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Abstract—We consider allocation of sub-channels to users in is presented in [4] and [7], which maximize an unweighted
a downlink OFDMA system. Each user feeds back one bit per sum rate performance objective, and in [3], which studies
sub-channel, which indicates whether or not the gain exceeds apit loading across sub-channels. Also, in [2] the downlink

threshold. Users are assigned priority weights, and the threshokl . . . -~
are selected to maximize the weighted sum capacity. We analyzeSum capacity for OFDMA is compared with water-filling and

the behavior of the optimal thresholds and growth in capacity, Uniform power allocations.

assumingi.i.d. Rayleigh fading sub-channels, in the large system In an OFDMA system with hundreds of sub-channels and
limit in which users K and sub-channels tend to infinity with  many users, full downlink CSI at the transmitter may be
fixed ratio. If all users have the same priority weight, then the difficult to obtain. Namely, hundreds of channel gains must b

optimized threshold increases aslog K minus a second-order . . .
term, which is asymptotically bounded betweenlog log K and guantized and relayed to the transmitter during each cohere

loglog log K. Furthermore, the sum capacity per sub-channel time, or scheduling interval. To limit the amount of feedkac
increases adog log K plus a second-order term, which decreases we assume that the receivers can relay at most one bit per sub-
to a constant asloglog K/log K. We then consider two classes channel back to the transmitter. Each bit informs the traRsm
of users, each assigned a different weight, and show that the o \yhether or not the channel gain falls above an announced

capacity of the low priority group tends to zero. Finally, we . . .
solve for the optimal thresholds given a fairness constraint on threshold, which can differ across users. (In practiceheac

the ratio between the rates of different classes. feedback bit would likely correspond to a coherence band
containing many sub-channels.)
. INTRODUCTION We assume that channel gains across users iagk

Orthogonal Frequency Division Multiple Access (OFDMA)Rayleigh distributed, and that the users are assigned tedigh
is currently being proposed for emerging wireless celluldhe sum capacity objective, which reflect priorities orrfiass
and data systems. It has the advantage of eliminating intenstraints. For each sub-channel there is a set of usdns wit
cell interference by assigning different sets of tones,uf-s channel gains that exceed their assigned thresholds, @&nd th
channels to different users. Furthermore, when combinddl wsub-channel is assigned to the user in that set with thedarge
opportunistic downlink scheduling [1], the achievableeratweight. (If no user's channel gain exceeds the threshold,
region obtained by allowing transmission to multiple usams then the sub-channel is not assigned, and ties can be settled
different sets of sub-channels, which experience frequeneandomly.) Furthermore, in our model the same power is
selective fading, is strictly larger than the rate regiohiaeed transmitted on each active sub-channel. This is motivated i
with time-division multiplexing. part by the results in [4] and [2], which show that optimizing

Here we consider downlink OFDMA in a single cell, andhe power spectrum across sub-channels offers only a nargin
study the assignment of sub-channels to users to maximizergprovement relative to a uniform power assignment over
weighted sum capacity performance objective. We assunte tha optimized subset of sub-channels. Our problem is to find
each sub-channel can be assigned only to a single user. This set of optimal thresholds across users, which maximizes
assignment can be combined with a scheduler, which changfes weighted sum capacity. The weights in the sum capacity
the weights in the sum capacity objective to satisfy faisnesbjective and the thresholds determine the rates receiyed b
constraints. the users.

Given perfect channel state information (CSI) at the trans-To obtain insight into the behavior of the weighted sum
mitter, i.e., knowledge of all users’ sub-channel gains, tapacity objective and assigned rates as functions of rayste
maximize the sum capacity, the base station would assigarameters, we analyze a large system in which the number of
a particular sub-channel to the user with the largest cornesers and sub-channels both tend to infinity with fixed ratio.
sponding channel gain. Our model is motivated in part Hyurthermore, for purposes of analysis we partition the suser
prior work in [5], which considers scheduling for CDMAinto groups, corresponding to different priorities, orsdas of
with a weighted capacity objective given perfect CSI at theervice. Users within each group are assigned the sametweigh
transmitter. Other related work on power and rate allocatian the sum capacity objective, and the same threshold.
for downlink OFDMA given perfect CSI at the transmitter We start with a single class, and show that the opti-



