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Abstract

In wireless fading channels, multiuser diversity can bel@igd by scheduling users so
that they transmit when their channel conditions are faWetarhis leads to a sum throughput
that increases with the number of users and, in certain casbigves capacity. However, such
scheduling requires global knowledge of every user’s cehgain, which may be difficult to
obtain in some situations. This paper addresses contebéised protocols for exploiting mul-
tiuser diversity with only local channel knowledge. A vdiga of the classic ALOHA protocol
is given in which users attempt to exploit multi-user divigrgains, but suffer contention losses
due to the distributed channel knowledge. We charactdnzgtowth rate of the sum throughput
for this protocol in a backlogged system under both shamtend long-term average power
constraints. A simple “fixed-rate” system is shown to be gsically optimal and to achieve
the same growth rate as in a system with a centralized satreddbreover, asymptotically,
the fraction of throughput lost due to contention is showrb¢ol /e. Also, in a system with
random arrivals and an infinite user population, a variatbthis ALOHA protocol is shown
to be stable for any total arrival rate, given that users cdimate the backlog.

I. INTRODUCTION

In a multi-user fading channel, different users experigreaks in their channel quality
at different times; this effect is callehulti-user diversity{19]. Multi-user diversity can
be exploited by scheduling users to transmit during the gimvben they have favorable
channel conditions. The more users present, the more likal/ that one user has a
very good channel at any given time; hence, the total thrpugbf such a system tends
to increase with the number of users. Multiuser diversitg fta roots in the work of
Knopp and Humblet [19], where they present a power contrbese for maximizing
the capacity of the uplink in a wireless network, modeled &aassian multiple-access
channel with frequency flat fading. It is shown in [19] thatteum capacity of this
channel is achieved by scheduling only the user with the destnel to transmit at any
time (see also [33]). Similar results hold for a parallel €san broadcast channel [34].
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Multiuser diversity underlies much of the recent work on popunistic” or “channel
aware” wireless scheduling such as [3], [22], [23], [38]7];3as well as several recent
systems such as Qualcomm’s High Data Rate (HDR) architec@ibMA 1xEV-DO)
[4], [43].

Our focus in this paper is on distributed approaches thalogxmultiuser diversity.
As in [19], we consider a multiple-access model where a gafupsers all communicate
to a single receiver (e.g. a base station or access poing) approach in [19] requires a
centralized scheduler with knowledge of each user’s chastate information (CSI). This
could be gained by having the each user transmit a pilot bigniée base station; each
user’s channel gain would then be estimated and a scheduler hase station would tell
the user with the best channel to transmit. More precisebyime that each user sends an
orthogonal pilot signal to the base-station for the purpafsehannel estimation and that
each pilot required(, degrees of freedom, where the length of a pilot signal depend
the amount of training needed for channel estimation andaddjtional overhead needed
per transmission. For a given bandwidthl®f Hz, this implies that each additional user
requires approximatelyf,, = K,/(2/) additional seconds of overhead, and so in a
system with/N users the total overhead will be approximatéfyf;, + 7., whereT, is
the delay required for the base station to signal which ubeuls transmit This is
illustrated in Fig. 1(a) for a case where the pilot signaks taansmitted orthogonally in
time. To effectively exploit multiuser diversity, the tbtaerhead should be less than the
channel’s coherence time or else the estimated channed gauld no longer be relevant.
It is clear that with sufficiently many users this may not besé@d. For a given number
of users, whether or not this overhead is significant willetepon the coherence time, the
bandwidth, and the signal-to-noise ratio (which will effd¢).? In particular in systems
with many users (for example, the “reachback” scenario irm@sd sensor network [2]),
the overhead required for such a centralized approach maydtebitive.

Instead of a centralized approach, we consider a case wheheuser has knowledge
of its own fading level, but no knowledge of the fading levefsthe other users in the
cell. As shown in Fig. 1(b), thiglistributed CSlmay be acquired by having the base-
station periodically broadcast a pilot signal, which eashlrwses to estimate its channel.
This requires that reciprocity holds between the downlinl aplink channels, e.g., this
can hold in a time-division duplex (TDD) system, assumingttthe variation in the
channel gains is due to multi-path fading and not to oth#émuerference. The overhead
required for this approach does not increase with the nurobasers; the price for this
is that each user must now decide when to transmit withouiaglohannel knowledge.
To address this, we propose a simple variation of the cladsited ALOHA protocol
[1], [7], which we call channel-aware ALOHAZ28], [29]. In networking, a key reason

1Also note thatT,. will increase logarithmically with the maximum number of users the system siguled to
accommodate, due to the overhead needed to identify each user.

2For example, in multi-carrier systems the overhead required to estimatianeel condition in each narrow-band
carrier quickly becomes excessive.
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Fig. 1. An example of the overhead required for centralized (a.) @tdhiited (b.) channel measurement.

for using contention-based protocols, such as ALOHA, isabse with bursty sources,
the overhead in determining which source has traffic to sewbines prohibitive. Here,
instead we use this protocol to compensate for the overheddarning the channel
information. Indeed, our results suggest that even withowsty arrivals, a contention-
based protocol may be useful in this setting.

Multiaccess channels have a long history of research froth the information theory
and networking communities; however, as pointed out in,[1d4¢se two communities
often use very different models and approaches. In thisrpageborrow elements from
both; we consider a “collision model” for the underlying dnal as is often used in
networking; given a successful transmission, we assumehbaiser’s rate can approach
the capacity of the underlying channel within a time-slohisTis reasonable when
there are enough degrees of freedom available to use sophest codes. In this way
information theoretic (capacity) results provide a usedbbtraction of the underlying
channel within a time-slot. This type of approach has beereasingly used to study
scheduling and various queue control problems, often rait/ by wireless applications
(e.g. [3], [6], [8], [39]).

From an information theoretic perspective, related mougtis this type of distributed
CSI have been studied in [17], [32], [36] for “distributed pawcontrol” in multiple-
access channefsThese papers consider the expected sum mutual informatidhea
receiver; transmitting at this rate with distributed CSluiegs coding over many time-
slots to average over the joint fading process. Here, wesf@acua model where there is
no coding over multiple time-slots. Also within each timetsve assume that each user
transmits a single codeword and single user decoding is U$esl precludes approaches
as in [10], [25], [26], which employ ideas from multiuser anfnation theory (i.e., rate-

%In CDMA systems distributed power control has also been considergd[{2]); in these systems, the distributed
knowledge is typically the received signal-to-interference plus noise {&tNR) instead of the channel gain.
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splitting and superposition coding) to recover informatishen collisions occur. These
constraints could arise, for example, due to delay or coxitgleoncerns. We emphasize
that the basic ideas considered here can clearly be exteandédse more sophisticated
systems. From a random access perspective, distributed &3bden considered in [2]
for a ALOHA model with multi-packet reception [15], [41]. I2], the CSI affects the
reception probability of the transmitted packets, while ttansmission rate per packet is
fixed. Here, we use a simple collision model without multrussception or any power
capture effects [24], [21]. Again, our basic ideas could Reemded to such settings.
Without capture, ALOHA with distributed CSI has been addeedss [40], which builds
on the conference version of this paper [28] and considexsiliy issues. A carrier
sensing random access protocol based on distributed CSlaa @i [42] for optimizing
the energy efficiency in a sensor network.

Our focus is on characterizing how the throughput of the nehraware ALOHA
protocol scales as the size of the network increases. Weapghntonsider a backlogged
or saturated system with users, where each user always has data to send. Our basic
model is described in the next section. In this setting, wanstinat this contention-based
system can still exploit multiuser diversity and has a suroughput that increases with
n. In Section Ill, the rate at which this throughput is inciiegsas well as the first order
constants are given under both long-term and short-termepoanstraints, for a broad
class of fading distributions. It is also demonstrated thaimple “fixed-rate” policy can
achieve the optimal growth rate. In Section IV, this disitdd approach is compared to
an optimal centralized system. We prove that the througbphbbth systems increases at
the same rate. Asymptotically, the ratio of the throughguhe channel-aware ALOHA
to the throughput with a centralized scheduler is shown ta fee the same as the well-
known ratio achieved by a standard slotted ALOHA system imafiaded channel. This
can be interpreted as saying that the only loss due to distibchannel knowledge is
the loss due to random access for the channel. For a finite euaoflusers, it is shown
that the loss in throughput due to contention when fadingésgnt is less than the loss
in a channel without fading. In other words, lack of cenaadl control is less harmful
in a fading environment. Finally, in Section V, we considevaaiation of the ALOHA
protocol for random arrivals. For an infinite user Rayleigtliiig model, it is shown that
the channel-aware ALOHA is stable for any total arrival ratkis stability is achieved by
leveraging the increasing multiuser diversity as the nurmbbacklogged users increases.

II. MODEL DESCRIPTION

We consider a multiple access model withusers all communicating to a single
receiver over a common bandwidth BfHz. The channel between each user and the
receiver is modeled as a frequency-flat fading channel wittlitie white Gaussian
noise. Specifically, at each tine the received signaj(t) is given by

y(t) = Z vV Hi(t)zi(t) + 2(t), (1)
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wherez;(t) and H;(t) are the transmitted signal and channel gain foritheuser, and
z(t) is additive white Gaussian noise with power spectral dgnsj/2. The sequence
of channel gainsH(t) = (H,(t),..., H,(t)) is modeled as a block-fading process [27],
so that fork = 1,2,..., H(t) = Hy, = (Hy4,...,H,y) for all t € [ET,(k + 1)T),
whereT is the length of each time-slot. Between time-sidls, changes randomly. Each
component ofH,, is independent, i.e. each user has independent fading.ifRpfiaty,

we focus on the case whefél, }7>, is an i.i.d. sequence of random vectors and each
componentH; , has a probabiIiEy density denoted Iy, (k). For example, in the case of

Rayleigh fading,fy, (h) = hioe’%, whereh, = E(H, ). Much of the following analysis
also applies when for each {H,;}72, is an arbitrary stationary ergodic process, in
which casefy, (h) can be interpreted as the steady-state distribution. Hemvehen the
channel has memory, this memory can be exploited to imprbeeperformance over
the approaches considered here, e.g., see [30]. We assatrig(#; ;) < co and that
fu,(h) > 0 for all h > 0 and is differentiable, so that the corresponding distrisut
function Fy,(h) is strictly increasing and twice differentiable. We mairdgdress the
case where the fading statistics are the same for each weserieach slok, {H; ;. }!",
are i.i.d? In this case, we denotgy, (k) by fy(h) for all i. Asymmetric models, where
the fading statistics vary across users, are discussedctio8dll-D.

