibly cache all queries in full detail and has to
aggregate some of them. Based on our assumption 4 in Section 3.1, queries are in-
dexed using an R-tree in the database and hence the internal nodes of the R-tree can
be used as an approximation of query aggregation.

As a consequence, each cache entry with a capacity ofB stores two categories
of items: (1) query regions that are stored in true detail: any moving object that
satisfies such query regions is atrue-positive match. A hit on this cached item in-
dicates the moving object is a query answer; (2) query regions that are stored us-
ing approximations: any moving object that satisfies any such query approximations
could be afalse-positive. Additional processing needs to be done for such queries
in the database. Moving objects not intersecting either category of regions is atrue-
negative and no further processing is required. This multi-category-based filtering
serves as the backbone for the performance of QACHE in movingobject evaluation.

To efficiently process location updates, QACHE organizes the cached items of
each cache entry using an in-memory R-tree, i.e., the content of each cache entry is
the internal nodes of the R-tree, while the actual cached items are managed by the
shared storage manager (please refer to Section 4.3). The algorithm used in QACHE
for the construction of a cache entry is presented below. Thealgorithm starts by
descending the query-index tree in the database from root and recursively explores
child nodes that may contain eligible objects. Apriority queue stores all nodes that
are within distanceDmax of the moving object. When a node is met, its children are
enqueued; when a query object is met, it is added to aquery list given that the non-
spatial criteria of the query are also satisfied. This process terminates when the total
size of the priority queue and the query list reaches the cache entry capacityB, or
when the priority queue becomes empty. The query list storesall queries that are
explicitly cached and the priority queue stores all cached nodes that aggregate the
rest of eligible queries.

For example, in Fig. 4,O is the current location of a moving object for which
a cache entry is to be constructed.I is the root of the database R-tree with three
children:I1, I2, andI3. The circle illustrates the region that is within distanceDmax to
the moving object; queries that intersect this region should be explicitly or implicitly
cached. Suppose that the cache entry sizeB is set to five.I is first dequeued, it’s three
children are then examined. OnlyI1 and I2 are enqueued because they are within
Dmax (Step 2).I1 is then dequeued and its three children are added to the querylist
(Step 3,4,5). So far, four items are cached:Q1, Q2, Q3 in the query list andI2 in



10 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

Algorithm 1 Create a cache entry
Input: Query-index tree in the databaseR, location{x,y}, maximum speedVmax, QRP,cache

entry sizeB
Output: Cache treeR
1: Priority queueQ ⇐ /0, query listL ⇐ /0
2: Dmax ⇐Vmax ×QRP
3: Enqueue(root(R))
4: while Q not empty AND(Q.size()+L.size()) < B do
5: e ⇐ dequeue(Q)
6: if e is a leaf node ofR then
7: c⇐ e’s closest child to{x, y}
8: e ⇐ e− c, // remove the child from the node
9: if distance(c,{x,y}) ≤ Dmax AND Expression(c) evaluates to ’true’then

10: Enqueue(c)
11: end if
12: if e not empty ANDdistance(e,{x,y}) ≤ Dmax then
13: Enqueue(e)
14: end if
15: else if e is an internal node ofR then
16: c⇐ e’s closest child to{x, y}
17: e ⇐ e− c, // remove the child from the node
18: if distance(c,{x,y}) ≤ Dmax then
19: Enqueue(c)
20: end if
21: if e not empty ANDdistance(e,{x,y}) ≤ Dmax then
22: Enqueue(e)
23: end if
24: else {// e is a qualifying query object}
25: Adde to LC
26: end if
27: end while
28: Create R-treeR from objects inQ andL
29: return R

the priority queue. Subsequently,I2 is dequeued; its closest childQ5 is added to the
query list, whileQ4 andQ6 are re-aggregated to a new node which is put back to the
priority queue (Step 6). At this time we have exactly five items in total:Q1, Q2, Q3

andQ5 in the query list andQ4 +Q6 in the priority queue. These five items are then
used to build a in-memory R-tree for the cache entry.

4.3 Sharing cache contents among sessions

One novelty of QACHE is its session-wise granularity. When a location update is
received, it need not be evaluated against all queries in thecache because queries
that are interested in this particular moving object are already selected into its own
cache entry. Unlike conventional approach, this prevents the non-spatial predicate



QACHE: Query Caching in Location-Based Services 11

I

QRPVD •= maxmax

Q4

Q5

Q6 

I2 

OQ1 

Q2 

Q3 

I1 

I3 

Q7 Q8

Q9 

IPriority
queue

Query
list

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Q1+ Q2 

I2 
I1 

I2 
Q1 

I2 
I2 Q4+ Q6 

Q3 Q3 

Q2 

Q3 

Q1 
Q2 

Q3 

Q2 

Q1 

Q5 

Fig. 4. Example: create a cache entry

of a query to be evaluated every time: the non-spatial predicate is evaluated exactly
once when the cache entry is created, while the spatial predicate may be evaluated
on every subsequent location update.

