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Abstract— We consider a scheduling and resource allocation
problem for the downlink of an OFDMA-based wireless network,
where the channel estimation error is modeled by a self-noise
term in the decoding process. During each time-slot this involves
selecting a subset of users for transmission, determining the
assignment of available subcarriers to selected users, and for each
subcarrier determining the transmission power and the coding
and modulation scheme used. We address this in the context of
a utility-based scheduling scheme presented in earlier papers.
This results in an optimization problem, which is convex for a
reasonable model of the feasible rates. By exploiting the structure
of this problem, we develop optimal and sub-optimal algorithms
for its solution. We provide simulation results comparing different
algorithms and parameter settings.

I. INTRODUCTION

Dynamic “channel-aware” scheduling and resource alloca-
tion is an essential component of most recent wireless data
systems. A number of gradient-based scheduling and resource
allocation algorithms have been considered, which attempt
to maximize the projection onto the gradient of a system
utility, see e.g. [2]–[5]. The utility is used to quantify fairness
and other QoS considerations. This paper addresses gradient-
based scheduling and resource allocation for a system using
a combination of Time Division Multiplexing (TDM) and
Orthogonal Frequency Division Multiplexing (OFDM). An
example of such a system is IEEE 802.16 (WiMAX). In this
setting, the problem is to determine which users are scheduled,
as well as the allocation of transmission power and OFDM
subcarriers1 among the scheduled users.

In prior work [6], we considered gradient-based scheduling
and resource allocation when code division multiple access
(CDMA) was used to multiplex users within a time-slot, as
in CDMA 1xEVDV. In [7], we extended the approach in [6]
to an OFDM downlink where the transmitters and receivers
have accurate channel information. In this paper, we consider
the practical case where there are channel estimation errors,
which are modeled as a self-noise term when calculating the
achievable rate [13]. This significantly changes the resource
allocation problem. However, we show that the general ap-
proach in [6], [7] can still be applied in this case.

As in [7], within each time-slot the gradient-based policy
requires maximizing the weighted sum throughput over the
set of feasible rates. The set of feasible rates depends on
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1In the following we use the terms subcarrier and tone synonymously.

what subchannelization is used, the current channel state
information, and the resource allocation decisions. We also
allow constraints on the maximum SINR or rate per subcarrier,
which can model a limitation on the available modulation
order. When the rate per sub-carrier is given via the Shannon
capacity formula and users are allowed to time-share each
sub-carrier, as in [7] this becomes a tractable convex opti-
mization problem.2 A special case of this problem (without
self-noise) for a fixed set of weights and no constraints on the
SINR per carrier was considered in [8]; there a suboptimal
algorithm with constant power per sub-carrier was given
and shown in simulations to have little performance loss.
Here, we consider a dual formulation for this problem, which
enables us characterize some structural properties and leads to
both optimal and reduced complexity sub-optimal algorithms.
We also present simulation results in a system where the
scheduling weights are dynamically adjusted according to a
gradient-based scheduling rule. Some other related work on
OFDM optimization can be found in [9]–[11]; in these papers
self noise is not considered.

II. PROBLEM FORMULATION

We consider the downlink of a single cell in an OFDM
system with K users. Time is divided into TDM time-slots
that contain an integer number of OFDM symbols. In each
time-slot, the scheduling and resource allocation decision can
be viewed as selecting a rate vector rt = (r1,t, . . . , rK,t)
from the current feasible rate region R(et) ⊂ RK

+ , where et

indicates the time-varying channel state information available
at the scheduler. This decision is made according to the
gradient-based scheduling framework in [2], [4]. Namely, an
rt ∈ R(et) is selected that has the maximum projection onto
the gradient of a system utility function ∇U(W t), where
U(W t) =

∑K
i=1 Ui(Wi,t), and Ui(Wi,t) is an increasing

concave utility function of user i’s average throughput, Wi,t,
up to time t. In other words, the scheduling and resource
allocation decision is the solution to

max
rt∈R(et)