We assume that each user has perfect distributed CSI, ithe atart of thekth time-
slot, each uset knows H;;, but not [, for all ;7 # i. We also assume that each user
knows the distribution of its own channel gain; this is a mguestionable assumption. In
practice adaptive schemes which attempt to estimate thenehalistributions from past
observations would be needed. We briefly discuss one sucbagpthat is suggested by
our work in Section Ill. Given this distributed channel kredge, letP, ,(H; ;) denote the
transmission power of useérduring time-slott as a function of the user’'s channel gain.
We assume that each transmitieis subject to one of the following power constraints
(see e.g. [9)):

« Long-term average power constrairity, P;(H;) < P.

« Short-term maximum power constraid®;(H,) < P for all H,.

Here, we have dropped the time-indexo simplify notation. A long-term power con-
straint limits the total power used over many time-slotsjlevla short-term constraint
limits the power used in each time-slot. The former may réfteastraints due to limited
available energy, while the later may reflect regulatorysti@nts.

In [19], it is shown that givenH,, the sum capacity of (1) in the symmetric case
under a long-term average power constraint is achieved tinge’;(H;) > 0 only for
some user such thatH; > H; for all j; the exact value of;(H,) is determined by
using a water-filling power allocation. In this case, durgagch time-slot only one user

“We note that as the the number of users in the network increases, thiassuiption becomes more questionable.
If the spatial area of the network increases with the users, then difiesein the channel statistics due to path loss
will become more pronounced. On the other hand, if the users arenednto a given area, then as the number of
users increases, the correlation between neighboring users chailhéisrease.
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is transmitting? We note that under a short-term power constraint the sumcityiga
achieved if every user transmits in each time-slot with fudver. However, in this case,
a centralized controller needs to knddj, to determine the resulting rates that can be
achieved during each time-slot (i.e. the resulting cagaenion). Also, achieving the sum
capacity will require successive interference canceltatir some other type of multi-user
decoding. If one restricts themselves to approaches wharest one user transmits in
a slot, then under a short-term power constraint, the sumughput is again clearly
maximized by having the user with the best channel tranaméach slot. Under both
a short-term or long-term average power constraint the sapaaty will increase with
the number of users, due to the increased multi-user diyegain.

In the distributed case, we assume that at most one user caassfully transmit in
each time-slot. Given that only useértransmits, letR(+;) be a function that indicates
the maximum rate at which the user can reliably transmit asnation of the received
signal-to-noise ratio (SNR)y;, = % To simplify notation, we normaliz&/,\WW = 1,
so thaty; = H;P;(H;). We assume thaR(y) is an increasing, twice differentiable and
strictly concave function ofy with R(0) = 0, R(o0) = 0o, R'(00) =0, and R'(y) > 0
for all v € [0,00).5 We also assume that(y) haszero asymptotic elasticitymeaning

that

R/
lim sup )y =0

oo R(7)
This condition requires that the marginal change in ratenparginal change in SNR is
asymptotically going to zero. The main example we consider i

R(vi) = log(1 + ), (2

which models the case where a user can transmit at rates ambypmg the Shannon
capacity of (1) in each time-slot. This satisfies the prawgdissumptions. Other functions,
R(7v), could also be used, for example, to model the achieval#eurader a specific adap-
tive modulation and coding scheme; for most common schethesesultingR(~y) will
also satisfy these assumptidh#/hen user transmits, it sends a single packetify;)T’
bits. This packet may be encoded, but no coding is done bata@esecutive packets. If
multiple users transmit during a time-slot, a collisionwscand no data is received. As in
the standard ALOHA model, after each time-slot the usersivednstantaneoud), 1, e)
feedback [7] indicating whether a slot was idle, containesbecessful transmission or
contained a collisiof.In most practical systems, additional feedback will be latdé to

®In the asymmetric case, the optimal power allocation is also to allow only ametagransmit; however, in this
case it will be the user with the largest weighted channel gain, where tightw@lepend on the channel distribution.

®We use the standard notatighi(z) to denote the derivative of(x) with respect to its argument.

"We borrow this terminology from economics, see e.g. [20]

8In particular, for any such function, as long &%) asymptotically grows no faster than logarithmically with
then it will satisfy the zero asymptotic elasticity condition.

®In terms of the throughput of the backlogged system studied in the netiorseit does not matter if the feedback
is instantaneous or delayed.
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the users, allowing for more elaborate protocols to be epguloAgain, here we chose
to illustrate the basic ideas in the simplest setting.

Given only H;, each usef must decide in which slots to transmit and how much power
to use when it transmits. For this purpose, we consider thewimg class ofchannel
aware ALOHAprotocols. In standard ALOHA, each backlogged user inddeetly sends
a packet in every slot with probability. With channel aware ALOHA, each usebases
its transmission probability on its available C&f;. Specifically, for a given threshold,
each uset transmits with probability one whef; > h}, and otherwise sends nothing.
Thus, useri will transmit with probabilityp; = Fp, (h]), where Fy,(h) = 1 — Fy,(h) is
the complimentary distribution function &f;, which by assumption is strictly decreasing
in h. The average throughput of this protocol whenrallsers are always backlogged is
given by

s(p,n) = Z (piH(l — p;)Eng; {R(P(Hi)|Hi > Fﬁj(%)}) ) 3
i G
wherep = (p1,...,p,) denotes the vector of transmission probabilities d?):gl(')

denotes the inverse function @y, (). Each user's power allocation must also satisfy
the given power constraint.

I1l. THROUGHPUTSCALING FOR BACKLOGGED SYSTEMS

In this section, we analyze the throughput scaling of chibaware ALOHA protocols
in a backlogged system, where alusers always have data to send. We emphasize that the
number of backlogged users, is known by all users in the system. This is a reasonable
assumption when the backlog is constant over a long timke;saa assumed here. Given
the backlog, first, we consider a heuristic “fixed-rate” pomtl for a symmetric system,
where each user transmits at a fixed rate (for a given numbasaf) with probability
p= % We characterize the order at which the throughput of thésesy increases with.
We then show that asymptotically this choice of probabiktyptimal for any fixed-rate
system and, furthermore, such a fixed-rate system is asyicgdtp optimal within the
larger class of variable-rate systems. Both long-term armdt4@rm power constraints
are considered. Systems with heterogeneous users wilbalsliscussed, and finally, the
performance of the channel aware ALOHA protocol will be camgal with several other
approaches.

A. Fixed-rate algorithmp = L.

To begin, we focus on a symmetric, backlogged system witmg-term average power
constraint. Consider a channel aware ALOHA protocol, whéwe,a given number of
usersn, every user has the same transmission probabilignd whenever a user transmits
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it does so at a fixed raté?;, which requires a fixed received power Bf = R~'(R;).1°
Each user will then simply invert the channel when they tneihand use poweP(h) =
P;/h. To satisfy the long-term power constraiptmust satisfy

[e.e] P -
| atwian<P. @)
FH (p)

where F';'(p) is the transmission threshold used by each user. It folltwas givenp,
the maximum fixed rate a user can transmit at is

-1

e’} 1 B

&@%ﬁz</ mw@wo P (5)
F'(p)

Assuming that this rate is used, the average sum throughptiteofixed-rate system

under an average power constraint is

s5¢(p,n) = (np(1 —p)" ') Re(p). (6)

The transmission probability can be chosen to maximize this expression. Initially, we
consider the sub-optimal choice pf= - which results in a throughput of;(n) =
Ef(%,n); this choice maximizes the first term in (6) and simplifies fiblowing analysis.
We consider hows;(n) scales as» increases. Notice that the first term in (6) is
decreasing witln and approaches the well-known asymptoté oflowevers’ = Fy;*' (1)
increases as increases, and thus so wilt;(1/n). The total throughput is increasing
with n; the rate of increase is given in Proposition 1 below. To desahis rate, we use
the following notation: Two sequence§n) and g(n) are defined to basymptotically
equivalent denoted byf(n) < g(n), asn — oo, if % — ¢ > 0. This implies that both
f and g asymptotically grow at the same rate. In the special caseavhe 1, we write
f(n)=g(n) and say thatf(n) and g(n) are strongly asymptotically equivalenin this
case, we indicate both the growth rate and the first ordertanhNote that both= and
= are equivalence relations.
For Proposition 1, we also require that the fading distithutsatisfies the following
definition:
Definition 1: A fading density,fx(h) on [0,00) has awell-behaved tailf,
. Fy(h)
1m
h—o0 th(h)
In most common fading models, such as Rayleigh or Ricean fading:) has an

exponential tail, i.e., a& — oo, fy(h) < e ®" for somea > 0. It can be shown that
such densities always satisfy the above definition. Moreegaly, it can be shown that if

ONote, here the rate is fixed for a given number of userdut it can vary withn, i.e. as the system scales the
rate used may change.
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Fig. 2. Ratio of the total throughput; (n) of the fixed rate algorithm td R((PnFy;" (1)) as a function of the
number of usersy for a Rayleigh fading channel with the indicated average received SNRs

this limit exists andE(H) < oo, then it must lie in[0, 1]; however, examples of densities
for which this limit does not exist can be fouft.

