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ABSTRACT
This paper introduces fast, a novel two-phase sampling-
based algorithm for discovering association rules in large
databases. In Phase I a large initial sample of transactions
is collected and used to quickly and accurately estimate the
support of each individual item in the database. In Phase II
these estimated supports are used to either trim “outlier”
transactions or select “representative” transactions from the
initial sample, thereby forming a small final sample that
more accurately reflects the statistical characteristics (i.e.,
itemset supports) of the entire database. The expensive op-
eration of discovering association rules is then performed on
the final sample. In an empirical study, fast was able to
achieve 90–95% accuracy using a final sample having a size
of only 15–33% of that of a comparable random sample. This
efficiency gain resulted in a speedup by roughly a factor of 10
over previous algorithms that require expensive processing
of the entire database — even efficient algorithms that ex-
ploit sampling. Our new sampling technique can be used in
conjunction with almost any standard association-rule algo-
rithm, and can potentially render scalable other algorithms
that mine “count” data.

1. INTRODUCTION
The volume of electronically accessible data in warehouses

and on the Internet is growing faster than the speedup in
processing times predicted by Moore’s Law [21]. Scalability
of mining algorithms is therefore a major concern. Classical
mining algorithms that require one or more passes over the
entire database can take hours or even days to execute, and
in the future this problem will only become worse.

One approach to the scalability problem is to exploit the
fact that approximate answers often suffice, and execute
mining algorithms over a “synopsis” or “sketch,” that is,
over a lossy compressed representation of the data. This
approach can provide approximate answers while reducing
the processing time by orders of magnitude — in the context
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of a rapidly-changing competitive environment, such quick
approximate results can be much more useful than “exact”
results that are irrelevant by the time they are computed.
Use of a synopsis per se, however, is not guaranteed to solve
the problem. The computation of many synopses proposed
in the literature requires one or more expensive passes over
all of the data, so that the use of these synopses may still fail
to adequately address the scalability problem unless the cost
of producing the synopsis is amortized over many queries.

Using a sample of the data as the synopsis is a popular
technique that can scale very well as the data grows. Be-
sides having desirable scaling properties, sampling is also
well suited to interactive exploration of massive data sets
[11]. Recent work in the area of approximate aggregation
processing [1, 8, 10] shows that the benefits of sampling are
most fully realized when the sampling technique is tailored
to the specific problem at hand. In this spirit we initiate
an investigation of sampling methods that are designed to
work with mining algorithms for “count” datasets, that is,
datasets in which there is a base set of “items” and each
data element is a vector of item counts — here “items” may
correspond to physical items, responses on a survey, income
levels, and so forth. As a first step, we study sampling-
based algorithms for the most well-studied mining problem
defined on count data: the discovery of association rules in
large transaction databases.

Agrawal, et al. [3] proposed association rules as a means
of describing interesting purchasing patterns. Association
rules identify relationships among sets of items and can be
used to evaluate business trends, identify purchasing pat-
terns, and classify customer groups. Two measures, called
support and confidence, are introduced in [3] in order to
quantify the significance of an association rule. The mining
of association rules from a set of transactions is the process
of identifying all rules having support and confidence greater
than specified minimum levels; such rules are said to have
“minimum confidence and support.” We focus on the prob-
lem of finding the “frequent” itemsets that have minimum
support, because this operation is by far the most expensive
phase of the mining process. We assume that the reader is
familiar with the basic Apriori algorithm introduced in [3].
A variety of modifications have been proposed to reduce the
computational burden—see, for example, [2, 5, 7, 14] and
references therein—but with few exceptions all current al-
gorithms require at least one expensive pass over the data.

In the context of “standard” association-rule mining, use
of samples can make mining studies feasible that were for-



merly impractical due to the enormous time requirements.
Indeed, a number of large companies routinely run mining
algorithms on a sample of their data rather than on the
entire warehouse. Sampling-based algorithms also facilitate
interactive mining. I.e., when the goal is to obtain one or
more “interesting” association rules as quickly as possible,
a user might first mine a very small sample. If the results
are unsatisfactory, the sample size is then increased, and the
mining step is executed again. The sample size is iteratively
increased until interesting rules are found. This iterative
procedure approximates the functionality of online systems
such as those described in [11]. As indicated in the lat-
ter paper, user studies have shown that such online systems
provide much higher levels of user satisfaction than systems
based on traditional batch-style processing.