∇U(W t)T · rt = max
rt∈R(et)

∑
i

U̇i(Wi,t)ri,t. (1)

For example, one class of utility functions given in [4] is

Ui(Wi,t) =
{

ci

α (Wi,t)α, α ≤ 1, α 6= 0,
ci log(Wi,t), α = 0,

(2)

2We focus on systems that do not use superposition coding and successive
interference cancellation within a sub-carrier.



where α ≤ 1 is a fairness parameter and ci is a QoS weight.
In this case, (1) becomes

max
rt∈R(et)

∑
i

ci(Wi,t)α−1ri,t. (3)

With equal class weights, setting α = 1 results in a scheduling
rule that maximizes the total throughput during each slot. For
α = 0, this results in the proportional fair rule.

In general, we consider the problem of

max
rt∈R(et)

∑
i

wi,tri,t, (4)

where wi,t ≥ 0 is a time-varying weight assigned to the ith
user at time t. We note that (4) must be re-solved at each
scheduling instant because of changes in both the channel state
and the weights (e.g., the gradient of the utility).

A. OFDM capacity regions

Solving (4) depends on the state dependent capacity region
R(e).3 We focus on a model appropriate for downlink OFDM
systems; similar models have been considered in [8], [12].
In this model, R(e) is parameterized by the allocation of
subcarriers to users and the allocation of power across subcar-
riers. In a traditional OFDM system, at most one user may be
assigned to any subcarrier. Here, as in [9], [11], we make the
simplifying assumption that multiple users can share one tone
using some orthogonalization technique (e.g. via TDM) but
not super-position coding. In practice, if a scheduling interval
contained multiple OFDM symbols, we could implement
such sharing by giving a fraction of the symbols to each
user; of course, each user would be constrained to use an
integer number of symbols and the required signaling overhead
would increase. If the number of tones is large4, then this
approximation gets tighter. Given a solution to this problem,
we can obtain a feasible solution allowing only one user per
tone by applying an appropriate projection. For the simulations
in Section IV, we assign only one user per tone.

Let N = {1, . . . , N} denote the set of tones. For each tone
j and user i, let eij denote the received signal to noise ratio
(SNR) per unit power. We denote the power allocated to user
i on subchannel j by pij and the fraction of that subchannel
allocated to user i by xij . These must satisfy a total power
constraint,

∑
i,j pij ≤ P, and for all subcarriers j,

∑
i xij ≤ 1,

i.e., the total fraction of each sub-carrier allocated must be no
greater than one. For a given allocation, with perfect channel
estimation, user i’s feasible rate on subcarrier j is given by
rij = xijB log(1 + pijeij

xij
). This corresponds to the Shannon

capacity of a Gaussian noise channel with bandwidth xijB and
received SNR pijeij

xij
.5 This SNR arises from viewing pij as

the energy per time-slot user i is allowed to use on subcarrier
j; the corresponding transmission power becomes pij

xij
when

3To simplify notation we have suppressed the time-dependence.
4Most proposals consider about a thousand subcarriers.
5As in [7], to better model the achievable rates in a practical system we

can re-normalize eij by γeij , where γ ∈ [0, 1] represents the system’s “gap”
from capacity.

only a fraction xij of the tone is allocated. Without loss of
generality we set B = 1.

It has recently been suggested that for realistic systems the
OFDM model must have a self-interference term. Following
a similar model as in [13], we assume the received signal on
the j’s subchannel of user i is

yij = hijsij + nij .