Proposition 1: If f;(h) has a well-behaved tail, ther}(n) < 1R (PnFy" (1)).

The proof is given in Appendix A. As an example, consider a Bigyl fading channel
(fu(h) = %e’%), and assume thak(y) is given in (2). In this casef;' (1) =
ho log(n), and, from Proposition 1,

1 _
S¢(n)= - log (1 4+ Phonlog(n))

= log(n) + log(log(n)).
Figure 2 shows the ratio of;(n) to 1 log(1 + Phonlog(n)) as a function ofn for this
example with three different values of the average receBB@R (oP). As expected,
this ratio converges to 1. Even for small valueswpthe ratio is only slightly larger than
1, suggesting that the asymptotic analysis is relevant foderate values of.
For a fixed-rate system with users, letP;(n) be the maximum power used in any
time-slot. Under a long-term average power constréinfrom (4),

N Py P
Pr(n) = =<1 = == S :
Fi' () ™ Fa'(2) [ fu(h) g dh
From the proof of Proposition 1, it follows that jf;(n) has a well-behaved tail, then

& 1 1
fu(h)> dh =X ==+
/F;(%) h Fp'(5)n

1
n

"prop. 1 can be generalized for the weaker assumption that this limit eigtis not necessarily 0; in this case,
we have only asymptotic equivalence instead of strong asymptotic éepuiea
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Therefore we have, 5 B
Corollary 1: If fz(h) has a well-behaved tail, then as— oo, Pr(n) <nP.

In other words, under an average power constraint, the marirshort-term power
per time-slot is increasing linearly with the number of @sérhis is because each user
is transmitting1 /nth of the time and so it can use on averagémes P when it does
transmit!? It follows that if there is both a short-term and long-termmeo constraint,
the short term power constraint eventually limits the tigigout growth in Proposition 1.

Next, consider a version of the fixed-rate algorithm unddratsterm power constraint.
Each user still has the same transmission probabilignd uses a fixed transmission
rate whenever it transmits, and so requires a fixed receioagepof Py = hP(h). To
satisfy the short-term maximum power constraiRt/.) must be no greater thaR for
all h > F;'(p). Hence, for a giverp the maximum fixed-rate is given bg(Fy*(p)P).

In a symmetric system, the resulting sum-throughput isrgive

$p(p,n) = (np(1 —p)" ") R (Fy' (p)P). (7)
Again, choosingy = 1/n, it is straightforward to see that as— oo

Note that compared to the average power constraint, therenguof R(-) is now% times
smaller. This is because the short-term power is now copstestead of increasing with
n as in Corollary 1. Indeed, if the average power per user is abized by the number
of users, the growth rate under the average power consirdlinbe the same as with
a short-term power constraint. For the example of a Rayleaging channel with?(y)
given by (2),

55(n) = é log(1 + Pho log(n))
= log(log(n)).

B. Fixed-rate algorithm, optimap

So far, we sepp = 1 under both the long-term and short-term power constramt. |
general, this is a suboptimal choice ofn the sense of maximizing the total throughput
of the fixed-rate algorithm. However, we will show that asyatigally there is no loss
in this choice ofp.

Again, we first examine the system with a long-term averageepaonstraint. We are
still considering the fixed-rate algorithm with the totatabighputs;(p,n) given by (6).
Let p*(n) be the optimal transmission probability for a given numbeusersn, i.e.,

p*(n) = arg zax 5¢(p,n).

2psymptotically, this can be viewed as a type of “flash” or “peaky” signakimpeme, which are known to be
capacity achieving for wide-band multipath fading channels, see &y. [R5].
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The resulting throughput is;(p*(n),n). From (6) it can be seen that(n) — 0 as
n — oo; otherwise, the total throughput would go to zero. For anghssequencey(n),
the next lemma gives a direct generalization of Proposition

Lemma 1:Let p(n) be any sequence of transmission probabilities With), ... p(n) =
0. If fu(h) has a well-behaved tail, then as— oo,

Fii' (p(n))
p(n) ) '

The proof follows essentially the same steps as that ford&itipn 1 and so is omitted.
This lemma implies that;(p*(n),n) < 5¢(p(n),n), where for each,

gf(p<n)7 n) = np(n) (1 — p(n))n_l R (P

~ n—1 D Fgl (p)
p(n) = arg Dax np (1-p)" R (PT) : 9)
In other words, to characterize the asymptotic behaviok @p*(n),n), it is sufficient
to study the behavior of;(p(n),n). The next lemma shows that asymptoticafift)
cannot go to zero much faster thane.g.,p(n) = -; does not satisfy this lemma.

Lemma 2:If fy(h) has a well-behaved tail, then there exists a constant0 and an
integer N > 0 such that for alln > N, p(n) in (9) satisfies
L < pn) < -,
n n

The proof is given in Appendix B. Before stating the main resuoiltthis section, we
state one other useful lemma regarding the tail of the fadisgibution.

Lemma 3:Given any constanty € (0, 1),

-1
lim sup M < l
y—0t FH (y) o

The proof is given in Appendix C. Note that gs— 0%, both ;' (y) and F;* (ay)
are approaching infinity; this lemma implies that these tjtiaa increase at essentially
the same raté?

Using these two lemmas, we have the following propositiorctvistates that as — oo
asymptotically there is no loss in throughput by choosing %

Proposition 2: If f5(h) has a well-behaved tail, then as— oo

S¢(p*(n),n) <54(n).
The proof is given in Appendix D. For example this impliestthgth Rayleigh fading
andR(~) given in (2), then under the optimal transmission probshilie total throughput
also increases likéog(n).

13We use the notatiog — 0+ to indicate thaty approaches zero from the right.
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Next we consider the optimal transmission probability fdixad-rate algorithm under
a short-term power constraint. In this case, let

p'(n) = arg max 3;(p,n)

_ _\n—1 D —1
= arg max np(1 —p)" " R(PFy (p))-

(10)

Notice that the only difference between this and (9) is tlggiarent of R(-). In this case,
it can again be shown that(n) decays like:.

Lemma 4:1f fy(h) has a well-behaved tail, then there exists a constant0 and an
integer N > 0 such that for allhn > N, p*(n) in (10) satisfies

o . 1
— <p'(n) < —.
n n

The proof is given in Appendix E. Using this property, we h#ivat under a short-term
power constraint, there is again no loss asymptoticallyhoosingp = %
Proposition 3: If f;(h) has a well-behaved tail, then as— oo

$¢(p*(n),n) = 8¢(n).

The proof is in Appendix F.

These results suggest that with either a short-term or teng-power constraint, there
is little loss in simply setting the transmission probapikqual to1/n. This choice of
transmission probability also facilitates adaptive alpons when the users do not know
their channel distributions. Assuming that all users héedame, but unknown channel
distribution, each user would want to set a channel thresbolthat it transmitd /nth of
the time, wheren is the current backlog. Each user could then simply trackfridetion
of time it transmits within a given window and adjust its chahthreshold depending
on whether this is less than or greater thamn.

C. Variable-rate algorithms

We now turn to variable-rate algorithms, where for a givereach user may transmit
at a variable-raté?( H P(H)), which will depend on the user’s channel gdinand power
allocation P(H). We first consider the system under a short-term power anstrin
this case, given that a user transmits, it should use thermami powerP, resulting in
a rate of R(H P). In a symmetric network if each user transmits with probigbj, then
the sum throughput for a variable-rate system under a seort-power constraint will
now be

o0

salpor) =n(L=pt [ (RPN dh )
Fr'(p)

Clearly, for anyp, 5,(p,n) > 5¢(p,n), i.e. the variable-rate system will have a larger

throughput than a fixed-rate system with the same transonigsiobability. However, the

next proposition shows that asymptotically these two systare equivalent.
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Proposition 4: Let {p,} be a non-negative, decreasing sequence of probabilitEs su
thatp, — 0 asn — oo. If fy(h) has a well-behaved tail, thef(p,,, n) < 57(p,, n).

The proof is given in Appendix G. Lep’(n) be the probability which maximizes
$,(p, n) for eachn. It follows from this proposition that, (p}(n), n) < 5;(p;(n),n). Also,
letting p*(n) be the probability that maximizes (p, n), we haves, (p*(n),n) < 5;(p*(n), n).
Therefore, it must be that

Su(py(n),n) X 8¢(p"(n),n) < 8(n),

where the last relation follows from Proposition 3. In otlnards, the optimal variable-
rate throughput is also strongly asymptotically equivatens (n).

Next, we examine a variable-rate system under a long-termepaonstraint. We
restrict ourselves to the case whetéy) is given by (2). In this case, if a user transmits
with probability p, to maximize the sum throughput each user should choose arpow
allocation which maximizes the average throughput givencaass subject to the average
power constraint. This power allocation will be the solatio the following optimization
problem:

maximize / fu(h)log(l + hP(h))dh
P(h) Fi'(p)

e (12)
subject to / fu(h)P(h)dh = P.
Fi'(p)
The solution to this will be a “water-filling” power allocatn [13] over those channel
states,h > F;'(p). This is given by

1 1\"
Ph)y=(——--
=(5-1)
for all h > F;'(p), where )\, is chosen to satisfy the average power constraint. Note
that whenp is large, the solution to (12) may result if(h) = 0 for someh > Fy;*(p).
Specifically, this occurs whek, > F;'(p). In this case, each user is actually transmitting
with a probability smaller thap. However, it can be seen that aslecreasesf;*(p)

will increases and the corresponding parametemwill be non-increasing. Hence, for
small enougty, )\, < F;'(p); in this case, we have

A — p
P T oo :
P+ 31, 2 fu(h)dh

Let s,(p,n) denote the optimal sum throughput given by (12) for a giveand p.
Assuming that is small enough so that (13) holds, then

sufpom) =n(1—py [

Fy'(p)

(13)

o0

fu(h)log (%) dh. (14)
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n
n=10
— - n=100

5 10
Average SNR (dB)

Fig. 3. Ratio of3,(n) to §5(n) as a function of the average received SNR in a Rayleigh fading chanitfel
n = 5,10 and 100 users.