mized threshold increases &sg X' minus a second-orderm = 1,---, M. Without loss of generality, we assume that
term, which is asymptotically bounded betwdeglog K and w; > wg > -+ > wyy.
logloglog K. Furthermore, the sum capacity per sub-channel The ergodic capacity summed over users in groujs

increases a®(loglog K)* plus a second-order term, which 1

decreases to a constantlaglog K/ log K.2 We then consider CX» = — Z R, = Pr(sub-channel is assigned &,)
two classes of users, and show that with optimized threshold kEGm

the capacity of the low priority group tends to zero. Finally x E[log(1 4+ Ph}) | h > un,for somek € G,,]
we solve for the optimal thresholds given a fairness coimtra (1)

on the ratio between the rates of different groups. In tha¢ca
the capacity still grows a®(loglog K), but with a smaller Let F,,(uv) = Pr{h} < ulk € G, } denote the cumulative

constant than in the unconstrained system. distribution function (cdf) of the channel gains for group
m, and f,,(z) = F,,/(z) denote the associated probability
Il. SYSTEM MODEL AND CAPACITY density function (pdf). (We allow different distributiorfer

The base station transmits data f users, and the total the different groups.) The probability that a sub-chanisel i
bandwidth is divided intaV i.i.d. sub-channels. Lét}' denote assigned td7,, is therefore(1 — g,,,) H;’;‘ll g; whereg,, =
the squared channel gain for thé" sub-channel of thé&!*  FXn (u,,) = Pr{h? < u,,Vk € G, }, so that
user, wherel <n < N and1 < k < K. We assume that the 1 . foe)
channel gaing:}’, n=1,--- , N, arei.i.d.,, and are known at ~x,, _ 4 _ ‘ m(T
receiverk. Each uselk is assigned a threshold;, and sends O = (1=gm) <}:[1 gl) /um 1Og(lJrch)l — Fm(um)dx'
back one bit per sub-channel indicating whether or hipt (2)
n=1,---,N, exceeds the threshoid. Since the base station allocates constant paexcross all

For the nth sub-channel let4, = {k : A} > wug}. active sub-channels, the total transmitted power scaiesuly
If || > 1, then the sub-channel is assigned to the useith the number of users. That is, the total power is
k € U, with the largest weightv,. The weights therefore N
represent priorities, and are assumed to be adjusted by a _ ‘
scheduler to achieve a fairness objectitd@he rate received KP = PNl - H(l — i)l 3
by a particular usek then depends om; and u,. Letting ) ) ) o
N, denote the set of sub-channels assigned to &sahe whereP is the power per user. Give, we wish to maximize
achievable rate for usek, assuming that the transmitter IS _m meﬁ over the _thresholdal, TS UM _
able to code over a large number of sub-channels;is= To achieve the rate in (2), each user must compute its own
S wens, B (log(1 + Phy)|Ay € Ni), in nats per sub-chann®, achievable rate, given the assigned set of sub-channeds, an
where P is the power per sub-channel, the noise varianéglay this rate to the transmitter. That enables the trasmi
is normalized to unity, and the expectation is ovér. We O select the appropriate codebook for each user. (Another
assume that the weights are fixed, and that the threshoR@$Sibility, which requires much more feedback, is for each
uy, are selected to maximize the performance objeafive- USer to feed back a modulation and coding format for each sub-
S°K  wyRy.. We expect that the optimized threshalgl will channel, as in [3].) To reduce feedback requirements fyrthe
decrease as the weight, increases, so thaky, increases. ~ the transmitter could simply compute the rate assuming that

To obtain insight into the behavior of!, the optimized " = um for each sub-channel assigneddp, i.e., log(1 +
thresholds, and the rateR;,}, we analyze a large system! m)- This requires no additional feedback, but gives a lower
in which the number of user& and the number of sub- €rgodic capacity for group, namely,

=1

channelsN both tend to infinity with fixed ratiog3 = K/N. m—1
Also, the users are partitioned infd’ groups corresponding CEm = (1—gn) (H gi) log(1 + Puyy,) (4)
to different classes of service. All users in the" class, i=1

denotedg,,,, are assigned the same weight, and the same
channel threshold,,,, and we consider the large system Iimig
in which K,,, = |G| — oo with fixed ratiosg,, = K,,/N,

Proposition 1: Given a set of channel gain cdf's, which

atisfy 0 < 1}%0()1-) <ooforallz>0andl <m< M, as

im Ko 1
Uy, — 00, CRm = O 4 05— )