Assume that the receiver estimates channel hij with hij+hij,δ ,
where hij,δ is the channel estimation error. As a result, the
processed received signal is

zij = h∗ijhijsij + h∗ijnij + h∗ij,δ (hijsij + nij) ,

and the effective SNR is

Eff-SNR =
‖hij‖2 ‖sij‖2

2σ2
ij

(
1 + ‖hij,δ‖2

‖hij‖2

)
+ ‖hij,δ‖2 ‖sij‖2

,

where the variance of noise nij is assumed to be 2σ2
ij . Defining

gij = ‖hij‖2, aij = ‖hij,δ‖2

‖hij‖2
, eij = ‖hij‖2

2σ2
ij

and ‖sij‖2 = pij ,
we get the effective SNR to be

Eff-SNR =
pijeij

1 + aij + aijeijpij
. (5)

Defining ẽij := eij/ (1 + aij) , then (5) can be written as

Eff-SNR =
pij ẽij

1 + aijpij ẽij
.

Compared to the case without self-noise, the effective SNR
is still increasing in pij . However, it now has a maximum of
1/aij . For the sake of presentation, we assume that a = aij

for all i and j. The analysis is almost identical if users have
different aij’s.

Taking time sharing into consideration, user i’s feasible rate
on subcarrier j is now given by

rij = xijB log
(

1 +
pij ẽij

xij + apij ẽij

)
. (6)

The achievable rate region is then

R(e) =
{

r : ri =
∑

j

xij log
(

1 +
pij ẽij

xij + apij ẽij

)
,

∑
ij

pij ≤ P,
∑

i

xij ≤ 1 ∀ j, (x,p) ∈ X ,

}
,

(7)

where6

X :=
{

(x,p) ≥ 0 : xij ≤ 1, pij ≤ xijsij

eij
∀i, j

}
. (8)

Here, sij is a maximum SINR constraint on tone j for user i,
e.g. to model a constraint on the maximum rate per tone due
to a limitation on the available modulation order.

We assume that the joint channel state e is known by the
scheduler for all users and tones with an estimation error
quantified by a. With many tones and users, providing pilots

6We use boldfaced symbols to denote the vector of all the corresponding
values across users/tones, e.g. x is the vector of all xij ’s.



and/or feedback per tone can require excessive overhead. One
approach for reducing this overhead is by forming subchannels
from disjoint sets of tones. Feedback and resource allocation
is then done at the granularity of these subchannels. The above
model can be adapted to this setting by viewing N as the set
of subchannels and eij as the effective SNR per unit power for
user i within the jth subchannel. Specifically, assuming that
k tones are bundled into subchannel j, eij is chosen so that
the total rate for user i in this subchannel is approximately
kxij log(1 + pijeij

xij+apijeij
). For our simulations, we set eij to

be the geometric average of the SNR per unit power of all
the tones in a subchannel, which provides a (provable) lower
bound of the achievable rate.

Subchannels can be formed in various ways; in our sim-
ulations, the following three approaches are considered: (1)
adjacent channelization, where adjacent tones are grouped into
sub-channels; (2) interleaved channelization, where tones are
interleaved to form subchannels; and (3) random channel-
ization, where tones are randomly assigned to subchannels.
In IEEE 802.16d/e, interleaved channelization is primarily
used; the optional “band AMC mode” allows for adjacent
channelization. Randomized channelization can model systems
that employ frequency hopping as in the Flash OFDM system.

III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

From (4) and (7), the scheduling and resource allocation
problem can be stated as:

max
(x,p)∈X

V (x,p) :=
∑

i

wi

∑
j

xij log
(
1 + pij ẽij

xij+apij ẽij

)
subject to:

∑
i,j

pij ≤ P, and
∑

i

xij ≤ 1, ∀j ∈ N .
(9)

A. Optimal Dual Solution

We first solve this problem using duality methods. It can be
shown that (9) is convex and Slater’s condition holds, so there
is no duality gap and the optimal solution is characterized by
the Karush-Khun-Tucker conditions [1].

Consider the Lagrangian,

L(x,p, λ,µ) :=
∑

i

wi

∑
j

xij log
(

1 +
pij ẽij

xij + apij ẽij

)
+ λ

(
P −

∑
i,j

pij

)
+
∑

j

µj

(
1−

∑
i

xij

)
.