The primary challenge in developing sampling-based al-
gorithms stems from the fact that the support of an itemset
in a sample almost always deviates from the support in the
entire database. (The support of an itemset is the fraction
of transactions that contain the itemset.) Such luck-of-the-
draw fluctuations can result in missing itemsets that are
frequent in the database but not in the sample and false
itemsets that are frequent in the sample but not in the
database. We claim that judicious modifications to sim-
ple random sampling can make sampling a viable means for
attaining both high performance and acceptably accurate
results.

This paper introduces fast (Finding Associations from
Sampled Transactions), a refined sampling-based algorithm
that attempts to reduce the errors caused by sampling fluc-
tuations. fast is distinguished from previous sampling-
based algorithms by its novel two-phase approach to sample
collection. In Phase I, a large initial sample of transactions
is collected and used to quickly and accurately estimate the
support of each individual item in the database. In Phase II,
a small final sample is obtained from the initial sample in
such a manner that the support of each item in the final
sample is as close as possible to the (estimated) support of
the item in the entire database. We present two different
approaches to obtaining the final sample in Phase II: “trim-
ming” and “growing.” The trimming procedure starts from
the large initial sample and continues removing “outlier”
transactions until a specified stopping criterion is satisfied.
In contrast, the growing procedure selects “representative”
transactions from the initial sample and adds them to an
initially empty data set. In either approach, by forcing the
supports of the single-item itemsets in the sample to approx-
imate those in the database, the Phase II procedure helps
ensure that the support of every itemset in the sample is
close to that in the database. Such proximity in turn ensures
that the set of association rules discovered in the sample
overlaps to a high degree with the actual set of association
rules. Indeed, our numerical experiments indicate that for
any fixed computing budget, fast identifies more frequent
itemsets and fewer false itemsets than naive sampling-based
algorithms. Moreover, because the expensive operation of
identifying the association rules is performed on the (small)
final sample, fast can identify most, if not all, of the fre-
quent itemsets in a database at an overall cost that is much
lower than that of classical algorithms.

We emphasize that the sample created by fast can be sub-
sequently processed by any existing (non-sampling-based)
association-rule algorithm, so that fast complements, rather

than replaces, current algorithms such as DepthMiner [2],
Max-Miner [5], DIC [7], or FP-tree [14]. The fast tech-
nique is especially compatible with algorithms — such as
DepthMiner — that are designed for memory-resident data
sets. Moreover, our new sampling technique can potentially
be applied to render scalable other mining and statistical
algorithms that use “count” data, such as clustering algo-
rithms and contingency-table analysis.

2. SAMPLING AND MINING
Sampling is a powerful data reduction technique that has

been applied to a variety of problems in database systems.
Kivinen and Mannila [17] discuss the general applicability
of sampling to data mining, and Zaki, et al. [22] employ a
simple random sample to identify association rules.

Toivonen [20] uses sampling to generate candidate item-
sets but still requires a full database scan. To minimize
the number of missed frequent itemsets, the algorithm (1)
lowers the minimum support when generating the candidate
sets and (2) augments the initial collection C0 of candidate
sets with a “negative border.” An itemset is a member of
the negative border if all its subsets are elements of C0. Af-
ter the candidate itemsets are generated, they are tested by
using the remainder of the database, i.e., the database mi-
nus the original sample. This testing is done in an effort to
remove false itemsets.

John and Langley [16] give a dynamic sampling method
that selects the sample size based on the observed behavior
of the data-mining algorithm. Although dynamic sampling
is developed in the context of a classification algorithm, the
idea of “growing” a sample until a stopping criterion is sat-
isfied is applicable in the setting of association-rule mining.
Indeed, the approach in [16] originally motivated the fast-
grow algorithm presented here.

