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Abstract— We consider allocation of sub-channels to users in
a downlink OFDMA system. Each user feeds back one bit per
sub-channel, which indicates whether or not the gain exceeds a
threshold. Users are assigned priority weights, and the thresholds
are selected to maximize the weighted sum capacity. We analyze
the behavior of the optimal thresholds and growth in capacity,
assumingi.i.d. Rayleigh fading sub-channels, in the large system
limit in which users K and sub-channels tend to infinity with
fixed ratio. If all users have the same priority weight, then the
optimized threshold increases aslog K minus a second-order
term, which is asymptotically bounded betweenlog log K and
log log log K. Furthermore, the sum capacity per sub-channel
increases aslog log K plus a second-order term, which decreases
to a constant aslog log K/ log K. We then consider two classes
of users, each assigned a different weight, and show that the
capacity of the low priority group tends to zero. Finally, we
solve for the optimal thresholds given a fairness constraint on
the ratio between the rates of different classes.

I. I NTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
is currently being proposed for emerging wireless cellular
and data systems. It has the advantage of eliminating intra-
cell interference by assigning different sets of tones, or sub-
channels to different users. Furthermore, when combined with
opportunistic downlink scheduling [1], the achievable rate
region obtained by allowing transmission to multiple userson
different sets of sub-channels, which experience frequency-
selective fading, is strictly larger than the rate region achieved
with time-division multiplexing.

Here we consider downlink OFDMA in a single cell, and
study the assignment of sub-channels to users to maximize a
weighted sum capacity performance objective. We assume that
each sub-channel can be assigned only to a single user. This
assignment can be combined with a scheduler, which changes
the weights in the sum capacity objective to satisfy fairness
constraints.

Given perfect channel state information (CSI) at the trans-
mitter, i.e., knowledge of all users’ sub-channel gains, to
maximize the sum capacity, the base station would assign
a particular sub-channel to the user with the largest corre-
sponding channel gain. Our model is motivated in part by
prior work in [5], which considers scheduling for CDMA
with a weighted capacity objective given perfect CSI at the
transmitter. Other related work on power and rate allocation
for downlink OFDMA given perfect CSI at the transmitter

is presented in [4] and [7], which maximize an unweighted
sum rate performance objective, and in [3], which studies
bit loading across sub-channels. Also, in [2] the downlink
sum capacity for OFDMA is compared with water-filling and
uniform power allocations.

In an OFDMA system with hundreds of sub-channels and
many users, full downlink CSI at the transmitter may be
difficult to obtain. Namely, hundreds of channel gains must be
quantized and relayed to the transmitter during each coherence
time, or scheduling interval. To limit the amount of feedback,
we assume that the receivers can relay at most one bit per sub-
channel back to the transmitter. Each bit informs the transmit-
ter whether or not the channel gain falls above an announced
threshold, which can differ across users. (In practice, each
feedback bit would likely correspond to a coherence band
containing many sub-channels.)

We assume that channel gains across users arei.i.d.
Rayleigh distributed, and that the users are assigned weights in
the sum capacity objective, which reflect priorities or fairness
constraints. For each sub-channel there is a set of users with
channel gains that exceed their assigned thresholds, and the
sub-channel is assigned to the user in that set with the largest
weight. (If no user’s channel gain exceeds the threshold,
then the sub-channel is not assigned, and ties can be settled
randomly.) Furthermore, in our model the same power is
transmitted on each active sub-channel. This is motivated in
part by the results in [4] and [2], which show that optimizing
the power spectrum across sub-channels offers only a marginal
improvement relative to a uniform power assignment over
an optimized subset of sub-channels. Our problem is to find
the set of optimal thresholds across users, which maximizes
the weighted sum capacity. The weights in the sum capacity
objective and the thresholds determine the rates received by
the users.