First we optimize over p given x, µ and λ. If there is no self-
noise (a = 0), we obtain a “water-filling” type of solution,7

p∗ij =
xij

ẽij

[(
wiẽij

λ
− 1
)+

∧ sij

]
. (10)

When a > 0, we obtain

p∗ij =
xij

ẽij

[
q

(
a,

(
wiẽij

λ
− 1
)+)

∧ sij

]
, (11)

7The notation (x)+ = max(x, 0) and x ∧ y = min(x, y).

where

q(a, z) =
(

2a + 1
2a(a + 1)

)(√
1 +

4a(a + 1)
(2a + 1)2

z − 1

)
.

Notice that the optimal power allocation is no longer increas-
ing in ẽij as in the case when a = 0. On the other hand,
the optimal value of p∗ij is still a linear function of xij , which
means the resulting Lagrangian is also a linear function of xij .

Substituting (11) into L(x,p, λ,µ), we have

L(x,p∗, λ,µ) =
∑
ij

xij (µij(λ)− µj) +
∑

j

µj + λP,

where µij(λ) := wih
(
a,

wiẽij

λ , sij

)
, and

h (a, ω, sij) := log

1 +
q
(
a, (ω − 1)+

)
∧ sij

1 + q
(
a, (ω − 1)+

)
∧ sij


− 1

ω

(
q
(
a, (ω − 1)+

)
∧ sij

)
.

Optimizing L(x,p∗, λ,µ) over x yields the corresponding
dual function

L(λ, µ) := L(x∗,p∗, λ,µ)

=
∑
ij

(
µij(λ)− µj

)+ +
∑

j

µj + λP.

Since there is no duality gap, it follows that minimizing
this over λ and µ yields an optimal solution to (9). First
considering the optimal µ, and we have as in [7]:

Lemma 3.1: For all λ ≥ 0,

L(λ) := min
µ≥0

L(λ, µ) = λP +
∑

j

µ∗j (λ),

where for all j, the minimizing value of µj is

µ∗j (λ) = max
i

µij(λ). (12)
Note that (12) requires a sort of all the users according to the

metrics µij for each sub-channel j. It can be shown that L(λ)
is a convex function of λ; hence it can be minimized using
an iterated one dimensional search, like the Golden Section
method. At the minimizing value λ∗, L(λ∗) gives the optimal
solution to (9).

B. Optimal primal variables with time-sharing

Next we turn to finding optimal values of the primal
variables (x,p). For a given λ ≥ 0, let

(x∗,p∗) := arg max
(x,p)∈X

L (x,p, λ,µ∗(λ)) , (13)

which can be solved using the same procedure as in deriving
the dual function. Given that λ = λ∗, it follows from duality
theory that if the corresponding (x∗,p∗) are primal feasible
and satisfy complimentary slackness, then they are optimal.
However, in (12) there can be multiple users in a given
subchannel whose metrics µij are tied at the maximum value.
In this case, there will be multiple primal values that satisfy
(13), not all of which may be feasible. Thus, breaking these



ties to settle on a specific primal solution is necessary to find
the optimal solution. A key point is that when ties occur at a
given λ, L(λ) is not differentiable at that λ. However, since
L(λ) is a convex function, subgradients exists. Such ties can
be broken using the subgradient information as in [7]. Details
are omitted due to space constraints.

C. Single user per tone

Next we consider the case where the final allocation
is restricted to at most one user per subchannel. We can
still find the optimal λ∗. If there are no ties as discussed
above, the optimal solution will only allow one user/tone.
If there are ties, a reasonable heuristic is to simply choose
one extreme point allocation. In our simulations, we choose
the extreme point corresponding to the subgradient with the
smallest non-negative value; i.e. the extreme point f , for which∑

j∈N p̃f(j)j is closest to P , without exceeding it. Other rules
for choosing an extreme point could also be used.