The proof is based on integrating the expressiondgy~

. . YK . .
Qyr) if yx = O(zk); vx = O(yk) if zx = Olyk) andzx by parts. In the large system lim{#, N) — oo, we will see
Qyk); v < yx if limg 0o T =1. that the optimized threshold,, — co. If CX» — oo, then

PR . ) . .
This is consistent with analogous results fosimgle-user OFDM channel Km o Kp,
9 3 c,m = Crm. In what follows, we will focus on the large

with partial feedback presented in [6]. . Ko,
3The minimum feedback rate for this scheme is the entropy ratdef tSyStem behavior Ogm :
N-bit sequence.

lWe use the notationry = O(yx) if limg oo \IKI‘ < M; zx

4For example, following thetility-based approach to scheduling in [8], [9], I1l. SINGLE CLASS
we might takew, = U’ (R), whereUy(+) is a concave increasing function . . .
of ngowed thr%ughpkuf(f_) 60) 9 We start with a single group of users, i.84 = 1, K| =

5Throughout this paper we assume natural logarithms. K. We assume that the distributidf(x) is continuous, twice



differentiable, and that the densifyz) is non-zero forz > 0.  Finally, if + — oo, so thatF'X (ugx) — 1, following the same

Furthermore, we assume that approach, we can show that
im & (1 - F (ﬁv>> o CE = wo(loglog K) ©)
a—oodr \  f(x) Lo : -
, Hence the capacity with a single group and optimized

From Theorem 2.7.2 in [10], a& — oo, threshold goes to infinity a®(loglog K), the optimized
lim F&(ax +bxa) — exp(—e™) (5) thresholduy grows asO(log K), and FE(ug) — 0. ]
K—oo The fraction of active channels in a system wih users

uniformly in z, whereax andby satisfy is denoted ag)k(ux) = 1 — F¥(uk). For a sequence of

1 1 thresholds as in Proposition 8k (ux) — 1 as K — .
Flag)=1-+  bx= Kflar) =% (6)  Lemma 1: Given a sequence of thresholds as in Prop. 2,
In other words, the given conditions ensure that with suit- 1 —nk (ug) < exp(—e ).

able normalization the cdf of the maximum converges to a Proof: We have

Gumble cdf. These conditions are satisfied by common fading LK, 2 9

distributions, such as Rayleigh or Ricean. In what follows, L= (urc) = F7 (07 log(K) ;U 2

we will assume Rayleigh fading with varianeé for which _ (14 —e K

aK:c721ogK ande:O'Q. o K ’

With some abuse of notation, in this sectiog denotes ., . . _

the threshold for a system witlk' users. Without loss of Without loss of generality, assume thak = —log(wy),
: . wherewyg — oo. Then

generality, we can write

1 —nr(u —w
ug = ag +bgrr = o*(log K + k), log <M) = Klog (1 + KK) +wr <0, (10)

We consider a sequence of thresholds for which the corgpere the last step follows becaudog(1+ £ ) < z. Hence
sponding sequencex either converges, or tends o/ — co. K=

For such sequences, the uniform convergence in (5) implies lim sup 1 —nk (uk) <1.
that K—oc €Xp(—€7K)
0, if 2 — —o0, Next note that
i K = —e " i log(1 — K -
KIEHOOF (ug) exp(—e~*%0), !f TK — T, og(l — i (uK)) _ log (1 N wK) L1
1, if v — o0. log(exp(—e™*x))  —wg K
For a sequence of thresholds, we study the asymptotic km‘naﬁ;pce ifux satisfies Proposition 2, thenx = o(K), and so
of the corresponding system capacity, we — 0. Thus, given any, for K large enough,
— — _pTK
CE(ug) = wi[l — F¥(ug)]log 1+ _ BPuk ) log(1 = nx (uk)) = (1 — €) log(exp(—e™**)),
1-— FK (uK)
- . and so,
Proposition 22 As K — oo, if zx — —oco and zx = 1— i (ug) > (exp(—e %))1=e.

o(log K), then O (ur) =< wilog(log K). Furthermore, if _ X
the sequencer does not satisfy these assumptions, thdpividing both sides byexp(—e™*¥))*~“ we have
CE (ux) = O(log(log K)) with constant strictly less thaim; . 1—c
1-— 1-—
Proof: Sincexzx = o(log K), the thresholduyx — . < mfizK)l_s < ( T’K(UK)>
We therefore have (exp(—e™7x))

exp(—e k) ’