To obtain insight into the behavior of the weighted sum
capacity objective and assigned rates as functions of system
parameters, we analyze a large system in which the number of
users and sub-channels both tend to infinity with fixed ratio.
Furthermore, for purposes of analysis we partition the users
into groups, corresponding to different priorities, or classes of
service. Users within each group are assigned the same weight
in the sum capacity objective, and the same threshold.

We start with a single class, and show that the opti-



mized threshold increases aslog K minus a second-order
term, which is asymptotically bounded betweenlog log K and
log log log K. Furthermore, the sum capacity per sub-channel
increases asΘ(log log K)1 plus a second-order term, which
decreases to a constant aslog log K/ log K.2 We then consider
two classes of users, and show that with optimized thresholds,
the capacity of the low priority group tends to zero. Finally,
we solve for the optimal thresholds given a fairness constraint
on the ratio between the rates of different groups. In that case,
the capacity still grows asΘ(log log K), but with a smaller
constant than in the unconstrained system.

II. SYSTEM MODEL AND CAPACITY

The base station transmits data toK users, and the total
bandwidth is divided intoN i.i.d. sub-channels. Lethn

k denote
the squared channel gain for thenth sub-channel of thekth

user, where1 ≤ n ≤ N and1 ≤ k ≤ K. We assume that the
channel gainshn

k , n = 1, · · · , N , are i.i.d., and are known at
receiverk. Each userk is assigned a thresholduk, and sends
back one bit per sub-channel indicating whether or nothn

k ,
n = 1, · · · , N , exceeds the threshold.3

For the nth sub-channel letUn = {k : hn
k ≥ uk}.

If |Un| > 1, then the sub-channel is assigned to the user
k ∈ Un with the largest weightwk. The weights therefore
represent priorities, and are assumed to be adjusted by a
scheduler to achieve a fairness objective.4 The rate received
by a particular userk then depends onwk and uk. Letting
Nk denote the set of sub-channels assigned to userk, the
achievable rate for userk, assuming that the transmitter is
able to code over a large number of sub-channels, isRk =
∑

n∈Nk
E (log(1 + Phn

k )|hn
k ∈ Nk), in nats per sub-channel,5

where P is the power per sub-channel, the noise variance
is normalized to unity, and the expectation is overhn

k . We
assume that the weights are fixed, and that the thresholds
uk are selected to maximize the performance objectiveC =
∑K

k=1 wkRk. We expect that the optimized thresholduk will
decrease as the weightwk increases, so thatRk increases.

To obtain insight into the behavior ofC, the optimized
thresholds, and the rates{Rk}, we analyze a large system
in which the number of usersK and the number of sub-
channelsN both tend to infinity with fixed ratioβ = K/N .
Also, the users are partitioned intoM groups corresponding
to different classes of service. All users in themth class,
denotedGm, are assigned the same weightwm and the same
channel thresholdum, and we consider the large system limit
in which Km = |Gm| → ∞ with fixed ratiosβm = Km/N ,

1We use the notation:xK = O(yK) if limK→∞
|xK |
|yK |

≤ M ; xK =

Ω(yK) if yK = O(xK); xK = Θ(yK) if xK = O(yK) and xK =
Ω(yK); xK ≍ yK if limK→∞

xK

yK

= 1.
2This is consistent with analogous results for asingle-user OFDM channel

with partial feedback presented in [6].
3The minimum feedback rate for this scheme is the entropy rate of the

N -bit sequence.
4For example, following theutility-based approach to scheduling in [8], [9],

we might takewk = Uk
′(R), whereUk(·) is a concave increasing function

of windowed throughputR.
5Throughout this paper we assume natural logarithms.

m = 1, · · · ,M . Without loss of generality, we assume that
w1 > w2 > · · · > wM .