The next proposition states that once again, the optimabiarrate sum throughput is
asymptotically equivalent to that obtained with a fixederaystem.

Proposition 5: Let {p,} be a non-negative, decreasing sequence of probabilitEs su
thatp, — 0 asn — oo. If fy(h) has a well-behaved tail, theqy(p,,, n) < 5¢(pn, n).

The proof is given in Appendix H. For finite, using an optimal (water-filling) power
allocation will have some advantage over a fixed-rate schdrhe main advantage is
that the fixed-rate scheme requires most of the power for rpoleannel states, while
the optimal power allocation can save this power for bett@mnoel states. However, as
increases, the channel threshdlg'(p,,) will also increase and in both cases a user will
only transmit when the channel is “good”. Intuitively, thegplains why asymptotically
there is no difference in these two schemes. Figure 3 shaveatto of 5,(n) = 5,(=, n)
to 3;(n) for different values of: as a function of the average SNR,f) in a Rayleigh
fading channel withR(v) given by (2). It can be seen that the ratio is decreasing with
both the number of users and the SNR; even for a small numbesast i.e.n = 5)
and small SNR the ratio is very close to 1.

D. Asymmetric Model

So far we have been considering a symmetric system where wesssts fading was
identically distributed and each user received the sameagedhroughput. In this section,
we will relax these assumptions and look at some simple agtnermodels. To begin
consider a model where there are two classes of users. Classn] tisers and each user
has the channel distributioAy, (k). Class 2 has:, users and each user has the channel
distribution Fy, (k). Again, each user has independent fading. We also allove tves
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classes to have different priorities, which is modeled bgvahg one class of users to
transmit with a higher probability than the other. Speciljcae constrain the ratio of

the transmission probabilities to satigly = ap,. Without loss of generality we assume
thata > 1, i.e., class 1 has the higher priority. As in the symmetricdelpeach class

i = 1,2 will choose a channel threshold; = F,}j(pi), and only transmit when their

channel gain exceeds this threshold.

Here we focus on a fixed-rate algorithm with a short-term powemstraint ofP; for
each class. Similar ideas apply to the other settings. In this caseafgiven transmission
probability, each class can transmit at rate? (EFI;} (pi)), wheneverh > hj. The sum
throughput for all clasg users is then given by

§3(p1, p2,m1,n2) = napy (1 — )" (1= p2)™ R (P Fal(p)) - (15)
Likewise, the sum throughput for class 2 users is
5?(]91,]92, ni,n2) = napa(l — p2)™ (1 — p1)™ R (p2F§21(p2)) : (16)

Once again, we want to characterize how the total througbgaies as the number of
users increases. In this case, we consider increasiramdn, while keeping their ratio
fixed, i.e.ny = fBn; for someps > 0. With this assumption, letting = n; andp = py,
the total throughput can be written as

v(z)(

§¢(p,n) = §(p,ap,n, Bn) + §3(p, ap,n, Bn)

=np(1—p)" (1 —ap)’R (HFgll(p)) (17)
+afp(l —p)"(1 — ap)”" 'R (B Fy, (ap))
To analyze the asymptotic performance we also make thewfimitpassumption about
the fading distributions of the two classes:

Definition 2: Two fading densitiesfy, (k) and fg, (k) on [0, c0) havesimilar tails if
they both have well-behaved tails and there exists someamns> 0 such that
lim

le (h) _
h—o0

This definition requires the tails of the the two fading disitions to be asymptotically
equivalent. For example, this will be true if both distrilmns correspond to Rayleigh
fading with different means. Moreover, if two densities @dasimilar tails, then as the
next lemma states, the ratB$P1F}}11 (p)) andR(PQF}}j(ap)) will also be asymptotically
equivalent ag — 0.

Lemma 5:1f fg, (h) and fy,(h) have similar tails, then for anyg > 0

i R(Plﬁ’gll(p))
p—0+ R(PQFI};(ap))

The proof is given in Appendix I. Another property we will us® two distributions
with similar tails is:
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Lemma 6:Given that fy, (h) and fg,(h) have similar tails, letf;(h) be a fading
density with distribution,F; (k) = Fy, (h)Fg,(h). Fori = 1,2, fz(h) and fy,(h) also
have similar tails.

The proof is given in Appendix J. Notice thd}; (h) is the density of the maximum
of two independent random variables with distributigfas (k) and fy,(h). This lemma
states that if both of these random variables have simill, then they will each have
similar tails with their maximum.

Let p*(n) be the value op which maximizes the total throughput in (17) as a function
of n. The following proposition generalizes Proposition 3 te thetting.

Proposition 6: If fy,(h) and fy,(h) have similar tails, then as — oo,

(2 = L2
gt )(p (n),n)xs;) (ﬁ,n)

In other words, for this asymmetric model, it is asymptdhcaptimal to setp; =
1 1

Talin = mitam andp, = ap;. Note that ifa = 1, i.e. both classes have the same
priority, then just as in the symmetric case, it is asymp#dly optimal for both classes
to transmit with a probability of 1 over the total number ofetss The proof of this
Proposition is given in Appendix K. The main idea in this drsato consider a symmetric
system, where every user has a fading density giverf fy:) as defined in Lemma 6.
We then use our previous results for a symmetric system altiglemmas 5 and 6 to
derive the desired results.

Using Proposition 6, it can be seen that total throughputfass 1 users satisfies

S(p* (n), ap*(n), m, fn) = mR (PIF,; (m» .

Likewise for class 2,

£(p"(n), ap”(n), n, Bn) = e(%ﬁam}z (PQFI;; (W)) .

The total throughput for both classes satisfies

@)/ . _1 S 1 _1 N 1
P =tn(me () =i (90 ()
where the last step follows from the similar tail property.

This results can easily be extendedito> 2 classes, where each class- 1,....k
has a different channel distributiafy; (h) and different short-term power constraiRt
Let the transmission probability of each class 1 be constrained to satisfy; = «;p1,
and let the number of users in clagssatisfyn; = (;n;. Denote byégf)(p, n) the total
throughput of allk classes, as a function @f = p; andn = n;, and letp*(n) be the
probability which maximizes this throughput for a given
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Corollary 2: If {fy,(h)}r_, are a family of fading densities where each pair have
similar tails, then as — oo,
< (k * — (k
SS‘ )(p (TL)? n) = 85‘ ) <(1+Z§:12 aiﬁi)”) .
The proof of this follows the same argument as in Proposi@oand so is omitted.
From this corollary, it follows that the total throughput feach clasg using the optimal
transmission probabilityy;p*(n) is strongly asymptotically equivalent to

a; B; o
e R <B~F‘1 (%))
e(1+ Y0 i) (14355 ciBi)n

E. Performance Comparisons

We conclude this section by comparing the performance ofra¢wther protocols to
the performance of channel-aware ALOHA in a symmetric Rayldéading channel with
average channel gai, when R() is given by (2). For simplicity, we focus on the case
of a fixed-rate policy with a short-term power constraintigar results hold for variable
rate protocols and long-term power constraints. Recall i;m ¢hse the throughput of the
channel aware Aloha protocol grows Ii%é%(f?ho log(n)) as a function of: for Rayleigh
fading channels.

The first alternative we consider is a slotted ALOHA systenekehthere is no fading
and the channel between each user and the transmitter hast@mogain ofh,. In this
case, given a short-term power constraint/fthe maximum rate a user can send at
when it transmits is(ho P) independent of the number of users. The sum throughput is
then maximized by choosing = 1/n, yielding

Sup(n) == (1= )" R(hoP).

As n — oo, this decreases and approaches the constant Va|l:]c;é%(df0]5), while the
throughput of channel aware ALOHA grows unbounded with

The next alternative we consider is an ALOHA system with Rigyldading, where
the users do not base their transmissions on the channel $#ien a user transmits,
it does so at a fixed-rate for a given backlegHowever, with Rayleigh fading, a user
would not be able to transmit at any fixed-rateas the channel gain approaches zero
and still satisfy the short-term power constraint. To aceuwdate this, we assume that
each user’s transmission is only successful when its chasraove a threshold,,,;,.
The difference here is that this threshold will not changthwihe number of users, and
the users will transmit regardless of the threshold (thise&sonable, for example if the
user’s do not have any CSI). The choicengf;, subject to a short-term power constraint
which maximizes the average throughput is

Rmin = arg max {R(Ph)e_%} : (18)
h
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The sum throughput in this case is again maximized by chgagsia 1/n, yielding

Phmin

Spe(n) = (1 — %)nfl R(Phyi)e” ho .
Again this will be decreasing with. In this case, the throughput approaches an asymptote

h
of %R(thin)e’%ﬂ Furthermore, it can be shown thaf,;,, < hy, and s0s,.(n) <
5,r(n). This can be interpreted as saying that if the transmittarsrot exploit fading,
then the fading reduces the throughput of an ALOHA systenr tivat achieved in a
non-faded channel.