In the statistical literature, a well known technique for
improving estimates obtained from a random sample is to
“trim” the sample prior to computing the estimate. The idea
is to make the sample more accurately reflect the properties
of the parent population by removing “outlier” observations
that are not sufficiently representative of the data set as a
whole. Tukey’s “trimmed mean” estimator — see, for exam-
ple, [18, pp. 29–31] — is a classic example of this approach.
The textbooks of Barnett and Lewis [6] and Huber [15] dis-
cuss this and other “robust estimation techniques.” It is in
this spirit that fast creates a small final sample of trans-
actions from a larger initial sample prior to mining, that
is, prior to estimating the support of itemsets in the data-
base from the support of the itemsets in the sample. In the
classical setting of real-valued data, an observation is con-
sidered an outlier if it lies more than a specified distance
away from the sample mean or median. It is not at all ob-
vious, however, what an “outlier” should be in the context
of association-rule mining. A key contribution of this paper
is to provide a useful operational definition of “outlier” in
the current nonclassical setting, together with an inexpen-
sive technique for identifying such outliers. In the following
section we describe our approach in detail.

3. THE FAST-TRIM ALGORITHM

3.1 Overview of the Algorithm
Throughout, we assume that the contents of the transac-



tional database do not change during the mining process.
We also assume that the database is very large.

Denote by D the database of interest, by S a simple ran-
dom sample drawn without replacement from D, and I the
set of all items that appear in D. Also denote by I(D) the
collection of itemsets that appear in D; a set of items A is an
element of I(D) if and only if the items in A appear jointly
in at least one transaction t ∈ D. Accordingly, the collec-
tion I(S) represents itemsets in S; of course, I(S) ⊆ I(D).
For k ≥ 1 we denote by Ik(D) and Ik(S) the collection of
k-itemsets in D and S, respectively. Similarly, L(D) and
L(S) denote the frequent itemsets in D and S, and Lk(D)
and Lk(S) the collection of frequent k-itemsets in D and S,
respectively. For an itemset A ⊆ I and a set of transac-
tions T , let n(A; T ) be the number of transactions in T that
contain A and let |T | be the total number of transactions
in T . Then the support of A in D and in S is given by
f(A; D) = n(A; D)/|D| and f(A; S) = n(A; S)/|S|, respec-
tively.

Given a specified minimum support p and confidence c,
the fast-trim algorithm proceeds as follows:

1. Obtain a simple random sample S from D.

2. Compute f(A; S) for each 1-itemset A ∈ I1(S).

3. Using the supports computed in Step 2, obtain a re-
duced sample S0 from S by trimming away outlier
transactions as described in Section 3.3 below.

4. Run a standard association-rule algorithm against S0

— with minimum support p and confidence c — to
obtain the final set of association rules.

Olken [19] provides a review of techniques that can be
used in Step 1 to obtain a random sample of transaction
records. In general, the cost of obtaining a sample depends
upon how the data is stored. In our implementation of fast-
trim, the transaction data is stored in a flat file and we use
a sampling algorithm with a cost of O(|S|) as in Ernvall and
Nevalainen [9].

The computation in Step 2 of f(A; S) for each 1-itemset
A ∈ I1(S) is straightforward: a count is maintained for each
item present in S. If each of these items and the associated
counts are stored together in a hash tree, then the cost of
Step 2 is at most O(Tmax · |S|), where Tmax stands for the
maximal transaction length. Because the cost of Step 2 is
relatively low, the sample S can be relatively large, thereby
helping to ensure that the estimated supports are accurate.

The crux of the algorithm is Step 3, in which outlier trans-
actions are trimmed from the sample. The following subsec-
tions discuss the choice of distance functions, the trimming
procedure and the stopping criteria.