The ergodic capacity summed over users in groupm is

CKm

m =
1

N

∑

k∈Gm

Rk = Pr(sub-channel is assigned toGm)

×E[log(1 + Phn
k ) | hn

k ≥ umfor somek ∈ Gm]

(1)

Let Fm(u) = Pr{hn
k < u|k ∈ Gm} denote the cumulative

distribution function (cdf) of the channel gains for group
m, and fm(x) = Fm

′(x) denote the associated probability
density function (pdf). (We allow different distributionsfor
the different groups.) The probability that a sub-channel is
assigned toGm is therefore(1 − gm)

∏m−1
i=1 gi wheregm =

FKm

m (um) = Pr{hn
k < um∀k ∈ Gm}, so that

CKm

m = (1−gm)

(

m−1
∏

i=1

gi

)

∫ ∞

um

log(1+Px)
fm(x)

1 − Fm(um)
dx.

(2)
Since the base station allocates constant powerP across all
active sub-channels, the total transmitted power scales linearly
with the number of users. That is, the total power is

KP = PN [1 −
M
∏

i=1

(1 − gi)]. (3)

whereP is the power per user. GivenP, we wish to maximize
∑

m wmCKm

m over the thresholdsu1, · · · , uM .
To achieve the rate in (2), each user must compute its own

achievable rate, given the assigned set of sub-channels, and
relay this rate to the transmitter. That enables the transmitter
to select the appropriate codebook for each user. (Another
possibility, which requires much more feedback, is for each
user to feed back a modulation and coding format for each sub-
channel, as in [3].) To reduce feedback requirements further,
the transmitter could simply compute the rate assuming that
hn

k = um for each sub-channel assigned toGm, i.e., log(1 +
Pum). This requires no additional feedback, but gives a lower
ergodic capacity for groupm, namely,

CKm

m = (1 − gm)

(

m−1
∏

i=1

gi

)

log(1 + Pum) (4)

Proposition 1: Given a set of channel gain cdf’s, which
satisfy0 < 1−Fm(x)

fm(x) < ∞ for all x > 0 and1 ≤ m ≤ M , as

um → ∞, CKm

m = CKm

m + O( 1
Pum

).
The proof is based on integrating the expression forCKm

m

by parts. In the large system limit(K,N) → ∞, we will see
that the optimized thresholdum → ∞. If CKm

m → ∞, then
CKm

m ≍ CKm

m . In what follows, we will focus on the large
system behavior ofCKm

m .

III. S INGLE CLASS

We start with a single group of users, i.e.,M = 1,K1 =
K. We assume that the distributionF (x) is continuous, twice



differentiable, and that the densityf(x) is non-zero forx > 0.
Furthermore, we assume that

lim
x→∞

d

dx

(

1 − F (x)

f(x)

)

= 0.

From Theorem 2.7.2 in [10], asK → ∞,

lim
K→∞

FK(aK + bKx) → exp(−e−x) (5)

uniformly in x, whereaK andbK satisfy

F (aK) = 1 −
1

K
bK =

1

Kf(aK)
< ∞. (6)

In other words, the given conditions ensure that with suit-
able normalization the cdf of the maximum converges to a
Gumble cdf. These conditions are satisfied by common fading
distributions, such as Rayleigh or Ricean. In what follows,
we will assume Rayleigh fading with varianceσ2 for which
aK = σ2 log K andbK = σ2.

With some abuse of notation, in this sectionuK denotes
the threshold for a system withK users. Without loss of
generality, we can write

uK = aK + bKxK = σ2(log K + xK),

We consider a sequence of thresholds for which the corre-
sponding sequencexK either converges, or tends to+/−∞.
For such sequences, the uniform convergence in (5) implies
that

lim
K→∞

FK(uK) =











0, if xK → −∞,

exp(−e−x0), if xK → x0,

1, if xK → ∞.

For a sequence of thresholds, we study the asymptotic behavior
of the corresponding system capacity,

CK
1 (uK) = w1[1 − FK(uK)] log

(

1 +
βPuK

1 − FK(uK)

)

.

