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Abstract

In wireless fading channels, multiuser diversity can be exploited by scheduling users so
that they transmit when their channel conditions are favorable. This leads to a sum throughput
that increases with the number of users and, in certain cases, achieves capacity. However, such
scheduling requires global knowledge of every user’s channel gain, which may be difficult to
obtain in some situations. This paper addresses contention-based protocols for exploiting mul-
tiuser diversity with only local channel knowledge. A variation of the classic ALOHA protocol
is given in which users attempt to exploit multi-user diversity gains, but suffer contention losses
due to the distributed channel knowledge. We characterize the growth rate of the sum throughput
for this protocol in a backlogged system under both short-term and long-term average power
constraints. A simple “fixed-rate” system is shown to be asymptotically optimal and to achieve
the same growth rate as in a system with a centralized scheduler. Moreover, asymptotically,
the fraction of throughput lost due to contention is shown tobe 1/e. Also, in a system with
random arrivals and an infinite user population, a variationof this ALOHA protocol is shown
to be stable for any total arrival rate, given that users can estimate the backlog.

I. I NTRODUCTION

In a multi-user fading channel, different users experiencepeaks in their channel quality
at different times; this effect is calledmulti-user diversity[19]. Multi-user diversity can
be exploited by scheduling users to transmit during the times when they have favorable
channel conditions. The more users present, the more likelyit is that one user has a
very good channel at any given time; hence, the total throughput of such a system tends
to increase with the number of users. Multiuser diversity has its roots in the work of
Knopp and Humblet [19], where they present a power control scheme for maximizing
the capacity of the uplink in a wireless network, modeled as aGaussian multiple-access
channel with frequency flat fading. It is shown in [19] that the sum capacity of this
channel is achieved by scheduling only the user with the bestchannel to transmit at any
time (see also [33]). Similar results hold for a parallel Gaussian broadcast channel [34].
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Multiuser diversity underlies much of the recent work on “opportunistic” or “channel
aware” wireless scheduling such as [3], [22], [23], [38], [37], as well as several recent
systems such as Qualcomm’s High Data Rate (HDR) architecture (CDMA 1xEV-DO)
[4], [43].

Our focus in this paper is on distributed approaches that exploit multiuser diversity.
As in [19], we consider a multiple-access model where a groupof users all communicate
to a single receiver (e.g. a base station or access point). The approach in [19] requires a
centralized scheduler with knowledge of each user’s channel state information (CSI). This
could be gained by having the each user transmit a pilot signal to the base station; each
user’s channel gain would then be estimated and a scheduler at the base station would tell
the user with the best channel to transmit. More precisely, assume that each user sends an
orthogonal pilot signal to the base-station for the purposeof channel estimation and that
each pilot requiresKp degrees of freedom, where the length of a pilot signal depends on
the amount of training needed for channel estimation and anyadditional overhead needed
per transmission. For a given bandwidth ofW Hz, this implies that each additional user
requires approximatelyTp ≡ Kp/(2W ) additional seconds of overhead, and so in a
system withN users the total overhead will be approximatelyNTp + Tc, whereTc is
the delay required for the base station to signal which user should transmit.1 This is
illustrated in Fig. 1(a) for a case where the pilot signals are transmitted orthogonally in
time. To effectively exploit multiuser diversity, the total overhead should be less than the
channel’s coherence time or else the estimated channel gains would no longer be relevant.
It is clear that with sufficiently many users this may not be satisfied. For a given number
of users, whether or not this overhead is significant will depend on the coherence time, the
bandwidth, and the signal-to-noise ratio (which will effect Tp).2 In particular in systems
with many users (for example, the “reachback” scenario in a dense sensor network [2]),
the overhead required for such a centralized approach may beprohibitive.

Instead of a centralized approach, we consider a case where each user has knowledge
of its own fading level, but no knowledge of the fading levelsof the other users in the
cell. As shown in Fig. 1(b), thisdistributed CSImay be acquired by having the base-
station periodically broadcast a pilot signal, which each user uses to estimate its channel.
This requires that reciprocity holds between the downlink and uplink channels, e.g., this
can hold in a time-division duplex (TDD) system, assuming that the variation in the
channel gains is due to multi-path fading and not to other-cell interference. The overhead
required for this approach does not increase with the numberof users; the price for this
is that each user must now decide when to transmit without global channel knowledge.
To address this, we propose a simple variation of the classicslotted ALOHA protocol
[1], [7], which we call channel-aware ALOHA[28], [29]. In networking, a key reason

1Also note thatTc will increase logarithmically with the maximum number of users the system is designed to
accommodate, due to the overhead needed to identify each user.

2For example, in multi-carrier systems the overhead required to estimate thechannel condition in each narrow-band
carrier quickly becomes excessive.
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Fig. 1. An example of the overhead required for centralized (a.) and distributed (b.) channel measurement.

for using contention-based protocols, such as ALOHA, is because with bursty sources,
the overhead in determining which source has traffic to send becomes prohibitive. Here,
instead we use this protocol to compensate for the overhead in learning the channel
information. Indeed, our results suggest that even withoutbursty arrivals, a contention-
based protocol may be useful in this setting.

Multiaccess channels have a long history of research from both the information theory
and networking communities; however, as pointed out in [14], these two communities
often use very different models and approaches. In this paper, we borrow elements from
both; we consider a “collision model” for the underlying channel as is often used in
networking; given a successful transmission, we assume that the user’s rate can approach
the capacity of the underlying channel within a time-slot. This is reasonable when
there are enough degrees of freedom available to use sophisticated codes. In this way
information theoretic (capacity) results provide a usefulabstraction of the underlying
channel within a time-slot. This type of approach has been increasingly used to study
scheduling and various queue control problems, often motivated by wireless applications
(e.g. [5], [6], [8], [39]).

From an information theoretic perspective, related modelswith this type of distributed
CSI have been studied in [17], [32], [36] for “distributed power control” in multiple-
access channels.3 These papers consider the expected sum mutual information at the
receiver; transmitting at this rate with distributed CSI requires coding over many time-
slots to average over the joint fading process. Here, we focus on a model where there is
no coding over multiple time-slots. Also within each time-slot we assume that each user
transmits a single codeword and single user decoding is used. This precludes approaches
as in [10], [25], [26], which employ ideas from multiuser information theory (i.e., rate-

3In CDMA systems distributed power control has also been considered (e.g. [12]); in these systems, the distributed
knowledge is typically the received signal-to-interference plus noise ratio(SINR) instead of the channel gain.
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splitting and superposition coding) to recover information when collisions occur. These
constraints could arise, for example, due to delay or complexity concerns. We emphasize
that the basic ideas considered here can clearly be extendedto these more sophisticated
systems. From a random access perspective, distributed CSI has been considered in [2]
for a ALOHA model with multi-packet reception [15], [41]. In[2], the CSI affects the
reception probability of the transmitted packets, while the transmission rate per packet is
fixed. Here, we use a simple collision model without multiuser reception or any power
capture effects [24], [21]. Again, our basic ideas could be extended to such settings.
Without capture, ALOHA with distributed CSI has been addressed in [40], which builds
on the conference version of this paper [28] and considers stability issues. A carrier
sensing random access protocol based on distributed CSI is given in [42] for optimizing
the energy efficiency in a sensor network.

Our focus is on characterizing how the throughput of the channel aware ALOHA
protocol scales as the size of the network increases. We primarily consider a backlogged
or saturated system withn users, where each user always has data to send. Our basic
model is described in the next section. In this setting, we show that this contention-based
system can still exploit multiuser diversity and has a sum throughput that increases with
n. In Section III, the rate at which this throughput is increasing as well as the first order
constants are given under both long-term and short-term power constraints, for a broad
class of fading distributions. It is also demonstrated thata simple “fixed-rate” policy can
achieve the optimal growth rate. In Section IV, this distributed approach is compared to
an optimal centralized system. We prove that the throughputof both systems increases at
the same rate. Asymptotically, the ratio of the throughput of the channel-aware ALOHA
to the throughput with a centralized scheduler is shown to be1/e, the same as the well-
known ratio achieved by a standard slotted ALOHA system in anunfaded channel. This
can be interpreted as saying that the only loss due to distributed channel knowledge is
the loss due to random access for the channel. For a finite number of users, it is shown
that the loss in throughput due to contention when fading is present is less than the loss
in a channel without fading. In other words, lack of centralized control is less harmful
in a fading environment. Finally, in Section V, we consider avariation of the ALOHA
protocol for random arrivals. For an infinite user Rayleigh fading model, it is shown that
the channel-aware ALOHA is stable for any total arrival rate. This stability is achieved by
leveraging the increasing multiuser diversity as the number of backlogged users increases.

II. M ODEL DESCRIPTION

We consider a multiple access model withn users all communicating to a single
receiver over a common bandwidth ofWHz. The channel between each user and the
receiver is modeled as a frequency-flat fading channel with additive white Gaussian
noise. Specifically, at each timet, the received signaly(t) is given by

y(t) =
n

∑

i=1

√

Hi(t)xi(t) + z(t), (1)
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wherexi(t) and Hi(t) are the transmitted signal and channel gain for theith user, and
z(t) is additive white Gaussian noise with power spectral density N0/2. The sequence
of channel gains,H(t) = (H1(t), . . . , Hn(t)) is modeled as a block-fading process [27],
so that fork = 1, 2, . . ., H(t) = Hk ≡ (H1,k, . . . , Hn,k) for all t ∈ [kT, (k + 1)T ),
whereT is the length of each time-slot. Between time-slots,Hk changes randomly. Each
component ofHk is independent, i.e. each user has independent fading. For simplicity,
we focus on the case where{Hk}

∞
k=1 is an i.i.d. sequence of random vectors and each

componentHi,k has a probability density denoted byfHi
(h). For example, in the case of

Rayleigh fading,fHi
(h) = 1

h0
e
− h

h0 , whereh0 = E(Hi,k). Much of the following analysis
also applies when for eachi, {Hi,k}

∞
k=1 is an arbitrary stationary ergodic process, in

which casefHi
(h) can be interpreted as the steady-state distribution. However, when the

channel has memory, this memory can be exploited to improve the performance over
the approaches considered here, e.g., see [30]. We assume that E(Hi,k) < ∞ and that
fHi

(h) > 0 for all h > 0 and is differentiable, so that the corresponding distribution
function FHi

(h) is strictly increasing and twice differentiable. We mainlyaddress the
case where the fading statistics are the same for each user, i.e. for each slotk, {Hi,k}

n
i=1

are i.i.d.4 In this case, we denotefHi
(h) by fH(h) for all i. Asymmetric models, where

the fading statistics vary across users, are discussed in Section III-D.
We assume that each user has perfect distributed CSI, i.e., atthe start of thekth time-

slot, each useri knows Hi,k but not Hj,k for all j 6= i. We also assume that each user
knows the distribution of its own channel gain; this is a morequestionable assumption. In
practice adaptive schemes which attempt to estimate the channel distributions from past
observations would be needed. We briefly discuss one such approach that is suggested by
our work in Section III. Given this distributed channel knowledge, letPi,k(Hi,k) denote the
transmission power of useri during time-slotk as a function of the user’s channel gain.
We assume that each transmitteri is subject to one of the following power constraints
(see e.g. [9]):

• Long-term average power constraint:EHi
Pi(Hi) ≤ P̄ .

• Short-term maximum power constraint:Pi(Hi) ≤ P̌ for all Hi.
Here, we have dropped the time-indexk to simplify notation. A long-term power con-
straint limits the total power used over many time-slots, while a short-term constraint
limits the power used in each time-slot. The former may reflect constraints due to limited
available energy, while the later may reflect regulatory constraints.