The last case we consider is a TDM system in a Rayleigh fadiagredl, where each
user is assigned a fixed time-slot in a TDM frame. During eauk slot only one user can
transmit. As in the second case above, we assume users frahamonstant transmission
rate R, and the transmission is only successful when the chanmelig&rger tharlhmm
in (18). The sum throughput in this case is given &y (n) := R(Phy)e Mo
which is a constant, independent of

Figure 4 shows an example of the sum throughput as a functienroall fours cases.
Notice that for small values of, the TDM approach has a higher throughput than the
channel aware ALOHA system. As grows, however, the ALOHA approach quickly
achieves higher throughputs, despite the fact that amfissioccur. This is interesting as
in a wire-line channels, a TDM approach is always preferablany random access
technique for a backlogged system. However in this wiretegtng, the channel-aware
ALOHA system has a higher throughput when enough users asept to provide
sufficient multiuser diversity.

Let n denote the minimum number of users required for the througbfpthe channel-
aware ALOHA system to be greater than or equal to the throuigbipthe TDM scheme.
For a fixed-rate system with transmission probabil};t,yﬁ is the smallest» such that
Srpn(n) < 5¢(n). Figure 5 shows: for a Rayleigh fading channel as a function of the
average SNR. It can be seen that at low SNR only a few users adeddor the channel
aware ALOHA to outperform TDM. This number increases witk #iverage SNR. Also
shown in Fig. 5 is the same quantity in a Nakagami fading cbbmith parameter
m = 2 under a short-term power constraint and a Rayleigh fadingredlawith a long-
term power constraint. Under a long-term power constraimcreases slower than in
the same channel under a short-term constraint. This stgyfest the channel aware
ALOHA system benefits more from the ability to allocate povleasn the TDM system
In the Nakagami fading modef; is larger than in the Rayleigh model. The fading in
a Nakagami channel witlm = 2 has a smaller variance than in a Rayleigh channel. A
more variable fading environment is beneficial for oppotio transmission schemes
such as channel-aware ALOHA.

IV. COMPARISONS WITHCENTRALIZED SCHEDULERS

In this section, we compare the performance of the channateaWL OHA protocol to
that achieved by a centralized scheduler with perfect kedga of every user’'s channel
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gain. We again consider a backlogged symmetric system. FBeation Ill, we know
that with an appropriate transmission probability the tigtgput of the channel aware
ALOHA will increase with the number of backlogged users asslthe maximum sum
throughput in a centralized system. In this section we complae rate at which the
throughput increases in these two systems.

We consider centralized schedulers that are restrictedhedsiling one user per time-
slot. With this restriction, the centralized schedulingigo that maximizes the sum
throughput would always schedule the user with the largleahrel gain in each time-
slot}* Assuming a short-term power constraint®fand variable rate transmissions, the
average sum throughput achieved by such a policy witksers is

5u(n) == Ex <R(P max H)) (19)

The next proposition compares this to the throughut, n) of a variable-rate channel
aware ALOHA protocol with transmission probabllm/_ L (cf. (12)).

Proposition 7: For all n, 5,(£,n) > (1 — 2)"15,(n).

The proof is given in Appendix L. It is based on showing thag¢ tthannel gain
conditioned on a success in the ALOHA system is stochabktilzager than the maximum
unconditional channel gain in the centralized system. Tiniglies that the throughput
in the ALOHA system averaged only over the successful slolisbe greater than the
throughput in the centralized system; however, the actuwaughput in the ALOHA
system will be decreased by the probability of collision e¥his (1 — )” !, We note
that this proof does not require any assumptions about theftdtne fadlng dlstrlbutlon
nor doesR(v) need to have zero asymptotic elasticity.

Since(1 — )"' — 1/e asn — oo, an immediate corollary of Proposition 7 is that
$c(n) =< 5,(2,n), i.e., the throughput of the distributed system increasgsnatotically
at the same rate as the optimal centralized system. Fromréveops section, it follows
that s,(p*(n),n) andsy(n) are also asymptotically equivalent $g.(n).

Note that Proposition 7 is not just valid asymptoticallyt bolds for all finiten. For
eachn consider the ratio
gv(ﬁa n)

Se(n) 7

ri(n) =

which can be viewed as a measure of the loss in throughpueah#dium access control
protocol over a centralized scheduler. Proposition 7 stttat

ro(n) < (1 _ %)n_l

14As noted previously, with a long-term power constraint the restriction tedwing one use per time-slot is not
needed, since the optimal solution from [19] without this restriction will higaie property.
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also shown.

for all n. In a channel without fading, we can also define the ratio ef tthroughput
when using a standard ALOHA protocol, compared to a cemt@dlischeduler. In this
case the centralized scheduler will have a normalized tirput of 1 transmission per
slot independent of. Hence, the throughput ratio will simply be

o= (1-1)"

Therefore, for all finiten, r¢(n) < r,(n). In other words, the penalty for lack of
coordination is smaller in a fading channel for any finite Figure 6 showsr,(n)
andr(n) for several different average SNRs, as a functiomdh a Rayleigh fading
channel, withR(~y) given by (2). As expected,;(n) < r¢(n) for all n, with the difference
decreasing as the SNR increases.

A similar result to Proposition 7 applies for a system witloag-term power constraint.
In this case, the average sum throughput with a centralicbddailer is given by

Su(n) = By (R(P(H) ‘max Hi)) , (20)

i=1,...,n

where P(H) denotes the optimal power allocation which satisfies thg-kemm power
constraints ofP for each user. For a symmetric model with independent fadiraan be
seen that the optimal power allocation will only be a funetof max;—, _,, H;. When
R(v) is given by (2), this will again be a water-filling allocatiohikewise, for the
distributed system, Ieiv(%,n) denote the optimal variable-rate throughput when each
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user transmits with probability /n using the optimal power allocatioR(H) when it
transmits® In this case we have:
Proposition 8: For all n, 5,(+,n) > (1 — )" '5,(n).

The proof is given in Appendix M.

A. First order constants

We have shown that the sum throughput of the optimal digedhgystem is increasing
at the same rate as the throughput of the optimal centrabgstem, but we have not
specified the first order constants. Propositions 7 and 8dthia constant to be greater
than 1/e, but do not show that this bound is tight. In this section, wevs that this
bound is indeed tight with an additional assumption on tlileofahe fading distribution.

In the case of a short-term power constraint, this meanssttta) = Xs.,(n). Combining

this with our previous results it follows that (p*(n),n) and s,(+,n) are also strongly
asymptotically equivalent tds.(n). In terms of the ratior;(n) defined above, this
implies that asn — oo, 74(n) — +, the same as the limit of,;(n) for the non-faded
system. Referring to Figure 6, this means that each curveyim@stically converging
to 1.

To characterize the first order constant, we use the follgwasult from extreme order
statistics:

Lemma 7 ([11]): Let {Z;}"~, be i.i.d. non-negative random variables with a com-
plimentary distribution functionf,(-) and p.d.f. fz(-) satisfying Fz(z) > 0 for all
z € [0,00), Fy(2) is twice differentiable for allz, andlim, ., & [?j((jﬂ — 0. Then
asn — oo,

Pr (112%); zi — ly)a, < u) — exp(—e™")
uniformly in u, wherel, is given by F;(1,,) = 1/n, anda,, = nfz(l,).

In other words, the given conditions are sufficient to enshat with suitable normal-
ization the distribution function of the maximum will comge to a Gumble distribution
(exp(—e~™)). We will apply this result to analyze the throughput growith a centralized
scheduler. To do this, we will assume that the fading denfity:) satisfies the condition:

. d [Fg(h)
i i g = &)
This will be true for all common fading models, such as Ricead Rayleigh fading.
The next lemma shows that the set of fading distributionsctvisatisfy this condition
are nearly the same as those which have a well-behaved tail.

Lemma 8:If a fading distribution satisfies (21), then it has a welkbeed tail. Con-
versely, if a fading distribution has a well-behaved taitldhe limit in (21) exists, then
the limit will be zero.

5Note the optimal power allocation will be different in the centralized and distib systems.
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The proof is a simple consequence of L'Hospital’s rule.
Note that the sum throughput with a centralized schedulerbeawritten as
Sa(n) = EH(EIIIaX (PH,)).
To analyze this throughput, we will apply Lemma 7 to the randeariablesZ; =
R(PH;). The next lemma states that if the random variabftessatisfy condition (21),
then the random variables; will satisfy a similar condition.

Lemma 9:If the fading density,fx(h) satisfies (21), then the densifi;(z) of the
random variables/; = R(PH,) satisfies:

lim L {FZ(Z)} —0. (22)

z—00 dz
The proof is given in Appendix N.
Proposition 9: If the fading density satisfies (21), then(n) =< ééct(n).

The proof of this is given in Appendix O.

Under an average constraint, consider a centralized systegne each user transmits
a variable rate but uses a “flat” power allocation:d?, i.e. when a users is scheduled, its
transmission rate i&(nPH). Let 5. s1.:(n) denote the sum throughput of this system.
Using the same argument as in the proof of Proposition 9 we:hav

Corollary 3: If the fading density satisfies (21), thep(n) < égct,ﬂat(n).

Clearly, 5. fiat(n) < 54(n) and from Proposition 5, whe(y) is given by (2),
So(+,n) < 5¢(n). Thus from this corollary and Proposition 8, it follows that 11 (n) < 5.+(n)
and so,
Corollary 4: If the fading density satisfies (21), afity) is given by (2) thers;(n) < %Ect(n).
In other words, whemR() is given by (2), then under a long-term power constraint,
the ratio of the throughputs of the optimal centralized amstributed schemes again

converges td /e.