Proposition 2: As K → ∞, if xK → −∞ and xK =
o(log K), then CK

1 (uK) ≍ w1 log(log K). Furthermore, if
the sequencexK does not satisfy these assumptions, then
CK

1 (uK) = O(log(log K)) with constant strictly less thanw1.
Proof: SincexK = o(log K), the thresholduK → ∞.

We therefore have

CK
1 = w1[1 − FK(uK)] log

(

1 +
βP

1 − FK(uK)
uK

)

≍ w1[1 − FK(uK)] log(uK) (7)

The second asymptotic equivalence follows sincew1[1 −
FK(uK)] log[βP/(1 − FK(uK)] is bounded when0 ≤
FK(uK) ≤ 1. Since xK → −∞, we haveFK(uK) → 0
andCK

1 ≍ w1 log(uK) ≍ w1 log log K.
To show that the capacity cannot grow faster withK, we

consider the casesxK → x0 < ∞ andxK → ∞. If xK → x0,
thenFK(uK) → exp(−e−x0) and

CK
1 ≍ w1[1 − exp(−e−x0)] log(σ2 log K + σ2x0)

≍ w1[1 − exp(−e−x0)] log log K. (8)

Finally, if x → ∞, so thatFK(uK) → 1, following the same
approach, we can show that

CK
1 ≍ w1o(log log K) (9)

Hence the capacity with a single group and optimized
threshold goes to infinity asΘ(log log K), the optimized
thresholduK grows asΘ(log K), andFK(uK) → 0.

The fraction of active channels in a system withK users
is denoted asηK(uK) = 1 − FK(uK). For a sequence of
thresholds as in Proposition 2,ηK(uK) → 1 asK → ∞.

Lemma 1: Given a sequence of thresholds as in Prop. 2,

1 − ηK(uk) ≍ exp(−e−xK ).
Proof: We have

1 − ηK(uK) = FK(σ2 log(K) + σ2xK)

=

(

1 +
−e−xK

K

)K

.

Without loss of generality, assume thatxK = − log(wK),
wherewK → ∞. Then

log

(

1 − ηK(uK)

exp(−e−xK )

)

= K log

(

1 +
−wK

K

)

+wK ≤ 0, (10)

where the last step follows becauseK log(1+ x
K

) ≤ x. Hence,

lim sup
K→∞

1 − ηK(uK)

exp(−e−xK )
≤ 1.

Next note that

log(1 − ηK(uK))

log(exp(−e−xK ))
=

K

−wK

log

(

1 +
−wK

K

)

→ 1, (11)

since if uK satisfies Proposition 2, thenwK = o(K), and so
K

wK

→ ∞. Thus, given anyǫ, for K large enough,

log(1 − ηK(uK)) ≥ (1 − ǫ) log(exp(−e−xK )),

and so,
1 − ηK(uK) ≥ (exp(−e−xK ))1−ǫ.

Dividing both sides by(exp(−e−xK ))1−ǫ we have

1 ≤
1 − ηK(uK)

(exp(−e−xK ))1−ǫ
≤

(

1 − ηK(uK)

exp(−e−xK )

)1−ǫ

,

where the last inequality follows since1 − ηK(uK) ≤ 1.
Therefore,

lim inf
K→∞

1 − ηK(uK)

exp(−e−xK )
≥ 1,

and so1 − ηK(uK) ≍ exp(−e−xK ), as desired.
Proposition 2 states that the optimalxK ’s decrease at a

slower rate than− log(K). From Lemma 1, ifxK increases
at a faster rate, then the number of active channels approaches
one faster. However, the rate per channel,log(log K + xK)
grows at a slower rate. Next we develop tighter bounds on the
optimal growth rate of thexK-sequence. For this we consider
the “remainder” term

∆K(uK) = CK
1 (uK) − w1 log(aK).