K K BP where the last inequality follows since — nx(ux) < 1.
Cy = wi[l — F*(uk)]log (1 + KUK) Therefore,
K L= P ) lim inf L= i (uk) >1
= wi[l — F* (ug)]log(uk) @) mn ant o exp(—e—ox) =
The second asymptotic equivalence follows sinegll — and sol — ni(ug) =< exp(—e~*x), as desired. u
Fi(“K)] log[BP/(1 — F*(ux)] is boundedehenO < Proposition 2 states that the optimal’'s decrease at a
F (Uflg) < 1. Sincexg — —oo, we haveF™ (ux) — 0 slower rate than-log(K). From Lemma 1, ifzx increases
andCy' = wy log(uk) =< wy loglog K. at a faster rate, then the number of active channels appesach

To show that the capacity cannot grow faster with we  one faster. However, the rate per chanieg(log K + xx)
con5|die(r the casesic — 2o < co anduzx — oo. If 2x — o, grows at a slower rate. Next we develop tighter bounds on the
then F'* (uf) — exp(—e~*°) and optimal growth rate of the: x-sequence. For this we consider

CE = w1 - exp(—e®)]log(o? log K + 0%o) the “remainder” term
=< wi[l — exp(—e~ )] loglog K. (8) AR (ug) = CF(ug) — wi log(ak).



This captures the higher order behavior of the total capacitsystem, it may be worth reducing the feedback by having only
Proposition 3: The optimal sequence of thresholds satisfighe users inj; report their CSI.

xx = O(log(log(K))) and xx = Q(log(log(log(K)))) as  This analysis extends td/ > 2 groups. In that case, again

K — oo. With such a sequence, asymptotically only the highest priority group has a cafyaci
that is increasing withK at a rate ofw, loglog(K). The

log(log(K)) . .

ek capacity of every other group tends to zero. Moreover, it can

) 08 be shown that for alln < M, under the optimal thresholds,

In other words, an optimal sequencg decreases te-co

AK(uK) — wi log(BP) < —un

Kom
no faster tharog(log K') and no slower thatog(log(log K)). lim Colil 0
With such a sequence the remainder term approaches K00 Qﬁ o

S“g;gg(ﬁp) at the indicated rate. The proof is omitted to SaVFe., the capacity of class: + 1 goes to zero faster than the

capacity of classn.

IV. MULTIPLE CLASSES V. MULTIPLE CLASSES WITHFIXED RATE RATIOS

First we consider two groups of us&fsandg,. Continuing  |f instead of using the optimal thresholds derived in the pre
to abuse notation, leik,, denote the threshold fd,., and yjous section, users ifi; choser, to decrease slowly enough
ug = (uk,, uk,). The system capacity with™ users is given so thatexp(—e—x1)log(log(K)) did not converge to zero,
by then the class 2 users would asymptotically receive a non-

Cly(ug) = wiC1 (ug) + waCy* (ur), zero rate. Moreover, as long ag, satisfied the conditions in
ﬁroposition 2, the total capacity would still be asympiaitic
equivalent tow, log(log K). Alternatively, if zx, — ¢, then
both classes would achieve a throughput that increasedeat ra
O(log(log K)); however, the first-order constant of the total

o(log K1), theanf,t(uK) ~ le{(I (uxc) = w log(log k). throughput would be strictly less tham,. In this section, we

Furthermore, ifz; does not satisfy these assumptions, the udy such a variation, where the rates allocated to classes
7 . : . _increase asymptotically with a fixed ratio. One reason to
ck = O(log(log K)) with constant strictly less than . . e 2 . )
Et"t(uK) (log(log K)) Y consider this modification is to introduce “fairness” among
1-

classes. However, we note that if the weightsdynamically

In other words, with tVYO groups, the higher priority group hange over time, such modifications may not be needed, e.g.,
determines the asymptotic growth rate. The growth rate f t . . : X
It class weights are inversely proportional to the windowed

higher priority group is unaffected by the other group, sinc : . i
it receives all channels requested by both groups. From ttrp(%\c/)lughput, as in a proportional fair scheduler [8].

single-class analysis, the fraction of channels allocabed; rate 0(;3 Op;ge(clse)lyi,nwae Sa%?g:nc\?vﬁffr :23 253(;;”5;(;'2 a:?r\]’\'th
therefore approaches one. tot (UK y group

From the proof of Proposition 4, it follows that with anthe additional constraint that ds — oo,

where CEm is given by (4). Here we assume that users i
groupg,, experience Rayleigh fading with varianeg,, m =
1,2.