In [19], it is shown that givenHk, the sum capacity of (1) in the symmetric case
under a long-term average power constraint is achieved by setting Pi(Hi) > 0 only for
some useri such thatHi ≥ Hj for all j; the exact value ofPi(Hi) is determined by
using a water-filling power allocation. In this case, duringeach time-slot only one user

4We note that as the the number of users in the network increases, this i.i.d.assumption becomes more questionable.
If the spatial area of the network increases with the users, then differences in the channel statistics due to path loss
will become more pronounced. On the other hand, if the users are confined to a given area, then as the number of
users increases, the correlation between neighboring users channelswill increase.
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is transmitting.5 We note that under a short-term power constraint the sum capacity is
achieved if every user transmits in each time-slot with fullpower. However, in this case,
a centralized controller needs to knowHk to determine the resulting rates that can be
achieved during each time-slot (i.e. the resulting capacity region). Also, achieving the sum
capacity will require successive interference cancellation or some other type of multi-user
decoding. If one restricts themselves to approaches where at most one user transmits in
a slot, then under a short-term power constraint, the sum throughput is again clearly
maximized by having the user with the best channel transmit in each slot. Under both
a short-term or long-term average power constraint the sum capacity will increase with
the number of users, due to the increased multi-user diversity gain.

In the distributed case, we assume that at most one user can successfully transmit in
each time-slot. Given that only useri transmits, letR(γi) be a function that indicates
the maximum rate at which the user can reliably transmit as a function of the received
signal-to-noise ratio (SNR),γi ≡

HiPi(Hi)
N0W

. To simplify notation, we normalizeN0W = 1,
so thatγi = HiPi(Hi). We assume thatR(γ) is an increasing, twice differentiable and
strictly concave function ofγ with R(0) = 0, R(∞) = ∞, R′(∞) = 0, andR′(γ) > 0
for all γ ∈ [0,∞).6 We also assume thatR(γ) haszero asymptotic elasticity7 meaning
that

lim sup
γ→∞

R′(γ)γ

R(γ)
= 0.

This condition requires that the marginal change in rate permarginal change in SNR is
asymptotically going to zero. The main example we consider is

R(γi) = log(1 + γi), (2)

which models the case where a user can transmit at rates approaching the Shannon
capacity of (1) in each time-slot. This satisfies the preceding assumptions. Other functions,
R(γ), could also be used, for example, to model the achievable rate under a specific adap-
tive modulation and coding scheme; for most common schemes,the resultingR(γ) will
also satisfy these assumptions.8 When useri transmits, it sends a single packet ofR(γi)T
bits. This packet may be encoded, but no coding is done between consecutive packets. If
multiple users transmit during a time-slot, a collision occurs and no data is received. As in
the standard ALOHA model, after each time-slot the users receive instantaneous(0, 1, e)
feedback [7] indicating whether a slot was idle, contained asuccessful transmission or
contained a collision.9 In most practical systems, additional feedback will be available to

5In the asymmetric case, the optimal power allocation is also to allow only one user to transmit; however, in this
case it will be the user with the largest weighted channel gain, where the weights depend on the channel distribution.

6We use the standard notationf ′(x) to denote the derivative off(x) with respect to its argument.
7We borrow this terminology from economics, see e.g. [20]
8In particular, for any such function, as long asR(γ) asymptotically grows no faster than logarithmically withγ,

then it will satisfy the zero asymptotic elasticity condition.
9In terms of the throughput of the backlogged system studied in the next section, it does not matter if the feedback

is instantaneous or delayed.
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the users, allowing for more elaborate protocols to be employed. Again, here we chose
to illustrate the basic ideas in the simplest setting.

Given onlyHi, each useri must decide in which slots to transmit and how much power
to use when it transmits. For this purpose, we consider the following class ofchannel
aware ALOHAprotocols. In standard ALOHA, each backlogged user independently sends
a packet in every slot with probabilityp. With channel aware ALOHA, each useri bases
its transmission probability on its available CSI,Hi. Specifically, for a given thresholdh′

i,
each useri transmits with probability one whenHi > h′

i, and otherwise sends nothing.
Thus, useri will transmit with probabilitypi = F̄Hi

(h′
i), whereF̄Hi

(h) ≡ 1 − FHi
(h) is

the complimentary distribution function ofHi, which by assumption is strictly decreasing
in h. The average throughput of this protocol when alln users are always backlogged is
given by

s(p, n) =
∑

i

(

pi

∏

j 6=i

(1 − pj)EHi

{

R(P (Hi)
∣

∣Hi > F̄−1
Hi

(pi)
}

)

, (3)

where p = (p1, . . . , pn) denotes the vector of transmission probabilities andF̄−1
Hi

(·)
denotes the inverse function of̄FHi

(·). Each user’s power allocation must also satisfy
the given power constraint.

III. T HROUGHPUTSCALING FOR BACKLOGGED SYSTEMS

In this section, we analyze the throughput scaling of channel aware ALOHA protocols
in a backlogged system, where alln users always have data to send. We emphasize that the
number of backlogged users,n, is known by all users in the system. This is a reasonable
assumption when the backlog is constant over a long time-scale, as assumed here. Given
the backlog, first, we consider a heuristic “fixed-rate” protocol for a symmetric system,
where each user transmits at a fixed rate (for a given number ofusers) with probability
p = 1

n
. We characterize the order at which the throughput of this system increases withn.

We then show that asymptotically this choice of probabilityis optimal for any fixed-rate
system and, furthermore, such a fixed-rate system is asymptotically optimal within the
larger class of variable-rate systems. Both long-term and short-term power constraints
are considered. Systems with heterogeneous users will alsobe discussed, and finally, the
performance of the channel aware ALOHA protocol will be compared with several other
approaches.

A. Fixed-rate algorithm,p = 1
n
.

To begin, we focus on a symmetric, backlogged system with a long-term average power
constraint. Consider a channel aware ALOHA protocol, where,for a given number of
usersn, every user has the same transmission probabilityp, and whenever a user transmits
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it does so at a fixed rate,Rf , which requires a fixed received power ofPf = R−1(Rf ).10

Each user will then simply invert the channel when they transmit and use powerP (h) =
Pf/h. To satisfy the long-term power constraint,p must satisfy

∫ ∞

F̄−1

H
(p)

fH(h)
Pf

h
dh ≤ P , (4)

where F̄−1
H (p) is the transmission threshold used by each user. It follows that givenp,

the maximum fixed rate a user can transmit at is

Rf (p) = R





(

∫ ∞

F̄−1

H
(p)

fH(h)
1

h
dh

)−1

P̄



 . (5)

Assuming that this rate is used, the average sum throughput of the fixed-rate system
under an average power constraint is

s̄f (p, n) =
(

np(1 − p)n−1
)

Rf (p). (6)

The transmission probabilityp can be chosen to maximize this expression. Initially, we
consider the sub-optimal choice ofp = 1

n
which results in a throughput of̄sf (n) ≡

s̄f (
1
n
, n); this choice maximizes the first term in (6) and simplifies thefollowing analysis.

We consider hows̄f (n) scales asn increases. Notice that the first term in (6) is
decreasing withn and approaches the well-known asymptote of1

e
. However,h′ = F̄−1

H ( 1
n
)

increases asn increases, and thus so willRf (1/n). The total throughput is increasing
with n; the rate of increase is given in Proposition 1 below. To describe this rate, we use
the following notation: Two sequencesf(n) and g(n) are defined to beasymptotically
equivalent, denoted byf(n) ≍ g(n), asn → ∞, if f(n)

g(n)
→ c > 0. This implies that both

f andg asymptotically grow at the same rate. In the special case where c = 1, we write
f(n) ≍̄ g(n) and say thatf(n) and g(n) are strongly asymptotically equivalent; in this
case, we indicate both the growth rate and the first order constant. Note that both̄≍ and
≍ are equivalence relations.

For Proposition 1, we also require that the fading distribution satisfies the following
definition:

Definition 1: A fading density,fH(h) on [0,∞) has awell-behaved tailif,

lim
h→∞

F̄H(h)

hfH(h)
= 0.

In most common fading models, such as Rayleigh or Ricean fading, fH(h) has an
exponential tail, i.e., ash → ∞, fH(h) ≍ e−αh for someα > 0. It can be shown that
such densities always satisfy the above definition. More generally, it can be shown that if

10Note, here the rate is fixed for a given number of usersn, but it can vary withn, i.e. as the system scales the
rate used may change.



QIN AND BERRY: DISTRIBUTED APPROACHES FOR EXPLOITING MULTIUSER DIVERSITY 9

10 20 30 40 50 60 70 80 90 100
1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Number of Users

SNR=0db
SNR=3db
SNR=−3db

s̄ f
(n

)/
1 e
R

((

P̄
n
F̄

−
1

H

(

1 n

)
)

Fig. 2. Ratio of the total throughput̄sf (n) of the fixed rate algorithm to1
e
R(

`

P̄ nF̄−1

H

`

1

n

´´

as a function of the
number of users,n for a Rayleigh fading channel with the indicated average received SNRs.

this limit exists andE(H) < ∞, then it must lie in[0, 1]; however, examples of densities
for which this limit does not exist can be found.11

Proposition 1: If fH(h) has a well-behaved tail, then̄sf (n) ≍̄ 1
e
R

(

P̄ nF̄−1
H

(

1
n

))

.

The proof is given in Appendix A. As an example, consider a Rayleigh fading channel
(fH(h) = 1

h0
e
− h

h0 ), and assume thatR(γ) is given in (2). In this case,̄F−1
H

(

1
n

)

=
h0 log(n), and, from Proposition 1,

s̄f (n) ≍̄
1

e
log

(

1 + P̄ h0n log(n)
)

≍ log(n) + log(log(n)).

Figure 2 shows the ratio of̄sf (n) to 1
e
log(1 + P̄ h0n log(n)) as a function ofn for this

example with three different values of the average receivedSNR (h0P̄ ). As expected,
this ratio converges to 1. Even for small values ofn, the ratio is only slightly larger than
1, suggesting that the asymptotic analysis is relevant for moderate values ofn.

For a fixed-rate system withn users, letP̃f (n) be the maximum power used in any
time-slot. Under a long-term average power constraintP̄ , from (4),

P̃f (n) =
Pf

F̄−1
H ( 1

n
)

=
P

F̄−1
H ( 1

n
)
∫ ∞

F̄−1

H
( 1

n
)
fH(h) 1

h
dh

.

From the proof of Proposition 1, it follows that iffH(n) has a well-behaved tail, then
∫ ∞

F̄−1

H
( 1

n
)

fH(h)
1

h
dh ≍̄

1

F̄−1
H ( 1

n
)n

.

11Prop. 1 can be generalized for the weaker assumption that this limit exists,but is not necessarily 0; in this case,
we have only asymptotic equivalence instead of strong asymptotic equivalence.
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Therefore we have,
Corollary 1: If fH(h) has a well-behaved tail, then asn → ∞, P̃f (n) ≍̄nP̄ .

In other words, under an average power constraint, the maximum short-term power
per time-slot is increasing linearly with the number of users. This is because each user
is transmitting1/nth of the time and so it can use on averagen times P̄ when it does
transmit.12 It follows that if there is both a short-term and long-term power constraint,
the short term power constraint eventually limits the throughput growth in Proposition 1.

Next, consider a version of the fixed-rate algorithm under a short-term power constraint.
Each user still has the same transmission probabilityp and uses a fixed transmission
rate whenever it transmits, and so requires a fixed received power of Pf = hP (h). To
satisfy the short-term maximum power constraint,P (h) must be no greater thaňP for
all h ≥ F̄−1

H (p). Hence, for a givenp the maximum fixed-rate is given byR(F̄−1
H (p)P̌ ).