However, this session-wise granularity has its own deficiency: potential waste of
memory space. A query may be interested in multiple moving objects, and hence
may be cached in multiple cache entries. To solve this problem, we implemented a
shared storage manager that actually holds the data cached in memory. Each cache
entry only stores pointers to the corresponding slots in theshared storage manager.
This guarantees that only one copy of each query/node is keptin memory at any
time.

The shared storage manager is implemented as a hash table that is a tuple of in-
dex, data, and a reference counter. When a query or an intermediate node is selected
for caching, only its index is stored in the cache entry. The actual data, i.e., the ge-
ometry of a query or the minimum bounding box (MBB) of an intermediate node,
will be stored in an entry in the storage manager based on the index. During a query
evaluation, the storage manager identifies the location of the data using a hash func-
tion and the ID of the query/node as a hash key. When the storagemanager receives
a request for a data insert, it first checks whether the data already exists. If so, the
storage manager increases the reference counter by one; otherwise, a new entry is
created. When a cache entry is evicted, all queries/nodes cached will have their ref-
erence counter decreased by one. When a counter becomes zero,the actual data can
be safely removed from the shared storage manager.

5 Performance evaluation

We have built a simulation environment for QACHE with theJava programming
language. We compare QACHE with two other approaches: (1) the naive approach
where location updates are directly sent to the database server and evaluated ev-
ery time; (2) thesafe distance approach (SD) where only safe distance is used to
reduce number of query evaluation. We examined the number ofdisk accesses to



12 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

the database(R-tree) as well as storage requirement of eachapproach. With the ex-
perimental data, we also analyzed the processing time of different approaches to
demonstrate the efficiency of QACHE.

5.1 Simulation setup

Using our own data generator modified from the GSTD tool [11],a data set is gen-
erated that simulates a mobile environment whereN objects moves following the
Random Waypoint Model [2], a well accepted model in the mobile computing com-
munity. Each object starts at a randomly selected location in the region of[0..1,0..1],
moves for a period randomly generated between[0,QRP] at a speed randomly se-
lected between[0,Vmax], and sends its new location to the application server at time
QRP; after this the same process repeats. When a object hits the boundary, its moving
direction is adjusted to guarantee constant number of moving objects in the simula-
tion space. The query workload contains 1000 queries that are evenly distributed in
the simulation space; currently only static range queries are considered.

In our simulation, new location updates from allN objects are collected at the
same time and processed before the next round of location updates arrives. Our sim-
ulation processes 5000 rounds of location updates. All experiments were performed
on a 3.0 GHz Pentium 4, 1 GB memory workstation running Windows XP.

5.2 Disk access and memory requirement

We conducted three sets of experiments where the number of moving objects (Nm.o.)
grows from 1000 to 10000. In each set, we varied the number of cache entries (Nc.e.)
from 5% to 20% ofNm.o.. The cache entry capacityB, i.e., the number of cached
items in each entry, is set to 10. A fixed number of queries (1000) are organized
in the database server as an R-tree, the size of which is 640 KBexcluding the non-
spatial predicates. For the three approaches (in short, naive, SD, and QACHE), we
collected the expected number of disk page accesses (E(d pa)) to the R-tree on every
round of location updates. We also recorded the memory requirement and the cache
hit ratio when applicable. The performance of QACHE and the other two approaches
are presented in Table 1.

Compared to the safe distance approach, QACHE reducesE(d pa) by at least
63%. In each set of experiments,E(d pa) for the other two approaches remains con-
stant for a given number of moving objects, but decreases significantly for QACHE
when the number of cache entries is decreased. WhenNc.e. is 20% ofNm.o., the ex-
pected disk page accesses is almost negligible. This is because almost all query eval-
uation can be completed by QACHE and only a few disk page accesses are generated
from false-positive hits in the cache.

Another major observation from Table 1 is that QACHE is scalable in terms of
memory storage requirement. We recorded the total number ofbytes required by the
look-up directory, cache manager and the shared storage manager; the results indicate
that the total memory requirement does not grow in proportion to the number of
moving objects. Moreover, considering the total size of query R-tree in the database,
QACHE is highly efficient in utilizing memory space and providing a high hit ratio.



QACHE: Query Caching in Location-Based Services 13

Nm.o. 1000 5000 10000
Nc.e. 50 100 200 250 500 1000 500 1000 2000

E(d pa)
naive 3626 3626 362618255 18255 1825536191 36191 36191
SD 374 374 374 2051 2051 2051 4009 4009 4009

QACHE 137 49 2 754 193 7 1310 353 15
cache naive - - - - - - - - -

hit SD - - - - - - - - -
ratio QACHE 56% 85% 99% 54% 88% 99% 56% 89% 99%

memory naive - - - - - - - - -
requirement SD 4000 4000 400020000 20000 2000040000 40000 40000

(Byte) QACHE 11283 18035 2420052074 73773 9380593850 124740 150021

Table 1. Disk access and memory requirement of the naive, SD, and QACHE approaches