V. RANDOM ARRIVALS

In the previous sections we assumed that all nodes are albasidogged. In this
section, we relax this assumption and briefly examine a smmpbdel where packets
randomly arrive with total arrival ratd. Specifically, we consider an infinite user model,
where it is assumed that each new packet arrives to a new useBych a model is
reasonable for a system with a large number of users, eabhavgtnall arrival rate. We
still assume that the number of backlogged useis each slot is known. This is more
guestionable now that the number of backlogged users isngawyith time. Practically,
the backlog would have to be estimated using an algorithrh asdhe Pseudo-Bayesian
algorithm [7].
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We still consider an approach where users base their trasgmi on whether their
channel gain is above a threshald however, now we allow this threshold to depend
on the backlog. Specifically we assume that

—1/1
h’(n) _ {finizln ) for P_’€1<71L) < hmm (23)
FH (;) for FH (g) > Nmin.-
Here h,,.;, iIs @ minimum threshold above which the user will transmitareiiess of the
backlog?®

We consider a symmetric, fixed-rate model with a short-teoway constraint ofP.
Given thatn users are backlogged, each user will transmit at Riter’ (n)) if successful.
As n increases, the transmission rat¢Ph/(n)) will also increase. If all packets have a
fixed length ofL bits, then the time needed to transmit a packet i&(Ph'(n)), which
will decrease as increases. We consider a slotted-time model, where théHefgime-
slots vary with the backlog according to this relationsiipcket arrivals are assumed to
be independent in each time-slot with an expected arrival @a\L/R(Ph'(n)). In this
section, we still assume that the channel variation is mgl®ss between slots. Since
the slot sizes are variable, this may seem to be a questmradsumption. However
as discussed in [28], this may be reasonable for a fixed raen@he main idea is
that for a fixed-rate model, the key parameter is the proipalbilat the channel exceeds
the transmission threshold in each slot. For many channeleiacthe correlation in
this threshold crossing probability will increase with thlet length, but decrease with
the threshold level. Over a limited range these two effeats lzgalance out making the
i.i.d. assumption reasonable. A more detailed discusditimoassumption and extensions
to other channel models can be found in [28]; here, we simgdte this as an idealized
model to convey the basic ideas.

Given the above assumptions, we consider over what rangerigblarates, \, the
system is stable. The following proposition states thaR({#h/(n)) is unbounded (as
in the Rayleigh fading model), then the system will be stableany total arrival rate.
However, for high enough arrival rates this requires a fmkiely high diversity gain
and the underlying physical model becomes unrealistic.

Proposition 10: If R(Ph/(n)) is unbounded, then the infinite user, channel-aware ALOHA
system is stable for any total arrive rate

The proof is given in Appendix P. Figure 7 illustrates theibadea behind this result.
This figure shows both the total arrival rate and departute n@rmalized in units of
packets per time-slot, as a function of the backlog. Therpaters used in the figure
are A = 0.6 packets/second, = 1000bits/packets)¥ = 1kHz and thf;, = 1. For small
backlogs the normalized arrival rate is larger than the daparate, “and so the backlog
will tend to increase. Eventually, for high enough backloge arrival rate will drop

8For a fixed rate system, a threshdlg,, > 0 is needed for similar reasons as in the TDM system from Section IlI-
E.
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Fig. 7. Stability of the channel-aware ALOHA.

below the departure rate; the system will stabilize arouredfoint where these curves
cross. As the arrival rate increases, the system will st#béiround a larger backlog;
this is because more users are needed to provide the multiveesity gain necessary
to stabilize the system. The higher backlog results in aeladglay. This is illustrated

in Figure 8. This figure shows simulation results of the ddtaya system with a finite
number of user for various total arrival ratés,In the simulations, each user has a queue
and arriving packets are queued before transmission. Packeals are modeled as a
Poisson process. For each curve the total arrival rate isl fasethe number of users
varies. Notice that for a given arrival rate, the delay dases as the number of users
increase; this is due to the increased multiuser diversity.

We note that Proposition 10 does not imply that a system withi@ number of users
is stable for any arrival rate. For example, consider a ayst&h » users and symmetric
traffic. If the total arrival rate\ satisfies\ > 3¢(n), the system will be unstable. What
this result does say is that if any arrival rate is spread sscenough users, then the
system can be stabilized.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a distributed protocol, chaaware ALOHA, for ex-
ploiting multi-user diversity in a fading multiple accesBaninel without a centralized
controller. For a backlogged model, we characterized theutthput scaling for such a
system under both long-term and short-term power consstalime total throughput was
shown to scale at the same rate as in an optimal centralizgdmsywith an asymptotic
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Fig. 8. Average delay versus the number of users with Poisson larewa various arrival rates.

ratio of 1/e. Moreover, with sufficient users, the throughput of this raygh exceeds
that of a static TDM approach without contention. This shawat even with backlogged
users, such a contention-based approach may be useful d@mng fnvironment. We have
also shown that there is little advantage to be gained in susistem from allocating
transmission power and rate based on the channel statdlyFinathe random arrival

case, this ALOHA system was shown to be stable for any arratl in an infinite user
model, but at the expense of large backlogs.

As we have noted, in practice one may be able to implement sapkisticated random
access protocols as well as utilize more sophisticatediqdlylyer processing (i.e. to
enable multiuser reception). Such approaches will ndyuraprove the performance over
that obtained by channel aware ALOHA. However, we note thaeu a long-term power
constraint, our results suggest that any such techniquaaaimprove the order of the
asymptotic growth rate, but could increase the constant/ef This is because under
a long-term power constraint, we are comparing to the capaahieving scheduling
policy. Under a short-term power constraint, however, théeo could improve with
multi-user reception. This is because with a short-term ggoeonstraint a centralized
system that used joint decoding, will have a capacity thatesclike ©(log(n)) instead
of the ©(log(log(n))) achieved with scheduling, assuming Rayleigh fading.

In related work, [30], we have considered a splitting protdor this setting, which
can reduce the contention loss at the expense of an increaseerthead. We are also
considering extensions of this model to parallel channedeis as in an OFDM system.
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APPENDIXA
Proof of Proposition 1:The growth rate of

e P
sin)=(1-Y""R|-—= (24)
f ) ( n) <fF_1(l) fH(h)% dh)
with n depends on the behavior gﬁ@ h) dh. This quantity is upper-bounded
by
o 1 * 1
|, iy dn < / [ ——)
' (1) (1) w (3)
1
- 25
SRR =

where we have used thdf;(h) = —%F (h). Since R(v) is increasing iny, it follows
thats;(n) > (1 - 1)""" R (PnFy" (1)), and so

5¢(n) 1
A R (3) e (26)

Next, we lower boundfp_l(l) fu(h)3 dh. Since fy(h) has a well-behaved tail, for
H \n
Fy(h

' i (
f(h) > 5 (F58 4 fu(n)
Therefore, for large enough values nof

/OO fH(h)%dh> L/Oo <F12(2h) +foEh>) dh

Fr'(3) Fy'(3)

- (71) ()

Substituting this into (24) and using the monotonicity Bf-) yields that forn large
enough,

any § > 0, there exists & > 0, such that for allh > & < 0. It follows that for

all h > h,

5in) < (1= R((6+1)PnFy;" (1)) (27)
Next note that since? is convex, for anyy > 0,

R((6 +1)y) < R(y) +0vR (7)
< (0+1R(v),
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where the second step follows becaude) — yR'(y) > R(0) = 0. Combining this with
(27), we have for large enough

5pn) < (1= 1) 6+ DR (PnFy" (1)),
and so

. 5¢(n) . oyt 0+l
nh~>I£lo aE) < T}Lrgo(é +1)(1-4)"" = . (28)

Since,d can be arbitrarily small, from (26) and (28), it follows thgtn) < LR (PnFy" (1))

e
as desired. [ |
APPENDIXB

Proof of Lemma 2For eachn, let p(n) = @ so thata(n) will be the value ofa in
[0,n] that maximizes

a(l- %)”‘1 R(PF; (2)2). (29)
This is the product of two terms. The first, (1 — —)"71, is maximized by choosing
a = 1; the remaining term is decreasing in Therefore, for anyn, it must be that
a(n) < 1. To complete the proof, we show that farlarge enoughg(n) > &, for some
a > 0.
Sinceln(-) is monotonic,&(n) will also maximize
Z(n,a) :=1In (R (]5]:}}1 (%) g)) +In(a)+ (n—1)In (1 — %) )

Differentiating the first term on the right with respectdoyields
d __ /o n
o (7 (P (5)5))
CRPE D S[nf 1 N1 no e
“wen@H e\mwe) e G

where we have applied the inverse function theorerd:ts;;' (2) . Rearranging terms,

we have
d __ L /a\ "N
wn(r (P (3)7)
R’(w)x) (FH(y) ) <1>
~1 +1) (=),
( R(z) J \yfu(y) a
wherez = PF;' (2)2 andy = Fj;' (2). Note that as® — 0, thenz — oo and
y — oo. Since the asymptotic elasticity dt(v) is zero andfy(h) has a well-behaved

tail, it follows that for anyé € (0,1) anda € (0, 1), there existsV > 0, such that for
alln> N anda < a,

ol (R(PF (3)2) 2 -3 (4).
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Hence, for alln > N anda < a,
d 1-—

= Z(n,0) > (1 . (1 )

>(15)z (1_12).
4 7(n,a) >

And so, there must exist somec (0, @) such that for alh > N anda < &, .
0. Therefore, sincev(n) maximizesZ(n,«), it must be that for allh > N, a(n) > a.
|

3=

3R

APPENDIXC

Proof of Lemma 3By assumption?;' (1) is a positive and strictly decreasing function
on [0, 1]. Let

so that 7-.G(y) = —Fj'(y). Note that sincell is a non-negative random variable,
lim, o+ G(y) = EH. Likewise, let

1

Go(y) = /y v Fz'(ah) dh = a™! / F7'(2) dz,

ay

so that £ G*(y) = —Fy'(ay). In this case, we havem, o+ G*(y) = o 'EH.