In a symmetric system, the resulting sum-throughput is given by

šf (p, n) ≡
(

np(1 − p)n−1
)

R
(

F̄−1
H (p)P̌

)

. (7)

Again, choosingp = 1/n, it is straightforward to see that asn → ∞

šf (n) ≡ šf (
1
n
, n) ≍̄

1

e
R

(

P̌F−1
H

(

1

n

))

. (8)

Note that compared to the average power constraint, the argument ofR(·) is now 1
n

times
smaller. This is because the short-term power is now constant, instead of increasing with
n as in Corollary 1. Indeed, if the average power per user is normalized by the number
of users, the growth rate under the average power constraintwill be the same as with
a short-term power constraint. For the example of a Rayleigh fading channel withR(γ)
given by (2),

šf (n) ≍̄
1

e
log(1 + P̌ h0 log(n))

≍ log(log(n)).

B. Fixed-rate algorithm, optimalp

So far, we setp = 1
n

under both the long-term and short-term power constraint. In
general, this is a suboptimal choice ofp in the sense of maximizing the total throughput
of the fixed-rate algorithm. However, we will show that asymptotically there is no loss
in this choice ofp.

Again, we first examine the system with a long-term average power constraint. We are
still considering the fixed-rate algorithm with the total throughputs̄f (p, n) given by (6).
Let p∗(n) be the optimal transmission probability for a given number of usersn, i.e.,

p∗(n) = arg max
0≤p≤1

s̄f (p, n).

12Asymptotically, this can be viewed as a type of “flash” or “peaky” signalingscheme, which are known to be
capacity achieving for wide-band multipath fading channels, see e.g. [18], [35].
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The resulting throughput is̄sf (p
∗(n), n). From (6) it can be seen thatp∗(n) → 0 as

n → ∞; otherwise, the total throughput would go to zero. For any such sequence,p(n),
the next lemma gives a direct generalization of Proposition1.

Lemma 1:Let p(n) be any sequence of transmission probabilities withlimn→∞ p(n) =
0. If fH(h) has a well-behaved tail, then asn → ∞,

s̄f (p(n), n) ≍̄np(n) (1 − p(n))n−1 R

(

P̄
F̄−1

H (p(n))

p(n)

)

.

The proof follows essentially the same steps as that for Proposition 1 and so is omitted.
This lemma implies that̄sf (p

∗(n), n) ≍̄ s̄f (p̃(n), n), where for eachn,

p̃(n) = arg max
0≤p≤1

np (1 − p)n−1 R

(

P̄
F̄−1

H (p)

p

)

. (9)

In other words, to characterize the asymptotic behavior ofs̄f (p
∗(n), n), it is sufficient

to study the behavior of̄sf (p̃(n), n). The next lemma shows that asymptoticallyp̃(n)
cannot go to zero much faster than1

n
; e.g.,p(n) = 1

n2 does not satisfy this lemma.
Lemma 2: If fH(h) has a well-behaved tail, then there exists a constantα̌ > 0 and an

integerN > 0 such that for alln ≥ N , p̃(n) in (9) satisfies

α̌

n
≤ p̃(n) ≤

1

n
.

The proof is given in Appendix B. Before stating the main resultfor this section, we
state one other useful lemma regarding the tail of the fadingdistribution.

Lemma 3:Given any constant,α ∈ (0, 1),

lim sup
y→0+

F̄−1
H (αy)

F̄−1
H (y)

<
1

α
.

The proof is given in Appendix C. Note that asy → 0+, both F̄−1
H (y) and F̄−1

H (αy)
are approaching infinity; this lemma implies that these quantities increase at essentially
the same rate.13

Using these two lemmas, we have the following proposition which states that asn → ∞
asymptotically there is no loss in throughput by choosingp = 1

n
.

Proposition 2: If fH(h) has a well-behaved tail, then asn → ∞

s̄f (p
∗(n), n) ≍̄ s̄f (n).

The proof is given in Appendix D. For example this implies that with Rayleigh fading
andR(γ) given in (2), then under the optimal transmission probability the total throughput
also increases likelog(n).

13We use the notationy → 0+ to indicate thaty approaches zero from the right.
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Next we consider the optimal transmission probability for afixed-rate algorithm under
a short-term power constraint. In this case, let

p∗(n) = arg max
0≤p≤1

šf (p, n)

= arg max
0≤p≤1

np(1 − p)n−1R(P̌ F̄−1
H (p)).

(10)

Notice that the only difference between this and (9) is the argument ofR(·). In this case,
it can again be shown thatp∗(n) decays like1

n
.

Lemma 4: If fH(h) has a well-behaved tail, then there exists a constantα̌ > 0 and an
integerN > 0 such that for alln ≥ N , p∗(n) in (10) satisfies

α̌

n
≤ p∗(n) ≤

1

n
.

The proof is given in Appendix E. Using this property, we havethat under a short-term
power constraint, there is again no loss asymptotically in choosingp = 1

n
.

Proposition 3: If fH(h) has a well-behaved tail, then asn → ∞

šf (p
∗(n), n) ≍̄ šf (n).

The proof is in Appendix F.
These results suggest that with either a short-term or long-term power constraint, there

is little loss in simply setting the transmission probability equal to1/n. This choice of
transmission probability also facilitates adaptive algorithms when the users do not know
their channel distributions. Assuming that all users have the same, but unknown channel
distribution, each user would want to set a channel threshold so that it transmits1/nth of
the time, wheren is the current backlog. Each user could then simply track thefraction
of time it transmits within a given window and adjust its channel threshold depending
on whether this is less than or greater than1/n.

C. Variable-rate algorithms

We now turn to variable-rate algorithms, where for a givenn, each user may transmit
at a variable-rateR(HP (H)), which will depend on the user’s channel gainH and power
allocationP (H). We first consider the system under a short-term power constraint. In
this case, given that a user transmits, it should use the maximum powerP̌ , resulting in
a rate ofR(HP̌ ). In a symmetric network if each user transmits with probability p, then
the sum throughput for a variable-rate system under a short-term power constraint will
now be

šv(p, n) = n(1 − p)n−1

∫ ∞

F̄−1

H
(p)

fH(h)R(P̌ h) dh. (11)

Clearly, for anyp, šv(p, n) > šf (p, n), i.e. the variable-rate system will have a larger
throughput than a fixed-rate system with the same transmission probability. However, the
next proposition shows that asymptotically these two systems are equivalent.
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Proposition 4: Let {pn} be a non-negative, decreasing sequence of probabilities such
that pn → 0 asn → ∞. If fH(h) has a well-behaved tail, theňsv(pn, n) ≍̄ šf (pn, n).

The proof is given in Appendix G. Letp∗v(n) be the probability which maximizes
šv(p, n) for eachn. It follows from this proposition thaťsv(p

∗
v(n), n) ≍̄ šf (p

∗
v(n), n). Also,

lettingp∗(n) be the probability that maximizešsf (p, n), we havěsv(p
∗(n), n) ≍̄ šf (p

∗(n), n).
Therefore, it must be that

šv(p
∗
v(n), n) ≍̄ šf (p

∗(n), n) ≍̄ šf (n),

where the last relation follows from Proposition 3. In otherwords, the optimal variable-
rate throughput is also strongly asymptotically equivalent to šf (n).

Next, we examine a variable-rate system under a long-term power constraint. We
restrict ourselves to the case whereR(γ) is given by (2). In this case, if a user transmits
with probability p, to maximize the sum throughput each user should choose a power
allocation which maximizes the average throughput given a success subject to the average
power constraint. This power allocation will be the solution to the following optimization
problem:

maximize
P (h)

∫ ∞

F−1

H
(p)

fH(h) log(1 + hP (h)) dh

subject to
∫ ∞

F−1

H
(p)

fH(h)P (h) dh = P .

(12)

The solution to this will be a “water-filling” power allocation [13] over those channel
states,h > F̄−1

H (p). This is given by

P (h) =

(

1

λp

−
1

h

)+

for all h ≥ F̄−1
H (p), whereλp is chosen to satisfy the average power constraint. Note

that whenp is large, the solution to (12) may result inP (h) = 0 for someh > F̄−1
H (p).

Specifically, this occurs whenλp > F̄−1
H (p). In this case, each user is actually transmitting

with a probability smaller thanp. However, it can be seen that asp decreases,̄F−1
H (p)

will increases and the corresponding parameterλp will be non-increasing. Hence, for
small enoughp, λp < F̄−1

H (p); in this case, we have

λp =
p

P +
∫ ∞

F−1

H
(p)

1
h
fH(h) dh

. (13)

Let sv(p, n) denote the optimal sum throughput given by (12) for a givenn and p.
Assuming thatp is small enough so that (13) holds, then

s̄v(p, n) = n(1 − p)n−1

∫ ∞

F−1

H
(p)

fH(h) log

(

h

λp

)

dh. (14)
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Fig. 3. Ratio of šv(n) to šf (n) as a function of the average received SNR in a Rayleigh fading channelwith
n = 5, 10 and100 users.

The next proposition states that once again, the optimal variable-rate sum throughput is
asymptotically equivalent to that obtained with a fixed-rate system.

Proposition 5: Let {pn} be a non-negative, decreasing sequence of probabilities such
that pn → 0 asn → ∞. If fH(h) has a well-behaved tail, then̄sv(pn, n) ≍̄ s̄f (pn, n).

The proof is given in Appendix H. For finiten, using an optimal (water-filling) power
allocation will have some advantage over a fixed-rate scheme. The main advantage is
that the fixed-rate scheme requires most of the power for “poor” channel states, while
the optimal power allocation can save this power for better channel states. However, asn
increases, the channel thresholdF̄−1

H (pn) will also increase and in both cases a user will
only transmit when the channel is “good”. Intuitively, thisexplains why asymptotically
there is no difference in these two schemes. Figure 3 shows the ratio of šv(n) ≡ šv(

1
n
, n)

to šf (n) for different values ofn as a function of the average SNR (h0P̄ ) in a Rayleigh
fading channel withR(γ) given by (2). It can be seen that the ratio is decreasing with
both the number of users and the SNR; even for a small number of users (i.e.n = 5)
and small SNR the ratio is very close to 1.

D. Asymmetric Model

So far we have been considering a symmetric system where eachuser’s fading was
identically distributed and each user received the same average throughput. In this section,
we will relax these assumptions and look at some simple asymmetric models. To begin
consider a model where there are two classes of users. Class 1 hasn1 users and each user
has the channel distribution̄FH1

(h). Class 2 hasn2 users and each user has the channel
distribution F̄H2

(h). Again, each user has independent fading. We also allow these two
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classes to have different priorities, which is modeled by allowing one class of users to
transmit with a higher probability than the other. Specifically we constrain the ratio of
the transmission probabilities to satisfyp1 = αp2. Without loss of generality we assume
that α ≥ 1, i.e., class 1 has the higher priority. As in the symmetric model, each class
i = 1, 2 will choose a channel threshold,h′

i = F̄−1
Hi

(pi), and only transmit when their
channel gain exceeds this threshold.

Here we focus on a fixed-rate algorithm with a short-term power constraint ofP̌i for
each classi. Similar ideas apply to the other settings. In this case, fora given transmission
probability, each classi can transmit at rateR

(

P̌iF̄
−1
Hi

(pi)
)

, wheneverh ≥ h′
i. The sum

throughput for all class1 users is then given by

š1
f (p1, p2, n1, n2) = n1p1(1 − p1)

n1−1(1 − p2)
n2R

(

P̌1F̄
−1
H1

(p1)
)

. (15)

Likewise, the sum throughput for class 2 users is

š2
f (p1, p2, n1, n2) = n2p2(1 − p2)

n2−1(1 − p1)
n1R

(

P̌2F̄
−1
H2

(p2)
)

. (16)

Once again, we want to characterize how the total throughputscales as the number of
users increases. In this case, we consider increasingn1 andn2 while keeping their ratio
fixed, i.e.n2 = βn1 for someβ > 0. With this assumption, lettingn = n1 and p = p1,
the total throughput can be written as

š
(2)
f (p, n) = š1

f (p, αp, n, βn) + š2
f (p, αp, n, βn)

= np(1 − p)n−1(1 − αp)βnR
(

P̌1F̄
−1
H1

(p)
)

+ αβp(1 − p)n(1 − αp)βn−1R
(

P̌2F̄
−1
H2

(αp)
)

.