Tmem (ns) Teval (ns) Tdisk (ns) HQ B
100 100 5000000 10 10

Table 2. Estimations of the required time for each operation

5.3 Processing time

While the number of disk accesses is an important criteria when evaluating the ef-
fectiveness of QACHE, a quantitative analysis is necessaryto decide the exact per-
formance improvement. In this section we demonstrate the overall speed up that
QACHE can achieve in query evaluation over the naive approach and the safe dis-
tance approach. In our analysis, the following terms are frequently used: (1) disk
page access timeTdisk; (2) memory access timeTmem; (3) query evaluation timeTeval ;
and (4) and the height of the query R-tree in the databaseHQ. For simplicity, we
assume that an access to the query R-tree in the disk reads 0.75×HQ disk pages. We
also assume that the cache entry R-tree has a fan out of 2, thusthe in-memory cache
R-tree has a height of log2 B. The average response time to a location update can be
calculated as follows:
• Naive approach:

Tnaive = 0.75×HQ × (Teval +Tdisk)

• Safe distance approach: assuming that in each round of location updates, 10% are
beyond the safe distance so that database accesses are required, the average response
time is:

Tsd = Tmem +0.1×0.75×HQ × (Teval +Tdisk)

• QACHE: assuming thatNc.e. is 20% of Nm.o., then only 0.2% of the location
updates will result in database access (Table 1), the average response time is:

Tqache = Tmem +0.75× log2 B× (Teval +Tmem)+0.002×0.75×HQ × (Teval +Tdisk)

Based on a reasonable estimation of the relative parameterspresented in Table 2,
QACHE achieves a 498 times speed up over the naive approach and a 50 times speed
up over the safe distance approach.



14 Hui Ding, Aravind Yalamanchi, Ravi Kothuri, Siva Ravada, Peter Scheuermann

6 Conclusions

We have described and evaluated QACHE, a novel query cachingframework for
LBS systems. By caching spatial queries for appropriate moving objects on the ap-
plication tier, a significant amount of database accesses can be eliminated, resulting
in a dramatic performance improvement of LBS. We examined several important
implementation issues and proposed effective solutions tothem for QACHE to be
deployed in real LBS systems. We compared QACHE with existing solution based
only on safe distance. Our simulation results indicate thatwith the cache capacity
20% of total number of moving objects, and the memory requirement ranging from
3% to 20% of the query R-tree size in database (depending on the number of moving
objects), QACHE is capable of eliminating 99% of the disk accesses. On real LBS
systems, this memory requirement is totally affordable. Further more, our quantita-
tive analysis shows that QACHE achieves a 50 times speed up over the safe distance
approach and a 498 times speed up over the naive approach where all location up-
dates are directly processed in the database.

7 Acknowledge

This work was started when one of the authors was doing an internship in Ora-
cleUSA. We would like to thank Dr. Goce Trajcevski who kindlyreviewed the paper
and provided constructive suggestions on improving the system design. We would
also like to thank Lei Yang for assisting the experiments andreviewing and provid-
ing suggestions on the paper.

References

1. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-
Tree: An Efficient and Robust Access Method for Points and Rectangles. In SIGMOD
Conference, pages 322–331, 1990.

2. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routing protocols. In
Mobile Computing and Networking, pages 85–97, 1998.

3. Rick Greenwald, Robert Stackowiak, and Jonathan Stern.Oracle Essentials. O’Reilly &
Associates, Inc., CA, 2001.

4. Haibo Hu, Jianliang Xu, Wing Sing Wong, Baihua Zheng, Dik Lun Lee, and Wang-Chien
Lee. Proactive caching for spatial queries in mobile environments. InICDE, pages 403–
414, 2005.

5. Kothuri Venkata Ravi Kanth, Siva Ravada, Jayant Sharma, and Jay Banerjee. Indexing
medium-dimensionality data in oracle. InSIGMOD Conference, pages 521–522, 1999.

6. Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. SINA: Scalable incremental
processing of continuous queries in spatio-temporal databases. InSIGMOD Conference,
pages 623–634, 2004.



QACHE: Query Caching in Location-Based Services 15

7. Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref, and Susanne E. Ham-
brusch. Query indexing and velocity constrained indexing: Scalable techniques for con-
tinuous queries on moving objects.IEEE Trans. Computers, 51(10):1124–1140, 2002.

8. Ravi Kothuri and Albert Godfrind and Euro Beinat.Pro Oracle Spatial. Apress, 2004.
9. Qun Ren and Margaret H. Dunham. Using semantic caching to managelocation depen-

dent data in mobile computing. InMOBICOM, pages 210–221, 2000.
10. Jochen Schiller and Agns Voisard.Location-Based Services. Morgan Kaufmann Publish-

ers, CA, 2004.
11. Yannis Theodoridis, Jefferson R. O. Silva, and Mario A. Nascimento. On the generation

of spatiotemporal datasets. InSSD, pages 147–164, 1999.
12. Aravind Yalamanchi, Kothuri Venkata Ravi Kanth, and Siva Ravada. Spatial Expressions

and Rules for Location-based Services in Oracle.IEEE Data Eng. Bull., 28(3):27–34,
2005.

13. Aravind Yalamanchi, Jagannathan Srinivasan, and Dieter Gawlick.Managing expressions
as data in relational database systems. InCIDR, 2003.