3.2 Distance Functions
As discussed previously, we define an outlier to be a trans-

action whose removal from the sample maximally reduces
(or minimally increases) the discrepancy between the sup-
ports of the 1-itemsets in the sample and the corresponding
supports in the database D. (Since the supports of the 1-
itemsets in D are unknown, we estimate them by the corre-
sponding supports in S as computed in Step 2 of fast-trim.)
To make the notion of “discrepancy” between 1-itemset sup-
ports precise we define a distance function, based on the

symmetric set difference, by setting

Dist1(S0, S) =
|L1(S)− L1(S0)|+ |L1(S0)− L1(S)|

|L1(S0)|+ |L1(S)| (1)

for each subset S0 ⊆ S — in accordance with our previous
notation, L1(S0) and L1(S) denote the sets of frequent 1-
itemsets in S0 and S. Observe that 0 ≤ Dist1 ≤ 1, and
that Dist1 is sensitive to both false frequent 1-itemsets and
missed frequent 1-itemsets. Our goal is to trim away trans-
actions from S so that the distance from the final sample S0

to the initial sample S is as small as possible. We note that
other definitions of distance are possible, for example

Dist2(S0, S) =
X

A∈I1(S)

�
f(A; S0)− f(A; S)

�2
, (2)

Dist3(S0, S) =
X

A∈I1(S)

|f(A; S0)− f(A; S)|, (3)

and
Dist4(S0, S) = max

A∈I1(S)
|f(A; S0)− f(A; S)|. (4)

Observe that Dist2, Dist3, and Dist4 correspond to Lp-norm
distances between f( · ; S0) and f( · ; S) with p = 2, 1, and∞,
respectively. Because of the well-known equivalence between
these norms, we expect algorithms based on Dist2, Dist3,
and Dist4 to behave similarly, and we focus on differences
between Dist1 and Dist2.

3.3 Trimming the Sample
Suppose at first that the goal is to produce a final sam-

ple S0 containing exactly n (≥ 1) transactions — note that
the value of n is directly related to the time subsequently
required to generate the frequent itemsets. Given an initial
sample S, we therefore wish to find a solution S0 to the
following problem:

minimize
S0⊆S, |S0|=n

Dist(S0, S). (5)

This combinatorial optimization problem is extremely ex-
pensive to solve exactly. Indeed, it can be shown that the
problem is NP-complete, by reduction from the One-In-
Three SAT problem [12]. There are, however, a variety of
heuristic algorithms that yield approximate solutions to the
problem in (5).

A trivial algorithm is to trim “obliviously:” initially set
S0 = S and then scan the transactions in S0 in an arbitrary
order, removing each transaction in turn until |S0| = n. Al-
though this procedure is inexpensive — e.g., no evaluations
of Dist() are required — it is clear that the final sample S0

will not be any more representative of the database D than
the initial sample S.

An alternative greedy algorithm also starts by setting
S0 = S, and then proceeds in stages. At each stage the
algorithm finds a transaction t∗ ∈ S0 such that Dist(S0 −
{t∗}, S) ≤ Dist(S0 − {t}, S) for t ∈ S0 and sets S0 =
S0 − {t∗}. Although this algorithm produces much better
solutions than the “oblivious” algorithm — each transac-
tion that is removed is known to be at least as much of
an outlier as any other transaction currently in S0 — it is
prohibitively expensive: when the current sample contains j
(> n) transactions, precisely j evaluations of Dist() are re-
quired to remove the next transaction. The total number of
Dist() evaluations required to produce the final sample S0 is



obtain a simple random sample S from D;
compute f(A; S) for each A ∈ I1(S);
set S0 := S;
while (|S0| > n) { //trimming phase

divide S0 into disjoint groups of min(k, |S0|)
transactions each;

for each group G {
compute f(A; S0) for each A ∈ I1(S0);
set S0 = S0 − {t∗}, where Dist(S0 − {t∗}, S) =

mint∈G Dist(S0 − {t}, S);
}

}
repeat { //auxiliary trimming phase

divide S0 into disjoint groups of min(k, |S0|)
transactions each;

for each group G {
if
�∃t∗ such that Dist(S0 − {t∗}, S) =
mint∈G Dist(S0 − {t}, S) and
Dist(S0 − {t∗}, S) ≤ Dist(S0, S)

� {
set S0 = S0 − {t∗};
compute f(A; S0) for each A ∈ I1(S);

}
}

}
until (no transaction t∗ is removed from S0 for any group G);
run a standard association-rule algorithm against S0 to
obtain final set of association rules;

Figure 1: Complete FAST-trim Algorithm

therefore O(m2−n2), where m is the number of transactions
in the initial sample S.