(17)

To analyze the asymptotic performance we also make the following assumption about
the fading distributions of the two classes:

Definition 2: Two fading densitiesfH1
(h) and fH2

(h) on [0,∞) havesimilar tails if
they both have well-behaved tails and there exists some constant c > 0 such that

lim
h→∞

fH1
(h)

fH2
(h)

= c.

This definition requires the tails of the the two fading distributions to be asymptotically
equivalent. For example, this will be true if both distributions correspond to Rayleigh
fading with different means. Moreover, if two densities have similar tails, then as the
next lemma states, the ratesR(P̌1F̄

−1
H1

(p)) andR(P̌2F̄
−1
H2

(αp)) will also be asymptotically
equivalent asp → 0.

Lemma 5: If fH1
(h) andfH2

(h) have similar tails, then for anyα > 0

lim
p→0+

R(P̌1F̄
−1
H1

(p))

R(P̌2F̄
−1
H2

(αp))
= 1.

The proof is given in Appendix I. Another property we will usefor two distributions
with similar tails is:
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Lemma 6:Given thatfH1
(h) and fH2

(h) have similar tails, letfH̃(h) be a fading
density with distribution,FH̃(h) = FH1

(h)FH2
(h). For i = 1, 2, fH̃(h) and fHi

(h) also
have similar tails.

The proof is given in Appendix J. Notice thatfH̃(h) is the density of the maximum
of two independent random variables with distributionsfH1

(h) andfH2
(h). This lemma

states that if both of these random variables have similar tails, then they will each have
similar tails with their maximum.

Let p∗(n) be the value ofp which maximizes the total throughput in (17) as a function
of n. The following proposition generalizes Proposition 3 to this setting.

Proposition 6: If fH1
(h) andfH2

(h) have similar tails, then asn → ∞,

š
(2)
f (p∗(n), n) ≍̄ š

(2)
f

(

1
(1+αβ)n

, n
)

.

In other words, for this asymmetric model, it is asymptotically optimal to setp1 =
1

(1+αβ)n
= 1

n1+αn2
and p2 = αp1. Note that if α = 1, i.e. both classes have the same

priority, then just as in the symmetric case, it is asymptotically optimal for both classes
to transmit with a probability of 1 over the total number of users. The proof of this
Proposition is given in Appendix K. The main idea in this proof is to consider a symmetric
system, where every user has a fading density given byfH̃(h) as defined in Lemma 6.
We then use our previous results for a symmetric system alongwith lemmas 5 and 6 to
derive the desired results.

Using Proposition 6, it can be seen that total throughput forclass 1 users satisfies

š1
f (p

∗(n), αp∗(n), n, βn) ≍̄
1

e(1 + αβ)
R

(

P̌1F̄
−1
H1

(

1

(1 + αβ)n

))

.

Likewise for class 2,

š2
f (p

∗(n), αp∗(n), n, βn) ≍̄
αβ

e(1 + αβ)
R

(

P̌2F̄
−1
H2

(

1

(1 + αβ)n

))

.

The total throughput for both classes satisfies

š
(2)
f (p∗(n), n) ≍̄

1

e
R

(

P̌1F̄
−1
H1

(

1

(1 + αβ)n

))

≍̄
1

e
R

(

P̌2F̄
−1
H2

(

1

(1 + αβ)n

))

,

where the last step follows from the similar tail property.
This results can easily be extended tok > 2 classes, where each classi = 1, . . . , k

has a different channel distribution̄FHi
(h) and different short-term power constraintP̌i.

Let the transmission probability of each classi > 1 be constrained to satisfypi = αip1,
and let the number of users in classi, satisfyni = βin1. Denote byš(k)

f (p, n) the total
throughput of allk classes, as a function ofp = p1 and n = n1, and letp∗(n) be the
probability which maximizes this throughput for a givenn.
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Corollary 2: If {fHi
(h)}k

i=1 are a family of fading densities where each pair have
similar tails, then asn → ∞,

š
(k)
f (p∗(n), n) ≍̄ š

(k)
f

(

1

(1+
Pk

i=2
αiβi)n

)

.

The proof of this follows the same argument as in Proposition6 and so is omitted.
From this corollary, it follows that the total throughput for each classi using the optimal
transmission probabilityαip

∗(n) is strongly asymptotically equivalent to

αiβi

e(1 +
∑k

i=1 αiβi)
R

(

P̌iF̄
−1
H

(

1

(1+
Pk

i=2
αiβi)n

))

.

E. Performance Comparisons

We conclude this section by comparing the performance of several other protocols to
the performance of channel-aware ALOHA in a symmetric Rayleigh fading channel with
average channel gainh0, whenR(γ) is given by (2). For simplicity, we focus on the case
of a fixed-rate policy with a short-term power constraint; similar results hold for variable
rate protocols and long-term power constraints. Recall in this case the throughput of the
channel aware Aloha protocol grows like1

e
R(P̌ h0 log(n)) as a function ofn for Rayleigh

fading channels.
The first alternative we consider is a slotted ALOHA system where there is no fading

and the channel between each user and the transmitter has a constant gain ofh0. In this
case, given a short-term power constraint ofP̌ , the maximum rate a user can send at
when it transmits isR(h0P̌ ) independent of the number of users. The sum throughput is
then maximized by choosingp = 1/n, yielding

šnf (n) :=
(

1 − 1
n

)n−1
R(h0P̌ ).

As n → ∞, this decreases and approaches the constant value of1
e
R(h0P̌ ), while the

throughput of channel aware ALOHA grows unbounded withn.
The next alternative we consider is an ALOHA system with Rayleigh fading, where

the users do not base their transmissions on the channel state. When a user transmits,
it does so at a fixed-rate for a given backlogn. However, with Rayleigh fading, a user
would not be able to transmit at any fixed-rateR as the channel gain approaches zero
and still satisfy the short-term power constraint. To accommodate this, we assume that
each user’s transmission is only successful when its channel is above a thresholdhmin.
The difference here is that this threshold will not change with the number of users, and
the users will transmit regardless of the threshold (this isreasonable, for example if the
user’s do not have any CSI). The choice ofhmin subject to a short-term power constraint
which maximizes the average throughput is

hmin = arg max
h

{

R(P̌ h)e
− h

h0

}

. (18)
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The sum throughput in this case is again maximized by choosing p = 1/n, yielding

šnc(n) :=
(

1 − 1
n

)n−1
R(P̌ hmin)e

−
hmin

h0 .

Again this will be decreasing withn. In this case, the throughput approaches an asymptote

of 1
e
R(P̌ hmin)e

−
hmin

h0 . Furthermore, it can be shown thathmin < h0, and sošnc(n) <
šnf (n). This can be interpreted as saying that if the transmitters can not exploit fading,
then the fading reduces the throughput of an ALOHA system over that achieved in a
non-faded channel.

The last case we consider is a TDM system in a Rayleigh fading channel, where each
user is assigned a fixed time-slot in a TDM frame. During each time slot only one user can
transmit. As in the second case above, we assume users transmit at a constant transmission
rateR, and the transmission is only successful when the channel gain is larger thanhmin

in (18). The sum throughput in this case is given byšTDM(n) := R(P̌ hmin)e
−

hmin
h0 ,

which is a constant, independent ofn.
Figure 4 shows an example of the sum throughput as a function of n in all fours cases.

Notice that for small values ofn, the TDM approach has a higher throughput than the
channel aware ALOHA system. Asn grows, however, the ALOHA approach quickly
achieves higher throughputs, despite the fact that collisions occur. This is interesting as
in a wire-line channels, a TDM approach is always preferableto any random access
technique for a backlogged system. However in this wirelesssetting, the channel-aware
ALOHA system has a higher throughput when enough users are present to provide
sufficient multiuser diversity.

Let n̂ denote the minimum number of users required for the throughput of the channel-
aware ALOHA system to be greater than or equal to the throughput of the TDM scheme.
For a fixed-rate system with transmission probability1

n
, n̂ is the smallestn such that

ŠTDM(n) ≤ šf (n). Figure 5 showŝn for a Rayleigh fading channel as a function of the
average SNR. It can be seen that at low SNR only a few users are needed for the channel
aware ALOHA to outperform TDM. This number increases with the average SNR. Also
shown in Fig. 5 is the same quantity in a Nakagami fading channel with parameter
m = 2 under a short-term power constraint and a Rayleigh fading channel with a long-
term power constraint. Under a long-term power constraintn̂ increases slower than in
the same channel under a short-term constraint. This suggests that the channel aware
ALOHA system benefits more from the ability to allocate powerthan the TDM system
In the Nakagami fading model,̂n is larger than in the Rayleigh model. The fading in
a Nakagami channel withm = 2 has a smaller variance than in a Rayleigh channel. A
more variable fading environment is beneficial for opportunistic transmission schemes
such as channel-aware ALOHA.

IV. COMPARISONS WITHCENTRALIZED SCHEDULERS

In this section, we compare the performance of the channel aware ALOHA protocol to
that achieved by a centralized scheduler with perfect knowledge of every user’s channel
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gain. We again consider a backlogged symmetric system. FromSection III, we know
that with an appropriate transmission probability the throughput of the channel aware
ALOHA will increase with the number of backlogged users as does the maximum sum
throughput in a centralized system. In this section we compare the rate at which the
throughput increases in these two systems.

We consider centralized schedulers that are restricted to scheduling one user per time-
slot. With this restriction, the centralized scheduling policy that maximizes the sum
throughput would always schedule the user with the largest channel gain in each time-
slot.14 Assuming a short-term power constraint ofP̌ and variable rate transmissions, the
average sum throughput achieved by such a policy withn users is

šct(n) := EH

(

R(P̌ max
i=1,...,n

Hi)

)

. (19)

The next proposition compares this to the throughputšv(
1
n
, n) of a variable-rate channel

aware ALOHA protocol with transmission probabilityp = 1
n

(cf. (11)).

Proposition 7: For all n, šv(
1
n
, n) > (1 − 1

n
)n−1šct(n).

The proof is given in Appendix L. It is based on showing that the channel gain
conditioned on a success in the ALOHA system is stochastically larger than the maximum
unconditional channel gain in the centralized system. Thisimplies that the throughput
in the ALOHA system averaged only over the successful slots will be greater than the
throughput in the centralized system; however, the actual throughput in the ALOHA
system will be decreased by the probability of collision which is (1 − 1

n
)n−1. We note

that this proof does not require any assumptions about the tail of the fading distribution,
nor doesR(γ) need to have zero asymptotic elasticity.

Since(1 − 1
n
)n−1 → 1/e asn → ∞, an immediate corollary of Proposition 7 is that

šct(n) ≍ šv(
1
n
, n), i.e., the throughput of the distributed system increases asymptotically

at the same rate as the optimal centralized system. From the previous section, it follows
that šf (p

∗(n), n) and šf (n) are also asymptotically equivalent tǒsct(n).
Note that Proposition 7 is not just valid asymptotically, but holds for all finiten. For

eachn consider the ratio

rf (n) =
s̃v(

1
n
, n)

s̃ct(n)
,

which can be viewed as a measure of the loss in throughput of the medium access control
protocol over a centralized scheduler. Proposition 7 states that

rf (n) <

(

1 −
1

n

)n−1

14As noted previously, with a long-term power constraint the restriction to scheduling one use per time-slot is not
needed, since the optimal solution from [19] without this restriction will havethis property.
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for all n. In a channel without fading, we can also define the ratio of the throughput
when using a standard ALOHA protocol, compared to a centralized scheduler. In this
case the centralized scheduler will have a normalized throughput of 1 transmission per
slot independent ofn. Hence, the throughput ratio will simply be

rnf (n) =

(

1 −
1

n

)n−1

.