Now, note that
o _ Yy
y Y Jay
> F'(ay)(1 — o),

where the last step follows becauBg'(h) is decreasing. Therefore,

yli)r(l;l+ alG (y)y_ G(y) Z yli%a F§1<&y)(1 o Oé) = 00.

Notice that agy — 07, both aG*(y) — G(y) — 0 andy — 0. Hence, L'Hospital’s rule
can be applied, yielding

lim aG(y) — Gy) = lim —aF5;' (ay) + F5'(y).

y—07F Y y—0+

Combining the above observations, we have that

lim —aFy; ' (ay) + Fy'(y) = oo.

y—07T
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Therefore, for anyM > 0, wheny is small enough—aFy' (ay) + F5'(y) > M, or

equivalently, -
Fy'lay) 1 (1 _ L)
Fp'ly) « Fp'(y))

Taking limits asy — 0T, the desired results follows. [

APPENDIXD
Proof of Proposition 2:;From Lemma 1 we have that

(" (n), m) = mip(n) (1 — p(n))"* R <P~7

whereji(n) is given by (9). Likewises;(n) = (1 — 1)""' R (PnF;* (1)) . Therefore,
it is sufficient to show that
- - n— _ 2 (p(n B e o
o) (1= )~ (PP = (12 2y R (P! (3)).

p(n)
From the definition ofp(n) it follows that

np(n) (1= p(n))"" R (PEEe)
lim inf 1

T () TR (PR (1)

1
n

Also note that since = % maximizesnp(1 — p)"*~1, then

lim sup 20— p)" "
N

n

To complete the proof, we show that
R (ngf(p‘(n)))
lim sup 7 (ﬁnﬁp—(r)(l)) <1
n—oo 7
First note that since?(-) is concave,

o Fir () —
n(PEEY) < m(en ()

(30)
R (PnFy' (1)) P (

Using the mean value theorem, there exists, & [p(n), +] such that

M_nﬁfl(l):i Fy'(p)
dp p

= H n
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_ Py (1 + M) (L~ §(n))

x% yan(yn) "
wherey, = F;'(v,). Let Z, .= 1 + f(( and note that as — oo, Z,, — 1, since
fu has a well- behaved tail. Substltutlng thls into (30), weehav
_
p(n) (31)

+R’<I5nF ())pH ) (%—ﬁ(n)).

From Lemma 2, fom large enoughg,, > p(n) % Therefore, for large enough, the
second term on the right-hand side of (31) is upperbounded by

R'(pnF; <i ( _ ) (1;25‘).

Substituting this bound into (31), dividing bi (PnFy;" (1)), and taking limits yields

R (pF;(ﬁ(n)))
lim sup o)
n—oc R (PnFy' (1))

(5 () (5

=1.

The last step follows from Lemma 3 and the fact tRét/) has zero asymptotic elasticity.
|

APPENDIXE

Proof of Lemma 4We use a similar argument as in Appendix B; the key difference
here is thatR(-) has a different argument. In this case, for eachet p*(n) = @ SO
that &(n) will be the value ofa in [0, n] which maximizes

a(l1—2)"""R(PF;(2)). (32)

By the same argument as in Appendix B, for anyt must be thabz( ) < 1. To complete
the proof, we show that for large enoughg(n) > &, for somea > 0. We do this by
showing that the derivative of

Z(n,a) =In (R (pr}l (2))) +In(a) + (n—1)In (1 — 2)
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is strictly positive forn large enough and small enough. Differentiating the first term
on the right with respect ta using the inverse function and rearranging terms, we have

L (r(rEy (2))) = (Rﬁé)f) (£Z<(y;)) (é)

wherez = PF;' (2) andy = Fy;' (2). As ¢ — 0, thenz — oo andy — oco. Since

n

the asymptotic elasticity oR2(v) is zero andfy(h) has a well-behaved tall, it follows
that for anys € (0,1) anda € (0, 1), there exists @V > 0 such that for alln > N and
a<a, Lin(R(PF; (2)2)) > =6 (2). The remainder of the proof is exactly the

same as in Appendix B. [ |

APPENDIXF

Proof of Proposition 3This proof follows a similar argument as in Appendix D. Since
p*(n) is optimal, we clearly have

lim inf 85(p*(n),n) — lim inf np*(n)(1 —p*(n))" 'R (PFy'(p*(n))) -1

o 57 (n) o (L-LDIR(PEG(Y)

Also, as in Appendix D,

* 1 — p* n—1
lim sup 7 ("()( lfnf?)) <1
n—00 1—-=

We complete the proof by showing that

b e FPF 07 (1))
e R(PF; (1)

<1
Since R(+) is concave,
R(PFg (0" (n))) < R (PFg'(4)) + R (PF7" (1) P (Fi' (0" (n) = F'(2)) . (39)

Using the mean value theorem, there exists,a [p*(n), +] such that
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From Lemma 4, there existsca> 0 such that fom large enoughi > z,, > p(n) > 2.
Therefore, for large enough, from (34) we have

R (PF;'(p*(n))) R (PF;'(%) PFy'(2) Fry(z,
R(PE(D) ~ " < R(PFg'(}) ) (fH (2n) z)

(7y) (G)

wherez, = F;'(z,). SinceR(-) has zero asymptotic elasticitf; (k) has a well-behaved
tail, and using Lemma 3, it can be seen that the right-hanel aid35) converges to 1
asn — oo, yielding the desired result. [ |

(35)

APPENDIXG

Proof of Proposition 4From their definitions it can be seen that showdngp,,, n) < 3,(p,, n)
is equivalent to showing that

. - f;l‘gl(pn)v f_H(h)R(Ph) dh
no R(PFy' (py))
Clearly, theliminf of this ratio is greater than or equal o So, the proof will be

complete by showing that thém sup of this ratio is no greater than one.
Since R(-) is concave, for all. andp,,,

R(Ph) < R(PFy"(pn)) + R'(PFy' (pa)) (P(h = Fy'(pa))) -
It follows that

o Jror Fu(h)R(Ph) dh _ . RO ®)) 5 /O@

(h — Fy'(pa)) fu () dh

R(PFy" (pn)) T paR(PFL N (pa)) Ff;l(m
R’(Pxn Pe,\ ([ fu(h)(h = x,) dh

wherez,, = F;;'(p,). The last term on the right in (36) is the product of two terifise
first term goes to zero as — oo becauseR(-) has zero asymptotic elasticity. We show
that the second term also goes to zermas oo. This term can be written as

[ fuh)(h =) dh [ fu()hdh
anH(%) N anH(xn)

Since H has a finite mean, as — oo, both [ fy(h)hdh and z,, Fy(z,) must go to
zero. Hence, L’Hospltals rule can be applled yielding,

lim "+ = lm =
=1

(37)
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The last step follows sincéy (h) has a well-behaved tail. Substituting this into (37), the
desired result follows. [

APPENDIXH
Proof of Proposition 5:From Lemma 1, it follows that foRR(v) given by (2),

— — n— PF?l p’I’L
5¢(pnsm) Znpn(1 — pn) Hog (%) )

Likewise, forn large enoughs,(p,n) is given by (14). Hence, it is sufficient to show

that
- fF log( )dh
lim 2" o =1,
n—oo 10g < n(pn)>

where )\, is given by (13). Since the optimal variable rate policy vélvays have a
greater throughput than the corresponding fixed rate pdatidgliows that thelim inf of
this ratio must be no less than 1. To complete the proof, wevghat thelim sup of
this ratio is no greater than 1.

Using the concavity ofog(-), it can be shown that

00 PRt n
i Vs () 0 (- )
log (LF%( ")> B PF (pn) log <7F n(p")>

We next show that the second term on the right goes to zero as co. Using the
definition of \, , this term can be written as

PF (pn
Sy fr () (A — (o) )) dh
PFy" (pa)log (L(p))
o (38)
<fF_1 hdh) P+fF_1 pn %fH(h)dh 1
pnF (pn) 10g ( 7F71(Pn)) 10g (pFiL(Pn)> .
As n — oo, the quantity
Jrio h)h dh B
pnFH (pn)

as shown in Appendix G. It can be seen that the other terms emight-hand side of
(38) also go to zero as — oo. Combining these observations, the desired result follows.
|
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APPENDIXI
Proof of Lemma 5First note that iffs, (k) and fy,(h) have similar tails, then clearly,

Fglp) 1
p—0+ Fg;(p) e
Combining this with Lemma 3, it follows that for any > 0, there exists some constant
¢ > 0 such that, L
lim sup M
p—ot I, 1(ap)

Since R(+) is concave, using a first order Taylor expansion aroE@EH (ap) we have,
R(AF (), R(PoF,(ap) BFy, (ap) ( PiFy () 1)

< Co. (39)

R(PyFy) (ap)) R(PyFp; (ap)) Py (ap)
From the asymptotic elasticity aR(-) and (39), it follows that
R(PLFy ! (p))
lim sup

p—0T R(PZF ( p)) B
Switching the roles oﬂ%Fgﬁ (p) and P F o !(ap), the same result follows. Therefore,
R(PFy ! (p))
11m =
=0t R(PyFyl(ap))
as desired. ]

APPENDIXJ

Proof of Lemma 6First we show thaif;(h) has a well-behaved tail. From its defini-
tion, it follows thatf; (k) = fu, (h) Fr,(h)+Fu, (h) fu,(h), andFg(h) = Fg, (h) Fg,(h)+
Fy,(h). Using these two expressions, we have

_ Fy. (h) Fr,(h)

Fg(h) _ o wmwtm®) ity ()
h—o00 hf* (h) - h—o0 F h F h ng(h) ng(h)F h F h
Hz( )+ Hl( ) 1y (h) Fr, () H2( )+ Hl( )

=0,

where the last step follows singg, (k) and f, (k) have similar tails (and therefore both
have well-behaved tails). Hencg; (k) has a well-behaved tail.
Finally, note that

~—

Jim ffi(h) Jim Fpy (h) + Fay (b )le(h

=14+1/c,
where we have again used thét, (h) and fg,(h) have similar tails. Thereforefy, (h)
and f5(h) have similar tails. The same argument can be appliedffoth). [

~—
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APPENDIXK

Proof of Proposition 6:Let P,,., = max(P;, P,). Consider a symmetric model with
(14 aB)n userd’, where each user has a short-term power constraift,of and fading
distribution f 5 (h), as defined in Lemma 6. If each user transmits with probgilitvith
a fixed-rate, then the sum throughput for this symmetric rhisde

55(.m) = (1+ aB)np(1 = p) 1R (PP () (40)

First, we show that for alh and p, 5;2)(19, n) < 53(p,n), i.e. the throughput of this
symmetric system upper bounds the throughput of the asyrimnsgstem with the same
parameters. To see this, first note that by definition ifoe 1,2, Fjz(h) > Fg,(h).
Therefore, since the complementary distribution is d¥yridecreasing, we have far=
1,2, F.'(p) = Fy'(p), for anyp € [0,1]. It follows that,

R(Pra:F(p)) 2 R(PiFy ! (p), i = 1,2.