Proposition 4: As K — oo, if zx, — —oco andzg, =

optimal sequence of thresholds CE(uk) = 0, CY (ug), (12)
CF (ug) —0 for m = 1,...,M — 1. The parametersy,, are positive
K—o0 Q{“(uK) o constants that specify the asymptotic ratio of each group’s

(unweighted) capacity to that &f,,.

i.e., the throughput of class 2 users is asymptoticallyigézié Proposition 6: Given the constraints (12), & — oo the

compared to the throughput of class 1 users. The next pro%?)'timal thresholds foGy, satisfy zx,, — oo andzx,, =

sition states that in fact 'Fhe class 2_ throughput afsym[a‘klylc o(log K). Form = 1,..., M—1, the optimal thresholds satisfy
tends to zero. To see this we consider the remainder term,xK . 2* where
m m?

AE (ug) = CE (ug) — wy log(a M-1
tot( K) ff,ot( K) 1 g( Kl) eXp(—eixj"’) _ 1+ Zl:’m-‘rl Qq
Proposition 5: For the two-class system considered, 1+ Zl”i ;1 o

AL, (ug) — wy log(BP) andC5*(ug) — 0 as K — oo. .
From the proof of Proposition 5, it follows that an optima}NIth such a sequence of thresholds

sequence{zg,} satisfieszy, — oo at a rate that satisfies K ML i}

the conditions in Proposition 3; i.e. the thresholds forhbot Ciot < Z Wi+ wi | 0" log(log K),
groups increase at approximately the same rate. The fractio m=1

of channels requested by, also converges to one, exceptvheref* = 1%
that due to the tie-breaking rule, this group gets an aniifra  Note that

small portion of those. Also, we note that to first order, the ,,,_, M1

thresholds forG, do not effect the growth rate of the total Z Wi Ol +wM> 0" < w, (Z o + 1) 0"

. . . . = wi.
capacity. One conclusion from these results is that in such -

m=1



Hence the asymptotic growth &%, with the fairness con-
straints is strictly less than the unconstrained growttsoAl
it follows directly from the proof that each clasa has a
weighted throughput that increases @as,«.,0* log(log K).
As an example, suppose that, = 1 for each classn < M.
Then it can be shown that* = 1/M, i.e., adding classes

=]
. K ©
asymptotically reduces the capacity of each clas$/as. 3
VI. NUMERICAL RESULTS g
In this section we provide numerical examples, whicl s
illustrate our asymptotic results. We assume two classés w e optimal threshold of user group 1
weightsw; = 1.1 andw, = 1. For both groups the channel B optimal threshold of user group 2
variancec?, = 1, and K; = K,. Also, we set the ratio 8 s —*—log(9) 1
’ = = log(K)-log(log(K))
£ = 0.5, and the power per usé? = 1 (0 dB). L ‘ ‘ ‘ ‘
Figure 1 shows the weighted capacity per sub-channel f 0 1000 2000 3000 4000 5000

number of users K

each groupw; X' andw,C%?, and the weighted sum capac-
ity CE, as a function of the number of users in the syst€m ! ,
As expectedQ{fn and wIQ{Q both increase al’og(log K)), Fig. 2. Optimal thresholds for two classes Vs.
andCE, converges tav; log(log K) + w; log(6P), which is
also shown in the figure. The capacity for groupuzggfz,
decreases very slowly to zero.

Figure 2 shows the optimal thresholds for the two group
ug, andug,, as a function ofK. Both tend to infinity no
faster tharog(K), and no slower thatog(K) —log(log(K)),
which are also shown.

results in the group with highest priority getting all of theb-
channels asymptotically. Hence to enforce fairness caimss,
gither the sum capacity objective must be compromised, as in
the fixed rate ratio scenario, or the priorities can be adflist
by a scheduler (or both). Adjusting priorities may enable a
reduction in feedback with little loss in spectral efficignc
since only the high priority group would need to report
18 CSI. Although our results were derived for Rayleigh fading
channels, we expect that analogous results can be derived fo
a more general class of fading distributions.
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