Therefore, for all finiten, rf (n) < rnf (n). In other words, the penalty for lack of
coordination is smaller in a fading channel for any finiten. Figure 6 showsrnf (n)
and rf (n) for several different average SNRs, as a function ofn in a Rayleigh fading
channel, withR(γ) given by (2). As expectedrnf (n) < rf (n) for all n, with the difference
decreasing as the SNR increases.

A similar result to Proposition 7 applies for a system with a long-term power constraint.
In this case, the average sum throughput with a centralized scheduler is given by

s̄ct(n) := EH

(

R(P (H) max
i=1,...,n

Hi)

)

, (20)

whereP (H) denotes the optimal power allocation which satisfies the long-term power
constraints ofP̄ for each user. For a symmetric model with independent fading, it can be
seen that the optimal power allocation will only be a function of maxi=1,...,n Hi. When
R(γ) is given by (2), this will again be a water-filling allocation. Likewise, for the
distributed system, let̄sv(

1
n
, n) denote the optimal variable-rate throughput when each
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user transmits with probability1/n using the optimal power allocationP (H) when it
transmits.15 In this case we have:

Proposition 8: For all n, s̄v(
1
n
, n) > (1 − 1

n
)n−1s̄ct(n).

The proof is given in Appendix M.

A. First order constants

We have shown that the sum throughput of the optimal distributed system is increasing
at the same rate as the throughput of the optimal centralizedsystem, but we have not
specified the first order constants. Propositions 7 and 8 bound this constant to be greater
than 1/e, but do not show that this bound is tight. In this section, we show that this
bound is indeed tight with an additional assumption on the tail of the fading distribution.
In the case of a short-term power constraint, this means thatšf (n) ≍̄ 1

e
sct(n). Combining

this with our previous results it follows thaťsv(p
∗(n), n) and šv(

1
n
, n) are also strongly

asymptotically equivalent to1
e
sct(n). In terms of the ratiorf (n) defined above, this

implies that asn → ∞, rf (n) → 1
e
, the same as the limit ofrnf (n) for the non-faded

system. Referring to Figure 6, this means that each curve is asymptotically converging
to 1

e
.

To characterize the first order constant, we use the following result from extreme order
statistics:

Lemma 7 ([11]): Let {Zi}
n
i=1 be i.i.d. non-negative random variables with a com-

plimentary distribution functionF̄Z(·) and p.d.f. fZ(·) satisfying F̄Z(z) > 0 for all

z ∈ [0,∞), F̄Z(z) is twice differentiable for allz, and limz→∞
d
dz

[

F̄Z(z)
fZ(z)

]

= 0. Then
asn → ∞,

Pr

(

max
1≤i≤n

zi − ln)an ≤ u

)

→ exp(−e−u)

uniformly in u, whereln is given byF̄Z(ln) = 1/n, andan = nfZ(ln).
In other words, the given conditions are sufficient to ensurethat with suitable normal-

ization the distribution function of the maximum will converge to a Gumble distribution
(exp(−e−u)). We will apply this result to analyze the throughput growthwith a centralized
scheduler. To do this, we will assume that the fading densityfH(h) satisfies the condition:

lim
h→∞

d

dh

[

F̄H(h)

fH(h)

]

= 0. (21)

This will be true for all common fading models, such as Ricean and Rayleigh fading.
The next lemma shows that the set of fading distributions which satisfy this condition
are nearly the same as those which have a well-behaved tail.

Lemma 8: If a fading distribution satisfies (21), then it has a well-behaved tail. Con-
versely, if a fading distribution has a well-behaved tail and the limit in (21) exists, then
the limit will be zero.

15Note the optimal power allocation will be different in the centralized and distributed systems.
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The proof is a simple consequence of L’Hospital’s rule.
Note that the sum throughput with a centralized scheduler can be written as

šct(n) = EH( max
i=1,...,n

R(P̌Hi)).

To analyze this throughput, we will apply Lemma 7 to the random variablesZi =
R(P̌Hi). The next lemma states that if the random variablesHi satisfy condition (21),
then the random variablesZi will satisfy a similar condition.

Lemma 9: If the fading density,fH(h) satisfies (21), then the densityfZ(z) of the
random variablesZi = R(P̌Hi) satisfies:

lim
z→∞

d

dz

[

F̄Z(z)

fZ(z)

]

= 0. (22)

The proof is given in Appendix N.

Proposition 9: If the fading density satisfies (21), theňsf (n) ≍̄ 1
e
šct(n).

The proof of this is given in Appendix O.
Under an average constraint, consider a centralized systemwhere each user transmits

a variable rate but uses a “flat” power allocation ofnP̄ , i.e. when a users is scheduled, its
transmission rate isR(nP̄H). Let s̄ct,flat(n) denote the sum throughput of this system.
Using the same argument as in the proof of Proposition 9 we have:

Corollary 3: If the fading density satisfies (21), then̄sf (n) ≍̄ 1
e
s̄ct,flat(n).

Clearly, s̄ct,flat(n) ≤ s̄ct(n) and from Proposition 5, whenR(γ) is given by (2),
s̄v(

1
n
, n) ≍̄ s̄f (n). Thus from this corollary and Proposition 8, it follows thats̄ct,flat(n) ≍̄ s̄ct(n)

and so,
Corollary 4: If the fading density satisfies (21), andR(γ) is given by (2) then̄sf (n) ≍̄ 1

e
s̄ct(n).

In other words, whenR(γ) is given by (2), then under a long-term power constraint,
the ratio of the throughputs of the optimal centralized and distributed schemes again
converges to1/e.

V. RANDOM ARRIVALS

In the previous sections we assumed that all nodes are alwaysbacklogged. In this
section, we relax this assumption and briefly examine a simple model where packets
randomly arrive with total arrival rateλ. Specifically, we consider an infinite user model,
where it is assumed that each new packet arrives to a new user [7]. Such a model is
reasonable for a system with a large number of users, each with a small arrival rate. We
still assume that the number of backlogged usersn in each slot is known. This is more
questionable now that the number of backlogged users is varying with time. Practically,
the backlog would have to be estimated using an algorithm such as the Pseudo-Bayesian
algorithm [7].
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We still consider an approach where users base their transmission on whether their
channel gain is above a thresholdh′; however, now we allow this threshold to depend
on the backlog. Specifically we assume that

h′(n) =

{

hmin for F̄−1
H ( 1

n
) < hmin

F̄−1
H ( 1

n
) for F̄−1

H ( 1
n
) ≥ hmin.

(23)

Herehmin is a minimum threshold above which the user will transmit regardless of the
backlog.16

We consider a symmetric, fixed-rate model with a short-term power constraint ofP̌ .
Given thatn users are backlogged, each user will transmit at rateR(P̌ h′(n)) if successful.
As n increases, the transmission rateR(P̌ h′(n)) will also increase. If all packets have a
fixed length ofL bits, then the time needed to transmit a packet isL/R(P̌ h′(n)), which
will decrease asn increases. We consider a slotted-time model, where the length of time-
slots vary with the backlog according to this relationship.Packet arrivals are assumed to
be independent in each time-slot with an expected arrival rate of λL/R(P̌ h′(n)). In this
section, we still assume that the channel variation is memoryless between slots. Since
the slot sizes are variable, this may seem to be a questionable assumption. However
as discussed in [28], this may be reasonable for a fixed rate model. The main idea is
that for a fixed-rate model, the key parameter is the probability that the channel exceeds
the transmission threshold in each slot. For many channel models the correlation in
this threshold crossing probability will increase with theslot length, but decrease with
the threshold level. Over a limited range these two effects can balance out making the
i.i.d. assumption reasonable. A more detailed discussion of this assumption and extensions
to other channel models can be found in [28]; here, we simply take this as an idealized
model to convey the basic ideas.

Given the above assumptions, we consider over what range of arrival rates,λ, the
system is stable. The following proposition states that ifR(P̌ h′(n)) is unbounded (as
in the Rayleigh fading model), then the system will be stable for any total arrival rate.
However, for high enough arrival rates this requires a prohibitively high diversity gain
and the underlying physical model becomes unrealistic.

Proposition 10: If R(P̌ h′(n)) is unbounded, then the infinite user, channel-aware ALOHA
system is stable for any total arrive rateλ.

The proof is given in Appendix P. Figure 7 illustrates the basic idea behind this result.
This figure shows both the total arrival rate and departure rate normalized in units of
packets per time-slot, as a function of the backlog. The parameters used in the figure
areλ = 0.6 packets/second,L = 1000bits/packets,W = 1kHz and P̌ h0

N0W
= 1. For small

backlogs the normalized arrival rate is larger than the departure rate, and so the backlog
will tend to increase. Eventually, for high enough backlogs, the arrival rate will drop

16For a fixed rate system, a thresholdhmin > 0 is needed for similar reasons as in the TDM system from Section III-
E.
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Fig. 7. Stability of the channel-aware ALOHA.

below the departure rate; the system will stabilize around the point where these curves
cross. As the arrival rate increases, the system will stabilize around a larger backlog;
this is because more users are needed to provide the multiuser diversity gain necessary
to stabilize the system. The higher backlog results in a larger delay. This is illustrated
in Figure 8. This figure shows simulation results of the delayfor a system with a finite
number of user for various total arrival rates,λ. In the simulations, each user has a queue
and arriving packets are queued before transmission. Packet arrivals are modeled as a
Poisson process. For each curve the total arrival rate is fixed as the number of users
varies. Notice that for a given arrival rate, the delay decreases as the number of users
increase; this is due to the increased multiuser diversity.

We note that Proposition 10 does not imply that a system with afinite number of users
is stable for any arrival rate. For example, consider a system with n users and symmetric
traffic. If the total arrival rateλ satisfiesλ > šf (n), the system will be unstable. What
this result does say is that if any arrival rate is spread across enough users, then the
system can be stabilized.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a distributed protocol, channel-aware ALOHA, for ex-
ploiting multi-user diversity in a fading multiple access channel without a centralized
controller. For a backlogged model, we characterized the throughput scaling for such a
system under both long-term and short-term power constraints. The total throughput was
shown to scale at the same rate as in an optimal centralized system, with an asymptotic
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Fig. 8. Average delay versus the number of users with Poisson arrivals and various arrival rates.

ratio of 1/e. Moreover, with sufficient users, the throughput of this approach exceeds
that of a static TDM approach without contention. This showsthat even with backlogged
users, such a contention-based approach may be useful in a fading environment. We have
also shown that there is little advantage to be gained in sucha system from allocating
transmission power and rate based on the channel state. Finally, in the random arrival
case, this ALOHA system was shown to be stable for any arrivalrate in an infinite user
model, but at the expense of large backlogs.

As we have noted, in practice one may be able to implement moresophisticated random
access protocols as well as utilize more sophisticated physical layer processing (i.e. to
enable multiuser reception). Such approaches will naturally improve the performance over
that obtained by channel aware ALOHA. However, we note that under a long-term power
constraint, our results suggest that any such technique cannot improve the order of the
asymptotic growth rate, but could increase the constant of1/e. This is because under
a long-term power constraint, we are comparing to the capacity achieving scheduling
policy. Under a short-term power constraint, however, the order could improve with
multi-user reception. This is because with a short-term power constraint a centralized
system that used joint decoding, will have a capacity that scales likeΘ(log(n)) instead
of the Θ(log(log(n))) achieved with scheduling, assuming Rayleigh fading.