H

Using this we have,

5P (p,n) < [np(1 = p)" (1 = ap)™ + aBnp(1 — p)"(1 — ap)*" '] R(Puac F5' (p))
< (14 af)np(l — p)(“am”‘lR(PmaxF;(p))
= 5;(2% n)

Here we have used that sinee> 1 and0 < p < 1, then(1 — p)* > 1 — ap.
Let p(n) be the optimal transmission probability for the symmetgstem, i.e. the
probability that maximizes;(p,n) in (40). For alln, it follows that

5P (ko) < 570" (0),m) < 5507 (n),m) < 55(5(n), ).
Hence, it is sufficient to prove thaf)(m,n)iéjc(ﬁ(n),n). Furthermore, from
Lemma 6,f(h) has a well-behaved tail and so Proposition 3 applies§}@(n), n) < 53 (qragy: 1)-
Therefore, it is sufficient to show théf)(m,n) =5z - From Lemma 6,
fg(h) and fg, (k) have similar tails fori = 1,2. Thus, Lemma 5 applies. Using this, it
can be shown that

~(2) ( 1 )
57 ===,
lim f (14+apB)n 1

s 1 o
5t ((1_+aﬁ)n’n>

as desired. ]

Y
n—oo

10Of course, for some values of 1+ af may not be an integer; however, this does not effect our analysis.
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APPENDIX L
Proof of Proposition 7:Note that

$(2,n) =1 - LH""Ey (R(PH)|H > F;'(2)) .
Thus, the desired result is equivalent to showing that
En (R(PH)|H > F'(3)) > Ett,, (R(PHiazn)) (41)

where H,,.., = max;—__,{H;}. For this, we use the following stochastic ordering
result [31]: for two random variablesY and Y, if Fx(a) > Fy(a) for all a, then
E[g(X)] > E[g(Y)] for all increasing functiong.

Let X be the channel gai®/ conditioned on a transmission attempt occurring in the
ALOHA system, so that for any > F;'(1),

_ Fy(h
Pr(X > h) =Pr(H > h|H > F;' (1) = =——= ,
" Fr(Fp'(3)
and so
_ _—
Fy(h) = {nFH(h), for all | h>Fg(5),
1, otherwise
Let Y = Hpuzn, SO thatFy(h) = 1 — (1 — Fy(h))". For all h < Fj;' (%), clearly
Fy(h) < Fx(h) = 1. For all h > F;'(%), using thatnz > 1 — (1 — z)" for all
0 <z <1, we haveFx(h) > Fy(h). By assumptionR(y) is monotonically increasing;
thus, applying the above result, witlix) = R(Px), (41) follows. [ |
APPENDIXM

Proof of Proposition 8:The difficulty here, as opposed to proof of Prop. 7, is that
with a long-term power constraint the centralized and thstributed systems may use
different power allocations. LeP*(h) denote the optimal centralized power allocation
that each user employs as a function of its own channel gaig $ymmetric system,
this power allocation will satisfy

AMPWVAMO—ENM"Wh:R

where fi;(h)(1 — Fy(h))"! represents the probability that a user has the best channel
gain and its channel gain 82 The optimal sum throughput can then be written as

sam=nAmMPMMVAMU—ENm"Wh (42)

8Note whenR(7v) is given by (2), then each user will use a water-filling power allocationm dve channel with
distribution fg (h)(1 — Fx(h))"~".
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If the users in the distributed system use power allocako(h) when they transmit,
then by a similar argument as in Appendix L it can be shown that

[ Prmfuan> P
Fr'(3)

i.e., this power allocation is not feasible in the distrdmitsystem. Instead we consider
a sub-optimal distributed system, where for every chanra@h ggach user transmits
probabilistically with probability(1 — F (k)" , using powerP*(h). This distributed
system will meet the average power constraint, and each westill transmit with
probability

p< / " Fa(h) (1 — Fy() ' dh = 1,

where equality would hold i?*(h) > 0 for all h. The throughput of this system is thus
lower bounded by

S,(n) > n (1 1) /0 T R(PH ()R (B — Far(h))", (43)

Clearly, this system will have a lower throughput than in aesyswhere the users transmit
only when their channels exceefdl;'(1) and use the optimal power allocation, i.e.
$v(x,n) > 5,(n). This follows because the two systems will have the samegnibity of
success, but the second system will have a higher throug¥tpen successful. Combining
this with (42) and (43), the desired results follows. [ |

APPENDIXN

Proof of lemma 9:The complementary distribution function & = R(PH) is given
by

-1
Hence, using the inverse function theorem,
B R™1(2) 1
4= 11 (52 ey )

Next note that

d [ﬁxz)] BB
dz | f2(2) (fz(2))
= —1—A(2).

Therefore, to prove the lemma it is sufficient to show that, .., A(z) = —1.
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Using (44) and (45)A(z) can be expressed as

(25 [0 (%32) et
A(Z): P d P PR'(R=1(2)) '

2
R—1(2) 1
(fH( P )PR%R*l(z)))

Changing variables tg = R and simplifying we have:

To complete the proof we show thhtn, .., B(y) = —1 andlim,_.., C(y) = 0.
First consider theB(y) term. Note that

i lFH(y)
fu(y)

By assumption, the left-hand side of this equality approaaeeo; hencém, ... B(y) =
—1, as desired.
Next, consider the’'(y) term. Note that

i) (i)

| =~ @w .

e = (
From Lemma 8,y (h) has a well-behaved tail, and &on;, ... - W (( )) = 0. Therefore, it
is sufficient to show that% is bounded ay — oo. Sincelim,_.., R(y) = oo, then
lim, .o R'(7)7? = oo. Otherwise,R(v) = [ R'(z) dz would be bounded. It follows that
for large enoughy, — log(R'(v)7?) < 0 Equwalently, for large enough, %)()) < 2.
And so,
. /
iy —108(F'(7))

<2,
y—oo  log(7)

assuming the limit exists. Applying L'Hospital’s rule toishexpression, we have that

i —108( () _ —R, (M)
7—oo  log(7) 1= R/(7)

Combining the above observations, it follows thaf 2> < 2 asy — oo, and so
lim, .., C(Y) = 0 as desired. [
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APPENDIXO

Proof of Proposition 9:Since fy (h) satisfies (21), from Lemma ¥ (z) will satisfy
(22). Using this and the assumed propertiesR¢f) and fx (h), it can be seen that the
random variables;, = R(PHl-) will satisfy the assumptions of Lemma 7.

Let Z,00n = max;—1,._, Z;. From Lemma 7, as — oo,

~~~~~

Pr ((Zmazn — ln)an, < u) — exp(e™™)
uniformly in u. Herel,, = R(PFy;' (1)) and

. 1
Gp, :an(ZN) = JjH(y ) D DD )
Fu(yn) PR (Py,)
wherey,, := F;;'(1).
It follows that asn — oo,
E ((Zmazn — ln)an) — 1. (46)

Note that _ L
1 _ Fu(y.) R(Py.)Pyn
lnan fH<yn)yn R(Pyn)
Therefore, using the asymptotic elasticity Bfy) and thatf;(h) has a well-behaved
tail, we have thatim,, .., -~ = 0. Multiplying both sides of (46) by, it follows

that E(Z
hm ( mam,n)

n— oo ln

Equivalently,s..(n) = R(PF;'(2)). Comparing this to (8), the desired result follovils.

= 1.

APPENDIXP

Proof of Proposition 10For k = 1,2,..., let n(k) denote the backlog at the start of
the kth time-slot. Given the memoryless assumption(k)} will be a Markov chain. To
show that the system is stable, it is sufficient to show theviohg drift condition[7]:
there exists somé& > 0, N > 0 such that

E(n(k+1) = n(k)[n(k) =n) < =D, (47)
for all n > N.

Given thatn(t) = n, each user will transmit with probability/» in each slot, therefore
the departure rate in packets per time-slotlis- )”‘1. The arrival rate in packets per
time-slot isA(n) = AL/R(PH (n)). Thus we have

1
E(n(k+1) —n(k)n(k) =n) = —(1 — 5)"71 + A(n). (48)
As n approaches to infinityA(n) decreases to 0, whilél — 1)~ approaches td/e

Therefore for any) < 1/e, an N can be found such that (47) is satisfied with= 1 c— 0,
and so the system is stabl@
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