A hybrid algorithm uses an input parameter k ∈ { 1, 2, . . . ,
|S| } to explicitly trade off speed and accuracy. As above, the
algorithm initially sets S0 = S. At each stage, the algorithm
examines the transactions in S0 in disjoint groups of size
min(k, |S0|). For each group, we select a transaction t that
minimizes the function Dist(S0−{t}, S) over all transactions
in the group and remove t from S0. Observe that for k =
|S| the algorithm reduces to the greedy algorithm, whereas
for k close to 1 the algorithm approximates the “oblivious”
algorithm. Intermediate values of k may be chosen to trade
off speed and accuracy: the larger the k value, the higher
the accuracy, but the slower the speed. As before, a rough
idea of the complexity can be obtained by considering the
number of Dist() evaluations required to trim the sample.
If k ≤ n, then roughly k evaluations of Dist() are required
for each of the (m− n) transactions removed from S0, for a
total of about k(m−n) evaluations. If k > n, then k(m−k)
evaluations are required to remove the first m−k transitions;
from this point on, the algorithm behaves like the greedy
algorithm, and (k2 − n2) evaluations of Dist() are required
to complete the trimming phase. It follows that the overall
complexity is O(km−n2) if k > n and O(km−kn) if k ≤ n.
We use this hybrid greedy heuristic in our implementation
of fast-trim.

3.4 Stopping Criteria
As formulated so far, the trimming procedure stops when

the sample size reaches a specified value n. Note that after
the desired final sample size is reached, additional trimming
may further reduce the processing time without decreasing
the accuracy much. In light of this observation, we add
an auxiliary trimming phase to fast that uses a distance-
based stopping criterion. Specifically, the auxiliary trim-

ming phase stops when, for each group during the current
iteration, the removal of any transaction from the group will
increase Dist(S0, S). In Section 5 we present experimental
results for the fast-trim algorithm both with and without
the auxiliary trimming phase. The complete fast-trim al-
gorithm is presented in Figure 1.

4. OTHER VARIANTS OF FAST
The fast-trim algorithm obtains the final sample S0 by

sequentially removing transactions from the initial sample S.
Other approaches to obtaining S0 from S lead to alternative
versions of fast.

4.1 The Growing-based FAST Algorithm
As an alternative to the trimming procedure described in

Section 3, the exclusion of “outlier” transactions can be ac-
complished by selecting “representative” transactions from
the original sample S and adding them to a second sample
S0 that is initially empty. In this section we discuss the
resulting fast-grow algorithm.

First consider a version of fast-grow with a specified fi-
nal sample size of n transactions. Like fast-trim, the fast-
grow algorithm has an input parameter k ∈ { 1, 2, . . . , |S| }
and proceeds in stages. Initially, S0 is empty. At each stage,
fast-grow increments S0 by adding representative transac-
tions. In order to identify representative transactions, the
transactions in S−S0 are divided into disjoint groups, with
each group having min(|S − S0|, k) transactions. For each
group, the algorithm selects a transaction t∗ that minimizes
the function Dist(S0 ∪ {t}, S) over all transactions in the
group and adds t∗ to S0. The algorithm proceeds until
|S0| = n. As with the fast-trim algorithm, k is chosen
to trade off speed and accuracy: the larger the k value, the
higher the accuracy, but the slower the speed. To quan-
tify the complexity in terms of the number of Dist() evalu-
ations required, let m be, as before, the number of transac-
tions in the initial sample S. Then an argument analogous
to that given for fast-trim shows that the total number
of Dist() evaluations required to create the final sample is
O
�
km− (m− n)2

�
if k > m− n and O(nk) if k ≤ m− n.