In related work, [30], we have considered a splitting protocol for this setting, which
can reduce the contention loss at the expense of an increase in overhead. We are also
considering extensions of this model to parallel channel models, as in an OFDM system.
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APPENDIX A

Proof of Proposition 1:The growth rate of

s̄f (n) =
(

1 − 1
n

)n−1
R

(

P
∫ ∞

F̄−1

H
( 1

n
)
fH(h) 1

h
dh

)

(24)

with n depends on the behavior of
∫ ∞

F̄−1

H
( 1

n
)
fH(h) 1

h
dh. This quantity is upper-bounded

by
∫ ∞

F̄−1

H
( 1

n
)

fH(h)
1

h
dh <

∫ ∞

F̄−1

H
( 1

n
)

fH(h)
1

F̄−1
H

(

1
n

) dh

<
1

nF̄−1
H ( 1

n
)
, (25)

where we have used thatfH(h) = − d
dh

F̄H(h). SinceR(γ) is increasing inγ, it follows
that s̄f (n) ≥

(

1 − 1
n

)n−1
R

(

P̄ nF̄−1
H

(

1
n

))

, and so

lim
n→∞

s̄f (n)

R
(

P̄ nF̄−1
H

(

1
n

)) >
1

e
. (26)

Next, we lower bound
∫ ∞

F̄−1

H
( 1

n
)
fH(h) 1

h
dh. SincefH(h) has a well-behaved tail, for

any δ > 0, there exists ãh > 0, such that for allh > h̃, F̄H(h)
hfH(h)

< δ. It follows that for

all h > h̃,

fH(h) > 1
δ+1

(

F̄H(h)
h

+ fH(h)
)

.

Therefore, for large enough values ofn,
∫ ∞

F̄−1

H
( 1

n
)

fH(h)
1

h
dh >

1

δ + 1

∫ ∞

F̄−1

H
( 1

n
)

(

F̄H(h)

h2
+

fH(h)

h

)

dh

=

(

1

δ + 1

) (

1

nF̄−1
H ( 1

n
)

)

.

Substituting this into (24) and using the monotonicity ofR(·) yields that forn large
enough,

s̄f (n) <
(

1 − 1
n

)n−1
R

(

(δ + 1)P̄ nF̄−1
H

(

1
n

))

. (27)

Next note that sinceR is convex, for anyγ ≥ 0,

R((δ + 1)γ) ≤ R(γ) + δγR′(γ)

≤ (δ + 1)R(γ),
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where the second step follows becauseR(γ)−γR′(γ) > R(0) = 0. Combining this with
(27), we have for large enoughn,

s̄f (n) <
(

1 − 1
n

)n−1
(δ + 1)R

(

P̄ nF̄−1
H

(

1
n

))

,

and so

lim
n→∞

s̄f (n)

R
(

P̄ nF̄−1
H

(

1
n

)) < lim
n→∞

(δ + 1)
(

1 − 1
n

)n−1
=

δ + 1

e
. (28)

Since,δ can be arbitrarily small, from (26) and (28), it follows thats̄f (n) ≍̄ 1
e
R

(

P̄ nF̄−1
H

(

1
n

))

as desired. ¥

APPENDIX B

Proof of Lemma 2:For eachn, let p̃(n) = α̃(n)
n

, so thatα̃(n) will be the value ofα in
[0, n] that maximizes

α
(

1 − α
n

)n−1
R

(

P̄ F̄−1
H

(

α
n

)

n
α

)

. (29)

This is the product of two terms. The first,α
(

1 − α
n

)n−1
, is maximized by choosing

α = 1; the remaining term is decreasing inα. Therefore, for anyn, it must be that
α̃(n) ≤ 1. To complete the proof, we show that forn large enough,̃α(n) ≥ α̌, for some
α̌ > 0.

Sinceln(·) is monotonic,α̃(n) will also maximize

Z(n, α) := ln
(

R
(

P̄ F̄−1
H

(

α
n

)

n
α

))

+ ln(α) + (n − 1) ln
(

1 − α
n

)

.

Differentiating the first term on the right with respect toα yields

d

dα
ln

(

R
(

P̄ F̄−1
H

(α

n

) n

α

))

=
R′

(

P̄ F̄−1
H

(

α
n

)

n
α

)

R
(

P̄ F̄−1
H

(

α
n

)

n
α

) · P̄

[

n

α

(

−1

fH

(

F̄−1
H

(

α
n

))

)

1

n
+

−n

α2
F̄−1

H

(α

n

)

]

,

where we have applied the inverse function theorem tod
dα

F−1
H

(

α
n

)

. Rearranging terms,
we have

d

dα
ln

(

R
(

P̄ F̄−1
H

(α

n

) n

α

))

= −1

(

R′(x)x

R(x)

)(

F̄H(y)

yfH(y)
+ 1

)(

1

α

)

,

where x = P̄ F̄−1
H

(

α
n

)

n
α

and y = F̄−1
H

(

α
n

)

. Note that asα
n

→ 0, then x → ∞ and
y → ∞. Since the asymptotic elasticity ofR(γ) is zero andfH(h) has a well-behaved
tail, it follows that for anyδ ∈ (0, 1) and ᾱ ∈ (0, 1), there existsN > 0, such that for
all n ≥ N andα ≤ ᾱ,

d

dα
ln

(

R
(

P̄ F̄−1
H

(

α
n

)

n
α

))

≥ −δ
(

1
α

)

.
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Hence, for alln ≥ N andα ≤ ᾱ,

d

dα
Z(n, α) ≥ (1 − δ)

1

α
−

(

1 − 1
n

1 − α
n

)

≥ (1 − δ)
1

α
−

(

1

1 − ᾱ
N

)

.

And so, there must exist soměα ∈ (0, ᾱ) such that for alln ≥ N andα ≤ α̌, d
dα

Z(n, α) >
0. Therefore, sincẽα(n) maximizesZ(n, α), it must be that for alln ≥ N , α̃(n) ≥ α̌.
¥

APPENDIX C

Proof of Lemma 3:By assumptionF̄−1
H (h) is a positive and strictly decreasing function

on [0, 1]. Let

G(y) :=

∫ 1

y

F̄−1
H (h) dh,

so that d
dy

G(y) = −F̄−1
H (y). Note that sinceH is a non-negative random variable,

limy→0+ G(y) = EH. Likewise, let

Gα(y) :=

∫ 1/α

y

F̄−1
H (αh) dh = α−1

∫ 1

αy

F̄−1
H (z) dz,

so that d
dy

Gα(y) = −F̄−1
H (αy). In this case, we havelimy→0+ Gα(y) = α−1

EH.
Now, note that

αGα(y) − G(y)

y
=

1

y

∫ y

αy

F̄−1
H (h) dh

≥ F̄−1
H (αy)(1 − α),

where the last step follows becauseF−1
H (h) is decreasing. Therefore,

lim
y→0+

αGα(y) − G(y)

y
≥ lim

y→0+
F̄−1

H (αy)(1 − α) = ∞.

Notice that asy → 0+, both αGα(y) − G(y) → 0 and y → 0. Hence, L’Hospital’s rule
can be applied, yielding

lim
y→0+

αGα(y) − G(y)

y
= lim

y→0+
−αF̄−1

H (αy) + F̄−1
H (y).

Combining the above observations, we have that

lim
y→0+

−αF̄−1
H (αy) + F̄−1

H (y) = ∞.
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Therefore, for anyM > 0, when y is small enough,−αF̄−1
H (αy) + F̄−1

H (y) > M, or
equivalently,

F̄−1
H (αy)

F̄−1
H (y)

<
1

α

(

1 −
M

F̄−1
H (y)

)

.

Taking limits asy → 0+, the desired results follows. ¥

APPENDIX D

Proof of Proposition 2:From Lemma 1 we have that

s̄f (p
∗(n), n) ≍̄np̃(n) (1 − p̃(n))n−1 R

(

P̄
F̄−1

H (p̃(n))

p̃(n)

)

,

where p̃(n) is given by (9). Likewise,̄sf (n) ≍̄
(

1 − 1
n

)n−1
R

(

P̄ nF̄−1
H

(

1
n

))

. Therefore,
it is sufficient to show that

np̃(n) (1 − p̃(n))n−1 R

(

P̄
F̄−1

H (p̃(n))

p̃(n)

)

≍̄
(

1 − 1
n

)n−1
R

(

P̄ nF̄−1
H

(

1
n

))

.

From the definition of̃p(n) it follows that

lim inf
n→∞

np̃(n) (1 − p̃(n))n−1 R
(

P̄
F̄−1

H
(p̃(n))

p̃(n)

)

(

1 − 1
n

)n−1
R

(

P̄ nF̄−1
H

(

1
n

))
≥ 1.

Also note that sincep = 1
n

maximizesnp(1 − p)n−1, then

lim sup
n→∞

np̃(n) (1 − p̃(n))n−1

(

1 − 1
n

)n−1 ≤ 1.

To complete the proof, we show that

lim sup
n→∞

R
(

P̄
F̄−1

H
(p̃(n))

p̃(n)

)

R
(

P̄ nF̄−1
H

(

1
n

)) ≤ 1.

First note that sinceR(·) is concave,

R

(

P̄
F̄−1

H (p̃(n))

p̃(n)

)

≤ R
(

P̄ nF̄−1
H

(

1
n

))

+ R′
(

P̄ nF̄−1
H

(

1
n

))

P̄

(

F̄−1
H (p̃(n))

p̃(n)
− nF̄−1

H

(

1
n

)

)

.

(30)

Using the mean value theorem, there exists axn ∈ [p̃(n), 1
n
] such that

F̄−1
H (p̃(n))

p̃(n)
− nF̄−1

H

(

1
n

)

=
d

dp

F̄−1
H (p)

p

∣

∣

∣

∣

p=xn

(

p̃(n) −
1

n

)
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=
F̄−1

H (xn)

x2
n

(

1 +
F̄H(yn)

ynfH(yn)

)

(

1
n
− p̃(n)

)

,

whereyn := F̄−1
H (xn). Let Zn := 1 + F̄H(yn)

ynfH(yn)
and note that asn → ∞, Zn → 1, since

fH has a well-behaved tail. Substituting this into (30), we have

R

(

P̄
F̄−1

H (p̃(n))

p̃(n)

)

≤ R

(

P̄ nF̄−1
H

(

1

n

))

+ R′

(

P̄ nF̄−1
H

(

1

n

))

P̄
F̄−1

H (xn)

x2
n

Zn

(

1

n
− p̃(n)

)

.

(31)

From Lemma 2, forn large enough,xn ≥ p̃(n) ≥ α̌
n
. Therefore, for large enoughn, the

second term on the right-hand side of (31) is upperbounded by

R′

(

P̄ nF̄−1
H

(

1

n

))

P̄ nF̄−1
H

(

1
n

)

(

F̄−1
H

(

α̌
n

)

F̄−1
H

(

1
n

)

)

(Zn)

(

1 − α̌

α̌2

)

.

Substituting this bound into (31), dividing byR
(

P̄ nF̄−1
H

(

1
n

))

, and taking limits yields

lim sup
n→∞

R
(

P̄
F̄−1

H
(p̃(n))

p̃(n)

)

R
(

P̄ nF̄−1
H

(

1
n

))

≤ 1 +

(

1 − α̌

α̌2

)

lim sup
n→∞

(

R′
(

P̄ nF̄−1
H

(

1
n

))

P̄ nF̄−1
H

(

1
n

)

R
(

P̄ nF̄−1
H

(

1
n

))

) (

F̄−1
H

(

α̌
n

)

F̄−1
H

(

1
n

)

)

= 1.