For a given extreme point, the total power constraint using
the powers p̃f(j)j will be over-shot or under-shot (unless this
point is optimal). We then re-optimize the power allocation
for the given fixed tone allocation x, i.e. we solve

max
p:(p,x)∈X

V (n,p) s.t.
∑
ij

pij ≤ P. (14)

Let Lx(λ) be the dual function for this problem. Given that
λ̃ = arg minλ≥0 Lx(λ), the optimal power allocation to (14)
is given by (10) with λ = λ̃ and the given tone allocation. A
bisection search can again be used to find the optimal λ.

D. Single sort suboptimal algorithm

The optimal sub-carrier allocation is determined by assign-
ing each tone j to the user with the largest metric µ∗j (λ

∗) on
that tone (breaking any ties as discussed above). This requires
iterating to find the optimal Lagrange multiplier λ∗. We give a
sub-optimal algorithm that is based instead on a single sort of
the users on each tone according to a different metric. Here,
we consider using the metric wiR̄ij , where R̄ij is the rate that
user i could achieve on this channel under a constant power
allocation, i.e., R̄ij = log[1+(sij∧( ẽijP/N

1+aẽijP/N ))]. The tone is
allocated to the user with the largest metric, with ties broken
arbitrarily. After the tone allocation is made, constant power is
allocated on all subchannels. This metric was motivated in part
by prior work in [8], [10] where a uniform power allocation
was shown to be nearly optimal.

IV. SIMULATION STUDY

In this section we report simulation results for the algorithm
(OPTIMAL) that finds the optimal λ∗ and then chooses a tone-
allocation with one user per tone as described in Section III-
C. We also consider the sub-optimal algorithm (HEURISTIC)
described in Section III-D. We simulate a single cell with
M = 40 users. The channel gains eij are the product of a fixed
location-based term for each user i and a frequency-selective
fast fading term. The location-based components were picked
using an empirically obtained distribution for many users in
a large system. The fast-fading term was generated using a

TABLE I
PERFORMANCE FOR DIFFERENT CHOICES OF α (ADJACENT

SUBCHANNELIZATION, NO-SELF-NOISE).

α Algorithm Utility Log U Rate(kbps) Num.
0 OPTIMAL 10.74 10.74 60.8 7.73
0 HEURISTIC 10.66 10.66 54.6 7.29

0.5 OPTIMAL 545.2 10.83 105.9 7.32
0.5 HEURISTIC 528.8 10.73 99.3 7.20

1 OPTIMAL 261677 6.79 261.7 2.58
1 HEURISTIC 261676 6.79 261.7 2.58

block-fading model based upon the Doppler frequency (for
the block-length in time) and a standard reference mobile
delay-spread model (for variation in frequency). For a user’s
fast-fading term, each multi-path component was held fixed
for 2msec and an independent value was generated for the
next block, corresponding to a 250MHz Doppler frequency.
The delay-spread was 1µsec. The user’s channel conditions
averaged over the applicable channelization scheme are fed
back to the scheduler for all the channels.

We considered a system bandwidth of 5MHz corresponding
to 512 OFDM tones. We group these into 64 subchannels
(8 tones per subchannel). The symbol duration was 100µsec
with a cyclic prefix of 10µsec. This roughly corresponds to 20
OFDM symbols per fading block. The resource allocation is
done once per fading block. All the results are averaged over
the last 2000 OFDM symbols out of 60000 OFDM symbols
(i.e., 3000 fading blocks), at this time the system has reached
a stationary operation point. All users were infinitely back-
logged and assigned a throughput-based utility as in (2) with
parameter ci = 1 and the same fairness parameters (α) for
each simulation. To account for realistic network conditions,
we calculate the achievable rate of user i on subchannel j as

rij = 0.28
B

S
xij log

(
1 +

0.56pij ẽij

xij + apij ẽij

)
,

where B is the subchannel bandwidth and S is the symbol
length. The scheduling is based on the geometric average of
the subchannel gains; the decoded rate is based on per tone
channel conditions. The total power constraint is fixed at P =
6W. There are no per-user SINR constraints (i.e., sij = ∞).