As with fast-trim alternative stopping criteria are avail-
able for fast-grow. Denote by S0(i) the transactions in S0

at the end of stage i of the algorithm, and by K the index
of the final stage — i.e., |S0(K)| = n. It may be the case
that Dist(S0(i), S) ≤ Dist(S0(K), S) for some i < K. If
so, then we can achieve acceptable accuracy by running the
association-rule algorithm against S0(i) rather than S0(K).
Since |S0(i)| < |S0(K)| by definition of fast-grow, the over-
all time to mine the association rules will usually be shorter.
Indeed, the optimal accuracy-maximizing strategy is to run
the association-rule algorithm against the set S0(i

∗), where

i∗ = min
n

1 ≤ i ≤ K : Dist
�
S0(i), S

�
= min

1≤j≤K
Dist

�
S0(j), S

�o
.

In other words, a rollback operation is applied to obtain
the smallest sample that has the potentially highest final
accuracy. This rollback operation can be viewed as a rough
analogue of the auxiliary-trimming phase in the fast-trim
algorithm. Other variations on the stopping criteria for
fast-trim and fast-grow are possible — our experiments
indicate, however, that the simplest stopping criteria are
best, so we do not investigate these variations in detail.



obtain a simple random sample S from D;

compute f(A; S) for each A ∈ I1(S);

set i := 0, S0(i) := ∅, minDist := ∞, and minStage := −1;

while (|S0(i)| < n) {
divide S − S0(i) into disjoint groups of min(|S − S0(i)|, k)

transactions each;

for each group G {
set S0(i) := S0(i) ∪ {t∗}, where Dist

�
S0(i) ∪ {t∗}, S

�
=

mint∈G Dist
�
S0(i) ∪ {t}, S�;

}
compute f

�
A; S0(i)

�
for each A ∈ I1(S)

if
�
Dist

�
S0(i), S

�
< minDist

� {
set minDist := dist

�
S0(i), S

�
and minStage := i;

}
set S0(i + 1) := S0(i);

}
run a standard association-rule algorithm against

S0(minStage) to obtain final set of association rules;

Figure 2: Complete FAST-grow Algorithm

The complete fast-grow algorithm is illustrated in Fig-
ure 2. Of course, we do not separately store the sets S0(0),
S0(1), . . . , S0(K) — we merely keep track of the stage at
which each transaction is added to S0. This information is
all that is needed for rollback.

4.2 Randomized Versions of FAST
Another approach to solving the problem in (5) is to use

randomized algorithms, such as random swapping, simu-
lated annealing, tabu search, and genetic algorithms. These
algorithms did not perform well relative to our heuristics,
and so we leave a more comprehensive investigation of ran-
domized algorithms as a topic for future research.

5. PERFORMANCE STUDY
In this section we describe an empirical study carried out

to evaluate the performance of fast. All experiments were
performed on an HP 9000 series UNIX multi-user worksta-
tion with a processor speed of 132 MHz.

5.1 Experimental Methodology
We used both a synthetic and a real-world database. The

synthetic database was generated using code from the IBM
QUEST project [4]. The parameter settings for synthetic
data generation are similar to those in [4]: the total numbers
of items and transactions are set to 1000 and 100,000, the
number of maximal potentially frequent itemsets is 2000,
the average length of transactions is 10, and the average
length of maximal potentially large itemsets is 4. We used a
minimum support of 0.77%, at which level there are neither
too many nor too few large itemsets, and the length of the
maximal large itemsets is 6. The real-world database is a
sales database from a large retailing company, and is similar
to the one used in [3]. We obtained similar results on both
databases and therefore focus on the synthetic database.
In a certain sense, the synthetic databases pose more of a
challenge to the fast algorithms than the real-world data.
This is because the synthetic data contains relatively many
frequent k-itemsets with k > 1, whereas the trimming and
growing heuristics are based on 1-itemset frequencies—most

of the frequent itemsets in the real-world database are 1-
itemsets.