This captures the higher order behavior of the total capacity.
Proposition 3: The optimal sequence of thresholds satisfies

xK = O(log(log(K))) and xK = Ω(log(log(log(K)))) as
K → ∞. With such a sequence,

∆K(uK) − w1 log(βP) ≍ −w1
log(log(K))

log K
.

In other words, an optimal sequencexK decreases to−∞
no faster thanlog(log K) and no slower thanlog(log(log K)).
With such a sequence the remainder term approaches
w1 log(βP) at the indicated rate. The proof is omitted to save
space.

IV. M ULTIPLE CLASSES

First we consider two groups of usersG1 andG2. Continuing
to abuse notation, letuKm

denote the threshold forGm, and
uK = (uK1

, uK2
). The system capacity withK users is given

by
CK

tot(uK) = w1C
K1

1 (uK) + w2C
K2

2 (uK),

where CKm

m is given by (4). Here we assume that users in
groupGm experience Rayleigh fading with varianceσ2

m, m =
1, 2.

Proposition 4: As K → ∞, if xK1
→ −∞ and xK1

=
o(log K1), thenCK

tot(uK) ≍ w1C
K1

1 (uK) ≍ w1 log(log K1).
Furthermore, ifxk does not satisfy these assumptions, then
CK

tot(uK) = O(log(log K)) with constant strictly less than
w1.

In other words, with two groups, the higher priority group
determines the asymptotic growth rate. The growth rate of the
higher priority group is unaffected by the other group, since
it receives all channels requested by both groups. From the
single-class analysis, the fraction of channels allocatedto G1

therefore approaches one.
From the proof of Proposition 4, it follows that with an

optimal sequence of thresholds

lim
K→∞

CK2

2 (uK)

CK1

1 (uK)
= 0,

i.e., the throughput of class 2 users is asymptotically negligible
compared to the throughput of class 1 users. The next propo-
sition states that in fact the class 2 throughput asymptotically
tends to zero. To see this we consider the remainder term,

∆K
tot(uK) = CK

tot(uK) − w1 log(aK1
)

Proposition 5: For the two-class system considered,
∆K

tot(uK) → w1 log(βP) andCK2

2 (uK) → 0 asK → ∞.
From the proof of Proposition 5, it follows that an optimal

sequence{xK2
} satisfiesxK2

→ ∞ at a rate that satisfies
the conditions in Proposition 3; i.e. the thresholds for both
groups increase at approximately the same rate. The fraction
of channels requested byG2 also converges to one, except
that due to the tie-breaking rule, this group gets an arbitrarily
small portion of those. Also, we note that to first order, the
thresholds forG2 do not effect the growth rate of the total
capacity. One conclusion from these results is that in such a

system, it may be worth reducing the feedback by having only
the users inG1 report their CSI.

This analysis extends toM > 2 groups. In that case, again
asymptotically only the highest priority group has a capacity
that is increasing withK at a rate ofw1 log log(K). The
capacity of every other group tends to zero. Moreover, it can
be shown that for allm ≤ M , under the optimal thresholds,

lim
K→∞

C
Km+1

m+1

CKm

m

= 0,

i.e., the capacity of classm + 1 goes to zero faster than the
capacity of classm.

V. M ULTIPLE CLASSES WITHFIXED RATE RATIOS

If instead of using the optimal thresholds derived in the pre-
vious section, users inG1 chosexK1

to decrease slowly enough
so thatexp(−e−xK1 ) log(log(K)) did not converge to zero,
then the class 2 users would asymptotically receive a non-
zero rate. Moreover, as long asxK1

satisfied the conditions in
Proposition 2, the total capacity would still be asymptotically
equivalent tow1 log(log K). Alternatively, if xK1

→ x0, then
both classes would achieve a throughput that increased at rate
Θ(log(log K)); however, the first-order constant of the total
throughput would be strictly less thanw1. In this section, we
study such a variation, where the rates allocated to classes
increase asymptotically with a fixed ratio. One reason to
consider this modification is to introduce “fairness” among
classes. However, we note that if the weightswi dynamically
change over time, such modifications may not be needed, e.g.,
if class weights are inversely proportional to the windowed
throughput, as in a proportional fair scheduler [8].