The last step follows from Lemma 3 and the fact thatR(γ) has zero asymptotic elasticity.
¥

APPENDIX E

Proof of Lemma 4:We use a similar argument as in Appendix B; the key difference
here is thatR(·) has a different argument. In this case, for eachn, let p∗(n) = α̃(n)

n
, so

that α̃(n) will be the value ofα in [0, n] which maximizes

α
(

1 − α
n

)n−1
R

(

P̌ F̄−1
H

(

α
n

))

. (32)

By the same argument as in Appendix B, for anyn, it must be that̃α(n) ≤ 1. To complete
the proof, we show that forn large enough,̃α(n) ≥ α̌, for someα̌ > 0. We do this by
showing that the derivative of

Z(n, α) ≡ ln
(

R
(

P̌ F̄−1
H

(

α
n

)))

+ ln(α) + (n − 1) ln
(

1 − α
n

)
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is strictly positive forn large enough andα small enough. Differentiating the first term
on the right with respect toα using the inverse function and rearranging terms, we have

d

dα
ln

(

R
(

P̌ F̄−1
H

(α

n

)))

= −1

(

R′(x)x

R(x)

)(

F̄H(y)

yfH(y)

)(

1

α

)

,

wherex = P̌ F̄−1
H

(

α
n

)

and y = F−1
H

(

α
n

)

. As α
n
→ 0, thenx → ∞ and y → ∞. Since

the asymptotic elasticity ofR(γ) is zero andfH(h) has a well-behaved tail, it follows
that for anyδ ∈ (0, 1) and ᾱ ∈ (0, 1), there exists aN > 0 such that for alln ≥ N and
α ≤ ᾱ, d

dα
ln

(

R
(

P̄ F̄−1
H

(

α
n

)

n
α

))

≥ −δ
(

1
α

)

. The remainder of the proof is exactly the
same as in Appendix B. ¥

APPENDIX F

Proof of Proposition 3:This proof follows a similar argument as in Appendix D. Since
p∗(n) is optimal, we clearly have

lim inf
n→∞

šf (p
∗(n), n)

šf (n)
= lim inf

n→∞

np∗(n)(1 − p∗(n))n−1R
(

P̌ F̄−1
H (p∗(n))

)

(1 − 1
n
)n−1R

(

P̌ F̄−1
H ( 1

n
)
) ≥ 1.

Also, as in Appendix D,

lim sup
n→∞

np∗(n) (1 − p∗(n))n−1

(

1 − 1
n

)n−1 ≤ 1.

We complete the proof by showing that

lim sup
n→∞

R
(

P̌ F̄−1
H (p∗(n))

)

R
(

P̌ F̄−1
H

(

1
n

)) ≤ 1.

SinceR(·) is concave,

R
(

P̌ F̄−1
H (p∗(n))

)

≤ R
(

P̌ F̄−1
H ( 1

n
)
)

+ R′
(

P̌ F̄−1
H ( 1

n
)
)

P̌
(

F̄−1
H (p∗(n)) − F̄−1

H ( 1
n
)
)

. (33)

Using the mean value theorem, there exists axn ∈ [p∗(n), 1
n
] such that

F̄−1
H (p∗(n)) − F̄−1

H ( 1
n
) =

−1

fH(F̄−1
H (xn))

(

p∗(n) − 1
n

)

.

Substituting this into (33), we have

R
(

P̌ F̄−1
H (p∗(n))

)

≤ R
(

P̌ F̄−1
H ( 1

n
)
)

+ R′
(

P̌ F̄−1
H ( 1

n
)
) P̌

fH(F̄−1
H (xn))

(

1
n
− p∗(n)

)

. (34)
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From Lemma 4, there exists ǎα > 0 such that forn large enough,1
n
≥ xn ≥ p̃(n) ≥ α̌

n
.

Therefore, for large enoughn, from (34) we have

R
(

P̌ F̄−1
H (p∗(n))

)

R
(

P̌ F̄−1
H

(

1
n

)) ≤ 1 +

(

R′
(

P̌ F̄−1
H ( 1

n
)
)

P̌ F̄−1
H ( 1

n
)

R
(

P̌ F̄−1
H ( 1

n
)
)

)

(

F̄H(zn)

fH(zn)zn

)

×

(

F̄−1
H ( α̌

n
)

F̄−1
H ( 1

n
)

)(

1

α̌
− 1

)

,

(35)

wherezn = F̄−1
H (xn). SinceR(·) has zero asymptotic elasticity,fH(h) has a well-behaved

tail, and using Lemma 3, it can be seen that the right-hand side of (35) converges to 1
asn → ∞, yielding the desired result. ¥

APPENDIX G

Proof of Proposition 4:From their definitions it can be seen that showingšf (pn, n) ≍̄ šv(pn, n)
is equivalent to showing that

lim
n→∞

1
pn

∫ ∞

F̄−1

H
(pn)

fH(h)R(P̌ h) dh

R(P̌ F̄−1
H (pn))

= 1.

Clearly, the lim inf of this ratio is greater than or equal to1. So, the proof will be
complete by showing that thelim sup of this ratio is no greater than one.

SinceR(·) is concave, for allh andpn,

R(P̌ h) ≤ R(P̌ F̄−1
H (pn)) + R′(P̌ F̄−1

H (pn))
(

P̌ (h − F̄−1
H (pn))

)

.

It follows that
1
pn

∫ ∞

F̄−1

H

fH(h)R(P̌ h) dh

R(P̌ F̄−1
H (pn))

≤ 1 +
R′(P̌ F̄−1

H (pn))

pnR(P̌ F̄−1
H (pn))

P̌

∫ ∞

F̄−1

H
(pn)

(h − F̄−1
H (pn))fH(h) dh

= 1 +

(

R′(P̌ xn)P̌ xn

R(P̌ xn)

)

(
∫ ∞

xn
fH(h)(h − xn) dh

xnF̄H(xn)

)

, (36)

wherexn = F̄−1
H (pn). The last term on the right in (36) is the product of two terms.The

first term goes to zero asn → ∞ becauseR(·) has zero asymptotic elasticity. We show
that the second term also goes to zero asn → ∞. This term can be written as

∫ ∞

xn
fH(h)(h − xn) dh

xnF̄H(xn)
=

∫ ∞

xn
fH(h)h dh

xnF̄H(xn)
− 1. (37)

SinceH has a finite mean, asn → ∞, both
∫ ∞

xn
fH(h)h dh and xnF̄H(xn) must go to

zero. Hence, L’Hospital’s rule can be applied yielding,

lim
n→∞

∫ ∞

xn
fH(h)h dh

xnF̄H(xn)
= lim

n→∞

−fH(xn)xn

−fH(xn)xn + F̄H(xn)

= 1

.
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The last step follows sincefH(h) has a well-behaved tail. Substituting this into (37), the
desired result follows. ¥

APPENDIX H

Proof of Proposition 5:From Lemma 1, it follows that forR(γ) given by (2),

s̄f (pn, n) ≍̄npn(1 − pn)n−1 log

(

P̄ F̄−1
H (pn)

pn

)

.

Likewise, for n large enough̄sv(p, n) is given by (14). Hence, it is sufficient to show
that

lim
n→∞

1
pn

∫ ∞

F̄−1

H
(pn)

fH(h) log
(

h
λpn

)

dh

log
(

P̄ F̄−1

H
(pn)

pn

) = 1,

whereλpn
is given by (13). Since the optimal variable rate policy willalways have a

greater throughput than the corresponding fixed rate policy, it follows that thelim inf of
this ratio must be no less than 1. To complete the proof, we show that thelim sup of
this ratio is no greater than 1.

Using the concavity oflog(·), it can be shown that

1
pn

∫ ∞

F̄−1

H
(pn)

fH(h) log
(

h
λpn

)

dh

log
(

P̄ F̄−1

H
(pn)

pn

) ≤ 1 +

∫ ∞

F̄−1

H
(pn)

fH(h)
(

h
λpn

−
P̄ F̄−1

H
(pn)

pn

)

dh

P̄ F̄−1
H (pn) log

(

P̄ F̄−1

H
(pn)

pn

) .

We next show that the second term on the right goes to zero asn → ∞. Using the
definition of λpn

, this term can be written as

∫ ∞

F̄−1

H
(pn)

fH(h)
(

h
λpn

−
P̄ F̄−1

H
(pn)

pn

)

dh

P̄ F̄−1
H (pn) log

(

P̄ F̄−1

H
(pn)

pn

)

=

(
∫ ∞

F̄−1

H
(pn)

fH(h)h dh

pnF̄
−1
H (pn)

)





P̄ +
∫ ∞

F̄−1

H
(pn)

1
h
fH(h) dh

log
(

P̄ F̄−1

H
(pn)

pn

)



 −
1

log
(

P̄ F̄−1

H
(pn)

pn

) .

(38)

As n → ∞, the quantity
∫ ∞

F̄−1

H
(pn)

fH(h)h dh

pnF̄
−1
H (pn)

→ 0

as shown in Appendix G. It can be seen that the other terms on the right-hand side of
(38) also go to zero asn → ∞. Combining these observations, the desired result follows.
¥



QIN AND BERRY: DISTRIBUTED APPROACHES FOR EXPLOITING MULTIUSER DIVERSITY 35

APPENDIX I

Proof of Lemma 5:First note that iffH1
(h) andfH2

(h) have similar tails, then clearly,

lim
p→0+

F̄−1
H1

(p)

F̄−1
H2

(p)
=

1

c
.

Combining this with Lemma 3, it follows that for anyα > 0, there exists some constant
c2 > 0 such that,

lim sup
p→0+

F̄−1
H1

(p)

F̄−1
H2

(αp)
≤ c2. (39)

SinceR(·) is concave, using a first order Taylor expansion aroundP̌2F̄
−1
H2

(αp) we have,

R(P̌1F̄
−1
H1

(p))

R(P̌2F̄
−1
H2

(αp))
≤ 1 +

R′(P̌2F̄
−1
H2

(αp))P̌2F̄
−1
H2

(αp)

R(P̌2F̄
−1
H2

(αp))

(

P̌1F̄
−1
H1

(p)

P̌2F̄
−1
H2

(αp)
− 1

)

.

From the asymptotic elasticity ofR(·) and (39), it follows that

lim sup
p→0+

R(P̌1F̄
−1
H1

(p))

R(P̌2F̄
−1
H2

(αp))
≤ 1.

Switching the roles of̌P1F̄
−1
H1

(p) and P̌2F̄
−1
H2

(αp), the same result follows. Therefore,

lim
p→0+

R(P̌1F̄
−1
H1

(p))

R(P̌2F̄
−1
H2

(αp))
= 1,

as desired. ¥

APPENDIX J

Proof of Lemma 6:First we show thatfH̃(h) has a well-behaved tail. From its defini-
tion, it follows thatfH̃(h) = fH1

(h)FH2
(h)+FH1

(h)fH2
(h), andF̄H̃(h) = F̄H1

(h)FH2
(h)+

F̄H2
(h). Using these two expressions, we have

lim
h→∞

F̄H̃(h)

hfH̃(h)
= lim

h→∞

F̄H1
(h)

hfH1
(h)

FH2
(h)

FH2
(h) + FH1

(h)
fH2

(h)

fH1
(h)

+

F̄H2
(h)

hfH2
(h)

fH2
(h)

fH1
(h)

FH2
(h) + FH1

(h)

= 0,

where the last step follows sincefH1
(h) andfH2

(h) have similar tails (and therefore both
have well-behaved tails). Hence,fH̃(h) has a well-behaved tail.