We performed experiments using fast-trim, fast-grow,
Toivonen’s Algorithm, and “srs-Apriori”, which is simple
random sampling combined with the Apriori algorithm as in
[22]. Distance functions Dist1 and Dist2 are used in fast-
trim and fast-grow. Preliminary experiments showed that
a value of k = 10 for the group-size parameter worked well
in both fast-trim and fast-grow, and we therefore use this
value throughout. We use a sampling ratio of 30% through-
out to create the initial sample for fast and its variants. We
also use the Apriori algorithm to obtain frequent itemsets
in the final step of the fast algorithms — this choice per-
mits fair comparisons with Toivonen’s Algorithm and srs-
Apriori.

For each database and sampling-based mining algorithm,
we executed the algorithm 50 times, each time choosing a
different simple random sample (without replacement) from
the database. Thus each performance number reported be-
low is an average of 50 observations. Our primary measure
of accuracy is as follows:

accuracy = 1− |L(D)− L(S)|+ |L(S)− L(D)|
|L(D)|+ |L(S)| , (6)

where, as before, L(D) and L(S) denote the frequent item-
sets from the database D and the sample S. As with the
distance measure, the accuracy measure in (6) is based on
the symmetric set difference, and hence is sensitive to both
false and missing frequent itemsets.

5.2 Experimental Results
In this section we examine the performance of the differ-

ent algorithms in terms of accuracy and execution time. For
fast-trim, we consider both the “fixed-size” stopping crite-
rion (no auxiliary trimming phase) and “min-distance” stop-
ping criterion (which uses the auxiliary trimming phase).
We similarly consider fixed-size and min-distance stopping
criteria for fast-grow. The results are presented using an
abbreviated notation in which, for example, fast-t-D1 de-
notes the fast-trim algorithm based on Dist1 and fast-g-D2
denotes the fast-grow algorithm based on Dist2. The final
sampling ratios chosen are 5%, 7.5%, 10%, 12.5% and 15%.
For srs-Apriori, two additional sampling ratios of 20% and
30% are also selected.

5.2.1 Accuracy vs. Sampling Ratio
Figures 3 and 4 illustrate the accuracy of the different

algorithms on the synthetic databases. As shown in the fig-
ures, fast-trim and fast-grow outperform srs-Apriori in
most cases. Indeed, all fixed-size versions of fast are more
accurate than srs-Apriori, especially those that use Dist2—
with a 5% sample, these latter algorithms achieve results
comparable to a 15% simple random sample. Most fast-
trim and fast-grow algorithms missed between 3.5–6% of
the frequent itemsets at a final sample size of 5%, compared
with 11.57% for a 5% simple random sample and 6% for
a 20% simple random sample. Moreover, the fast algo-
rithms typically generate 30–50% fewer false itemsets than
does srs-Apriori. The metric Dist2 seems to be more ef-
fective than Dist1 in most cases. One possible reason for
this is that Dist1, unlike Dist2, does not penalize for a poor
approximation of a 1-itemset frequency if this frequency is
less than the minimum support. Thus the entire set of 1-
itemset frequencies may not be approximated as well in a



global sense, and consequently the k-itemset frequencies are
not approximated to sufficient accuracy.
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Figure 3: Accuracy vs. Sampling Ratio on Synthetic

Data w/ Fixed-Size Stopping Criterion
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Figure 4: Accuracy vs. Sampling Ratio on Synthetic
Data w/ Min-Distance Stopping Criterion

The fast-trim algorithms appear to benefit from the min-
distance stopping criterion. For example, fast-t-D1 quickly
achieves a high level of accuracy — a 5% final sample size
gives results comparable to a 30% simple random sample.
In contrast, the performance of the fast-grow algorithms
degrades under the min-distance stopping criterion. The
problem appears to be that the final sample size is too small.
For example, after fast-g-D1 executes the rollback opera-
tion, the final sample size is typically equal to about 0.2%.
Although there are few false or missing large 1-itemsets in
the small sample, a large number of false k-itemsets are gen-
erated for k > 1. The problems associated with using Dist1
are magnified in this situation, which is why the performance
of fast-g-D1 is particularly bad.