The first set of simulation results are for a system with
adjacent subchannelization and no self-noise (a = 0). Table I
shows results for both algorithms for different choices of the
utility parameter α. The column “Utility” gives the average
utility per user for each algorithm. The column “log U” shows
the log utility per user; this gives some indication of the
“fairness” of the resulting allocation (for α = 0 this is the same
as the utility). The column “Rate” is the average throughput
per user, and the final column is the average number of users
scheduled. For each choice of α, the two algorithms perform
close to each other for each of these metrics; when α = 1
(maximum throughput) they have identical performance.

Next we consider the effect of different channelization
schemes. Table II shows the performance of the two algorithms
for the adjacent (Adj.), randomized (Ran.), and Interleaved



TABLE II
PERFORMANCE OF DIFFERENT CHANNELIZATION SCHEMES (α = 0.5, NO

SELF-NOISE).

Chan. Algorithm Utility Log U Rate (kbps) Num.
Adj. OPTIMAL 545.15 10.83 105.9 7.32
Adj. HEURISTIC 528.83 10.73 99.3 7.20

Int. OPTIMAL 494.61 10.53 92.4 1.79
Int. HEURISTIC 486.40 10.47 88.4 1.14

Ran. OPTIMAL 487.53 10.53 89.2 4.89
Ran. HEURISTIC 479.07 10.46 84.2 4.39

TABLE III
PERFORMANCE OF DIFFERENT CHANNELIZATION SCHEMES (α = 0.5,

SELF-NOISE a = 0.01).

Chan. Algorithm Utility Log U Rate (kbps) Num.
Adj. OPTIMAL 512.17 10.82 82.5 7.51
Adj. HEURISTIC 489.30 10.70 73.7 7.39

Int. OPTIMAL 466.38 10.53 73.4 1.86
Int. HEURISTIC 452.30 10.45 66.1 1.16

Ran. OPTIMAL 458.53 10.51 70.0 5.03
Ran. HEURISTIC 444.69 10.43 63.1 4.46

(Int.) channelization schemes described in Section II-A. The
other parameters are the same as in Table I, with α = 0.5.
Again, HEURISTIC performs nearly the same as OPTIMAL
and in the interleaved case even achieves a slightly higher
utility. For both algorithms, the random channelization results
in lower utility than the adjacent, and the interleaved results in
yet lower utility. This is likely due to the decreased frequency
diversity with each scheme. Indeed, for the channel model used
here, in the interleaved case all subchannels can be shown to
be very nearly identical8, which explains why both schemes
schedule only one or two users.

Next, in Table III, we consider the case when the self-
noise coefficient a = 0.01 and the other parameters are the
same as in Table II. The performance gap between the two
algorithms is slightly larger compared to the case without
self-noise. In Figure 1, we plot the throughput CDF for both
algorithms, with self-noise (a = 0.01) and without (a = 0).
Here adjacent channelization is used and α = 0.5. It is clear
that users achieve better throughput when there is no self-noise
(a = 0). The OPTIMAL algorithm always achieves better rates
compared with HEURISTIC under the same value of a.

V. CONCLUSIONS

We considered scheduling and resource allocation for the
downlink of OFDM systems, where the channel estimation
error is represented by a self-noise term. We formulated an
optimal scheduling and resource allocation problem, which
was shown to be a convex problem. Using a dual formulation,
we characterized the optimal solution, and used this to develop
optimal and sub-optimal algorithms. The algorithms can be
applied across different channelization schemes and accom-
modate per user SINR constraints. We presented simulation

8Using an arithmetic mean instead of the geometric mean one can prove
that the sub-channels are exactly identical.
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Fig. 1. Empirical CDF of users’ throughputs.

results showing a simpler sub-optimal algorithm, in which
users are sorted once per tone based on a uniform power
allocation, yields reasonable performance. The performance
gap between the optimal and suboptimal algorithms increases
with the self-noise coefficient.
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