Finally, note that

lim
h→∞

fH̃(h)

fH1
(h)

= lim
h→∞

FH2
(h) + FH1

(h)
fH2

(h)

fH1
(h)

= 1 + 1/c,

where we have again used thatfH1
(h) andfH2

(h) have similar tails. Therefore,fH1
(h)

andfH̃(h) have similar tails. The same argument can be applied forfH2
(h). ¥
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APPENDIX K

Proof of Proposition 6:Let P̌max = max(P̌1, P̌2). Consider a symmetric model with
(1+αβ)n users17, where each user has a short-term power constraint ofP̌max and fading
distributionfH̃(h), as defined in Lemma 6. If each user transmits with probability p with
a fixed-rate, then the sum throughput for this symmetric model is

šs
f (p, n) = (1 + αβ)np(1 − p)(1+αβ)n−1R

(

P̌maxF̄
−1

H̃
(p)

)

. (40)

First, we show that for alln and p, š
(2)
f (p, n) ≤ šs

f (p, n), i.e. the throughput of this
symmetric system upper bounds the throughput of the asymmetric system with the same
parameters. To see this, first note that by definition fori = 1, 2, F̄H̃(h) ≥ F̄Hi

(h).
Therefore, since the complementary distribution is strictly decreasing, we have fori =
1, 2, F̄−1

H̃
(p) ≥ F̄−1

Hi
(p), for any p ∈ [0, 1]. It follows that,

R(P̌maxF̄
−1

H̃
(p)) ≥ R(P̌iF̄

−1
Hi

(p)), i = 1, 2.

Using this we have,

š
(2)
f (p, n) ≤

[

np(1 − p)n−1(1 − αp)βn + αβnp(1 − p)n(1 − αp)βn−1
]

R(P̌maxF̄
−1

H̃
(p))

≤ (1 + αβ)np(1 − p)(1+αβ)n−1R(P̌maxF̄
−1

H̃
(p))

= šs
f (p, n).

Here we have used that sinceα ≥ 1 and0 < p < 1, then(1 − p)α > 1 − αp.
Let p̃(n) be the optimal transmission probability for the symmetric system, i.e. the

probability that maximizešss
f (p, n) in (40). For alln, it follows that

s̃
(2)
f

(

1
(1+αβ)n

, n
)

≤ s̃
(2)
f (p∗(n), n) ≤ s̃s

f (p
∗(n), n)) ≤ s̃s

f (p̃(n), n).

Hence, it is sufficient to prove that̃s(2)
f ( 1

(1+αβ)n
, n) ≍̄ s̃s

f (p̃(n), n). Furthermore, from
Lemma 6,fH̃(h) has a well-behaved tail and so Proposition 3 applies, i.e.s̃s

f (p̃(n), n) ≍̄ s̃s
f (

1
(1+αβ)n

, n).

Therefore, it is sufficient to show that̃s(2)
f ( 1

(1+αβ)n
, n) ≍̄ s̃s

f (
1

(1+αβ)n
, n). From Lemma 6,

fH̃(h) andfHi
(h) have similar tails fori = 1, 2. Thus, Lemma 5 applies. Using this, it

can be shown that

lim
n→∞

s̃
(2)
f

(

1
(1+αβ)n

, n
)

s̃s
f

(

1
(1+αβ)n

, n
) = 1,

as desired. ¥

17Of course, for some values ofn, 1 + αβ may not be an integer; however, this does not effect our analysis.
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APPENDIX L

Proof of Proposition 7:Note that

šv(
1
n
, n) = (1 − 1

n
)n−1

EH

(

R(P̌H)|H > F̄−1
H ( 1

n
)
)

.

Thus, the desired result is equivalent to showing that

EH

(

R(P̌H)|H > F̄−1
H ( 1

n
)
)

> EHmax,n

(

R(P̌Hmax,n)
)

, (41)

where Hmax,n = maxi=1,...,n{Hi}. For this, we use the following stochastic ordering
result [31]: for two random variables,X and Y , if F̄X(a) ≥ F̄Y (a) for all a, then
E[g(X)] ≥ E[g(Y )] for all increasing functionsg.

Let X be the channel gainH conditioned on a transmission attempt occurring in the
ALOHA system, so that for anyh > F̄−1

H ( 1
n
),

Pr(X > h) = Pr(H > h|H > F̄−1
H ( 1

n
)) =

F̄H(h)

F̄H(F̄−1
H ( 1

n
))

,

and so

F̄X(h) =

{

nF̄H(h), for all h > F̄−1
H ( 1

n
),

1, otherwise.

Let Y = Hmax,n, so that F̄Y (h) = 1 − (1 − F̄H(h))n. For all h < F̄−1
H ( 1

n
), clearly

F̄Y (h) ≤ F̄X(h) = 1. For all h > F̄−1
H ( 1

n
), using thatnz > 1 − (1 − z)n for all

0 < z < 1, we haveF̄X(h) > F̄Y (h). By assumption,R(γ) is monotonically increasing;
thus, applying the above result, withg(x) = R(P̌ x), (41) follows. ¥

APPENDIX M

Proof of Proposition 8:The difficulty here, as opposed to proof of Prop. 7, is that
with a long-term power constraint the centralized and the distributed systems may use
different power allocations. LetP ∗(h) denote the optimal centralized power allocation
that each user employs as a function of its own channel gain. In a symmetric system,
this power allocation will satisfy

∫ ∞

0

P ∗(h)fH(h)(1 − F̄H(h))n−1 dh = P̄ ,

wherefH(h)(1 − F̄H(h))n−1 represents the probability that a user has the best channel
gain and its channel gain ish.18 The optimal sum throughput can then be written as

s̄ct(n) = n

∫ ∞

0

R(P ∗(h)h)fH(h)(1 − F̄H(h))n−1 dh. (42)

18Note whenR(γ) is given by (2), then each user will use a water-filling power allocation over the channel with
distributionfH(h)(1 − F̄H(h))n−1.
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If the users in the distributed system use power allocationP ∗(h) when they transmit,
then by a similar argument as in Appendix L it can be shown that

∫ ∞

F̄−1

H
( 1

n
)

P ∗(h)fH(h) dh > P̄ ,

i.e., this power allocation is not feasible in the distributed system. Instead we consider
a sub-optimal distributed system, where for every channel gain each user transmits
probabilistically with probability(1 − F̄H(h))n−1, using powerP ∗(h). This distributed
system will meet the average power constraint, and each userwill still transmit with
probability

p ≤

∫ ∞

0

fH(h)(1 − F̄H(h))n−1 dh = 1
n
,

where equality would hold ifP ∗(h) > 0 for all h. The throughput of this system is thus
lower bounded by

s̄p(n) ≥ n
(

1 − 1
n

)n−1
∫ ∞

0

R(P ∗(h)h)fH(h)(1 − F̄H(h))n−1. (43)

Clearly, this system will have a lower throughput than in a system where the users transmit
only when their channels exceed̄F−1

H ( 1
n
) and use the optimal power allocation, i.e.

s̄v(
1
n
, n) > s̄p(n). This follows because the two systems will have the same probability of

success, but the second system will have a higher throughputwhen successful. Combining
this with (42) and (43), the desired results follows. ¥

APPENDIX N

Proof of lemma 9:The complementary distribution function ofZ = R(P̌H) is given
by

F̄Z(z) = F̄H

(

R−1(z)

P̌

)

. (44)

Hence, using the inverse function theorem,

fZ(z) = fH

(

R−1(z)

P̌

)

1

P̌R′(R−1(z))
. (45)

Next note that

d

dz

[

F̄z(z)

fZ(z)

]

= −1 −
F̄Z(z)f ′

Z(z)

(fZ(z))2

=: −1 − A(z).

Therefore, to prove the lemma it is sufficient to show thatlimz→∞ A(z) = −1.
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Using (44) and (45),A(z) can be expressed as

A(z) =
F̄H

(

R−1(z)

P̌

)

d
dz

[

fH

(

R−1(z)

P̌

)

1
P̌R′(R−1(z))

]

(

fH

(

R−1(z)

P̌

)

1
P̌R′(R−1(z))

)2 .

Changing variables toy = R−1(z)

P̌
and simplifying we have:

A(y) =
F̄H(y)f ′

H(y)

(fH(y))2
−

F̄H(y)R′′(P̌ y)P̌

fH(y)R′(P̌ y)

=: B(y) − C(y).

To complete the proof we show thatlimy→∞ B(y) = −1 and limy→∞ C(y) = 0.
First consider theB(y) term. Note that

d

dy

[

F̄H(y)

fH(y)

]

= − (B(y) + 1) .

By assumption, the left-hand side of this equality approaches zero; hencelimy→∞ B(y) =
−1, as desired.

Next, consider theC(y) term. Note that

C(y) =

(

F̄H(y)

yfH(y)

)(

R′′(P̌ y)P̌ y

R(P̌ y)

)

.

From Lemma 8,fH(h) has a well-behaved tail, and solimh→∞
F̄H(y)
yfH(y)

= 0. Therefore, it

is sufficient to show that−R′′(γ)γ
R(γ)

is bounded asγ → ∞. Sincelimγ→∞ R(γ) = ∞, then
limγ→∞ R′(γ)γ2 = ∞. Otherwise,R(γ) =

∫ γ

0
R′(x) dx would be bounded. It follows that

for large enoughγ, − log(R′(γ)γ2) < 0. Equivalently, for large enoughγ, − log(R′(γ))
log(γ)

< 2.
And so,

lim
γ→∞

− log(R′(γ))

log(γ)
< 2,

assuming the limit exists. Applying L’Hospital’s rule to this expression, we have that

lim
γ→∞

− log(R′(γ))

log(γ)
= lim

γ→∞

−R′′(γ)γ

R′(γ)
.

Combining the above observations, it follows that−R′′(γ)γ
R(γ)

< 2 as γ → ∞, and so
limy→∞ C(Y ) = 0 as desired. ¥
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APPENDIX O

Proof of Proposition 9:SincefH(h) satisfies (21), from Lemma 9,fZ(z) will satisfy
(22). Using this and the assumed properties ofR(γ) andfH(h), it can be seen that the
random variablesZi = R(P̌Hi) will satisfy the assumptions of Lemma 7.

Let Zmax,n = maxi=1,...,n Zi. From Lemma 7, asn → ∞,

Pr ((Zmax,n − ln)an ≤ u) → exp(e−u)

uniformly in u. Here ln = R(P̌ F̄−1
H ( 1

n
)) and

an = nfZ(ln) =
fH(yn)

F̄H(yn)

1

P̌R′(P̌ yn)
,

whereyn := F̄−1
H ( 1

n
).

It follows that asn → ∞,

E ((Zmax,n − ln)an) → 1. (46)

Note that
1

lnan

=
F̄H(yn)

fH(yn)yn

R′(P̌ yn)P̌ yn

R(P̌ yn)
.

Therefore, using the asymptotic elasticity ofR(γ) and thatfH(h) has a well-behaved
tail, we have thatlimn→∞

1
anln

= 0. Multiplying both sides of (46) by 1
anln

, it follows
that

lim
n→∞

E(Zmax,n)

ln
= 1.

Equivalently,šct(n) ≍̄R(P̌ F̄−1
H ( 1

n
)). Comparing this to (8), the desired result follows.¥

APPENDIX P

Proof of Proposition 10:For k = 1, 2, . . ., let n(k) denote the backlog at the start of
thekth time-slot. Given the memoryless assumption,{n(k)} will be a Markov chain. To
show that the system is stable, it is sufficient to show the following drift condition[7]:
there exists someD > 0, N > 0 such that

E(n(k + 1) − n(k)|n(k) = n) ≤ −D, (47)

for all n ≥ N .
Given thatn(t) = n, each user will transmit with probability1/n in each slot, therefore

the departure rate in packets per time-slot is(1 − 1
n
)n−1. The arrival rate in packets per

time-slot isλ(n) = λL/R(P̌ h′(n)). Thus we have,

E(n(k + 1) − n(k)|n(k) = n) = −(1 −
1

n
)n−1 + λ(n). (48)

As n approaches to infinity,λ(n) decreases to 0, while(1 − 1
n
)n−1 approaches to1/e.

Therefore for anyδ < 1/e, anN can be found such that (47) is satisfied withD = 1
e
−δ,

and so the system is stable.¥
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