5.2.2 Execution Time vs. Sampling Ratio
Figure 5 displays the total execution time (sampling plus

subsequent frequent-itemset generation) of both srs-Apriori
and various fast algorithms on the synthetic database as
a function of the sampling ratio. We consider only fast

algorithms that use the fixed-size stopping criterion — as
discussed in the previous section, use of this criterion results
in better performance and more stable behavior. As shown
in the figure, the execution times of the fast algorithms
were all very similar to the corresponding times for srs-
Apriori. Thus the additional processing time — relative
to simple random sampling — that is required by fast to
trim or grow a sample is insignificant compared to the time
required to generate the frequent itemsets.

5.2.3 Accuracy vs. Execution Time
Our “bottom-line” performance results are displayed in

Figure 6, which illustrates the tradeoffs between accuracy
and execution time for various fast algorithms and for srs-
Apriori. As shown in the figure, almost all fast variations
performed better or much better than srs-Apriori.
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Specifically, if required to finish the mining task within
ten seconds, fast-g-D2 can achieve an accuracy of approxi-
mately 94%, compared to an accuracy of 84% for srs-Apriori.
Looked at another way, fast-g-D2 achieves an accuracy
comparable to srs-Apriori in about 35% less time.



We also can compare the performance of fast with that
of Toivonen’s Algorithm. Within 10 seconds, fast-g-D2 can
process a 5% final sample and achieve approximately a 95%
accuracy. On the contrary, it takes about 100 seconds, or
about 10 times longer, for Toivonen’s algorithm to finish the
mining task using the same sample, whereas its resulting ac-
curacy is 99.8%. The problem with Toivonen’s Algorithm is
that even though the generation of frequent itemsets from
the sample is relatively inexpensive, the pass over the re-
maining database to eliminate false itemsets can be quite
expensive. The expense is especially high when the data-
base contains a large number of long transactions and/or
long frequent itemsets. This problem persists no matter
how small the sample is — note that the smaller the sam-
ple, the larger the remaining database. Also, unlike with
fast, the user has no real control over the tradeoff between
speed and accuracy: neither the lowered minimum support
value nor the size of the negative border can be manipulated
by the user. The discrepancies in processing time between
fast and Toivonen’s algorithm only increase as the data-
base becomes larger. Thus if extremely high accuracy is of
paramount importance and processing time is not an issue,
then Toivonen’s algorithm is a reasonable choice. Otherwise,
fast is clearly the algorithm of choice.

6. CONCLUSIONS AND FUTURE WORK
We have introduced in this paper an efficient two-step

data reduction approach based on sampling and tailored to
the mining of count data, in particular, the fast discovery of
association rules. In the first step, a relatively large simple
random sample is obtained and used to estimate the support
of each item in the database. In the second step, a final small
sample is created either by trimming outliers or selecting
representative transactions based on a distance function that
incorporates the 1-itemset supports computed in the first
step.

An empirical study using both a real database and a syn-
thetic database supports our claims of efficiency and accu-
racy. fast was able to achieve 90-95% accuracy using a
final sample size 15–33% as large as the simple random sam-
ple used by srs-Apriori. This efficiency gain resulted in a
speedup by roughly a factor of 10 over algorithms, even effi-
cient ones such as that of Toivonen, that require one or more
expensive passes over the entire database. Unlike the latter
algorithms, the user of fast has relatively fine control, by
means of the adjustable algorithm parameters k and n, over
the tradeoff between speed and accuracy.

As mentioned in the text, the detailed issues involved in
combining the fast sampling technique with some of the
more recent association-rule algorithms, such as Apriori,
DIC, Max-Miner, DepthMiner, or FP-tree, need to be in-
vestigated. In general, we plan on exploring the efficacy of
our sampling technique for other mining and statistical anal-
ysis tasks for count data. It would be desirable to push the
ideas developed in this paper even further, perhaps combin-
ing them with online processing ideas as in [11] or [13], in
order to make data mining systems even more interactive
and subject to user control.
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