More precisely, we again consider the asymptotic growth
rate of CK

tot(uK) in a system withM groups of users with
the additional constraint that asK → ∞,

CK
m(uK) ≍ αmCK

M (uK), (12)

for m = 1, . . . ,M − 1. The parametersαm are positive
constants that specify the asymptotic ratio of each group’s
(unweighted) capacity to that ofGM .

Proposition 6: Given the constraints (12), asK → ∞ the
optimal thresholds forGM satisfy xKM

→ ∞ and xKM
=

o(log K). Form = 1, . . . ,M−1, the optimal thresholds satisfy
xKm

→ x∗
m, where

exp(−e−x∗

m) =
1 +

∑M−1
l=m+1 αl

1 +
∑M−1

l=m αl

.

With such a sequence of thresholds

CK
tot ≍

(

M−1
∑

m=1

wmαm + wM

)

θ∗ log(log K),

whereθ∗ = 1
1+ M−1

m=1
αm

.
Note that
(

M−1
∑

m=1

wmαm + wM

)

θ∗ < w1

(

M−1
∑

m=1

αm + 1

)

θ∗ = w1.



Hence the asymptotic growth ofCK
tot with the fairness con-

straints is strictly less than the unconstrained growth. Also,
it follows directly from the proof that each classm has a
weighted throughput that increases aswmαmθ∗ log(log K).
As an example, suppose thatαm = 1 for each classm < M .
Then it can be shown thatθ∗ = 1/M , i.e., adding classes
asymptotically reduces the capacity of each class as1/M .

VI. N UMERICAL RESULTS

In this section we provide numerical examples, which
illustrate our asymptotic results. We assume two classes with
weightsw1 = 1.1 and w2 = 1. For both groups the channel
varianceσ2

m = 1, and K1 = K2. Also, we set the ratio
β = 0.5, and the power per userP = 1 (0 dB).

Figure 1 shows the weighted capacity per sub-channel for
each group,w1C

K1

1 andw2C
K2

2 , and the weighted sum capac-
ity CK

tot as a function of the number of users in the systemK.
As expected,CK

tot andw1C
K1

1 both increase aslog(log K)),
andCK

tot converges tow1 log(log K) + w1 log(βP), which is
also shown in the figure. The capacity for group 2,w2C

K2

2 ,
decreases very slowly to zero.

Figure 2 shows the optimal thresholds for the two groups,
uK1

and uK2
, as a function ofK. Both tend to infinity no

faster thanlog(K), and no slower thanlog(K)− log(log(K)),
which are also shown.
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Fig. 1. Rates for two classes vs. total number of usersK.

VII. C ONCLUSION

We have characterized the asymptotic behavior of a sub-
channel assignment scheme for downlink OFDMA system.
We have assumed that each user feeds back one bit per sub-
channel, although in practice, the feedback can be reduced
further by feeding back one bit for a block of contiguous
sub-channels (i.e., within a coherence band). Different quality
of service requests are taken into account by assigning the
users different priority weights, and by adjusting the feedback
thresholds. We have shown that for multiple classes, optimiz-
ing the thresholds to maximize the weighted sum capacity
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Fig. 2. Optimal thresholds for two classes vs.K.

results in the group with highest priority getting all of thesub-
channels asymptotically. Hence to enforce fairness constraints,
either the sum capacity objective must be compromised, as in
the fixed rate ratio scenario, or the priorities can be adjusted
by a scheduler (or both). Adjusting priorities may enable a
reduction in feedback with little loss in spectral efficiency,
since only the high priority group would need to report
CSI. Although our results were derived for Rayleigh fading
channels, we expect that analogous results can be derived for
a more general class of fading distributions.
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