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ECE 333: Introduction to Communication Networks 

Fall 2002 
 

Lecture 11: Delay models I 
 
 
 

�� Components of Network delay 
 
�� Little's theorem 
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We are going to spend the next two lectures discussing delay in networks. 
Delay refers to the time required for data to be sent from its origin to its 
destination. As we saw in lecture 1, low delay is a key service requirement 
for many applications.  For this reason it is a basic performance measure 
used to evaluate networks. Also, when we study protocols for higher network 
layers, delay considerations have a strong influence on the choice of 
algorithms.  
 

Our focus is on the delay experienced by a packet being sent between two 
points in the network. This quantity will generally vary over time, depending 
on the other traffic, the errors that occur, etc.  Thus the delay for a given 
packets is often modeled as a random variable. Let nT  denote the delay 
experienced by the nth packet sent between two points.  Several measures of 
delay are commonly used. One quantity is the maximum delay, i.e. the 
smallest d such that 1)Pr( �� dTn  for all n. Another common measure is the 
average delay, given by   
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In some cases, the delay jitter, or the variance in the delay is also 
important. Which delay measure is appropriate depends on the application. 
For example, good quality (real-time) voice requires a maximum delay less 
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than 90 msec and a small delay jitter. For many data applications a small 
average delay may be sufficient. 

In a network, the main sources of delay include the following: 
 

1. Transmission delay 
 

2.  Propagation delay 
 

3.  Retransmission delay 
 

4.  Processing delay 
 

5.  Queueing delay 
 

We have considered the first two factors in the previous lectures as well as in 
the homework. These depend primarily on the physical channel and the 
transmission technique used. Recall that on a link, the propagation delay is 
generally fixed for every packet, while the transmission delay depends on 
packet size. 
 

The third factor, the retransmission delay, depends on the ARQ strategy. 
When a network does not provide a reliable service, this may be zero. Also in 
networks with very low error rates, this can be minor (with a well-designed 
ARQ protocol). 
 

Next we will briefly discuss processing delays. Then we will focus on 
queueing delay for the remainder of this lecture and the next. 
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Processing delay -  
 
Processing delays refers to the time required for any processing of a packet 
before it is transmitted. Processing delays may be incurred at both the 
transmitter and receiver. The nature of these delays strongly depends on the 
protocols used and the computer architecture of a host. 
 

The figure below shows a high level example of an architecture for a 
workstation connected to a network.  
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The physical layer and data link layer will generally be implemented in 
hardware on the network adaptor card; this card is generally connected to 
the system I/O bus. Data is transferred to and from the host's main memory 
over the I/0 bus.    

When a packet arrives from the network, before it is delivered to an 
application running on the CPU, various sources of delay are incurred, 
including:  
 

�� Number of clock cycles required for implementing the required 
protocols. 

 

�� Buffering in the network adapter card to match line speeds. 
 

�� Time to acquire the I/O bus. 
 

�� Transmission time on the I/O bus. 
 

�� Type of memory access  - e.g. DMA (direct memory access) or PIO  
(programmed I/O). 

 

�� Interrupt processing time (time for CPU to respond to interrupt 
generated by network adapter) 

 

�� Number of times the message must be read across CPU bus. 

 

       6 

(Similar delays occur when a host is transmitting a packet.) 
 
Computer architectures and protocols can be optimized to minimize these 
delays.   
 

E.g. design protocol to limit number of times full message needs to 
be read across the CPU bus - pass pointer instead of messages - use 
dedicated hardware, etc. 
 

For routers and servers in high-speed networks, these are important 
considerations. 
 
Addressing such concerns require an understanding of computer architecture 
and operating systems that is beyond the requirements of this class. The 
important point to remember is that these types of effect can have an 
important impact on the overall delay. 
 
In the following, we will usually consider processing delay to be fixed for 
every packet and often include it with the propagation time of the packet. 
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Queueing Delay: 
 

Queuing delay accounts for the time a packet waits in memory before it is 
processed and transmitted. The reason for delay may be because another 
packet is currently being transmitted, either by the same source, or in the 
case of a broadcast network, another source. 
 
 

Example: 
 

Consider a transmission line with a rate of 1 Mbps.  
 

Suppose that packets of size 1000 bits are to be transmitted over the 
line. Thus it takes 1 msec to transmit each packet. 
 

If the time between packet arrivals is larger than 1 msec, no queueing 
will take place. 
 

Suppose, Packet 1 arrives at t=0 , Packet 2 arrives at t=.4 msec. 
 

Packet 1 takes 1 msec to be transmitted.  
 

Thus, Packet 2 must wait in buffer for .6 msec before it is transmitted. 
This is the queuing delay of Packet 2. 
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Queueing 
 

Some simplified models of queueing in networks can be analyzed 
mathematically. The study of such models is the subject of Queueing 
Theory. We will look at some very basic results and give some intuitive 
derivations - the fine mathematical details will not be stressed. 
 

(If you are interested in seeing more of this type of analysis - take ECE 454.) 
 

Queueing theory (History) 
 

�� Developed in early 1900's by Erlang. 
 

�� Motivated by telephone network applications. (Erlang worked as an 
engineer for the Copenhagen Telephone Company) 

 

�� Developed throughout 1900's - applied in many areas including 
manufacturing systems, customer service facilities, transportation 
systems, and computer memory. 

 

Uses of Queueing Models in Networks: 
 

�� Performance analysis  (However, simplifying assumptions are generally 
made - a detailed performance analysis usually requires simulations and 
actual data measurements in addition to queueing analysis.)  

 

�� Provides intuition and understanding of basic trade-offs. 
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Basic Queueing Model 
 

"Customers" arrive at random times to a "system". Each customer requires a 
random amount of "service" before it can leave. Some customers may be 
blocked (turned away) and unable to enter the system. 
 

System 

Arriving Customers Departing Customers 

Blocked Customers 
 

 
Typically, for us: 
 

 Customers  = packets, bits, sessions, etc. 
 

 System       = Network, Buffer, etc.  
 

 Service       = transmission time (depends on packet length) 
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To have a mathematical model of a queueing system we need to specify the 
following: (i) how customers arrive, (ii) how much service each customer 
requires, (iii) how they are served and (iv) if and when they are blocked (not 
given sevice). 
 

The arrival of each customer will be modeled as being random. Specifically, 
the time between when one customer arrives and when the next customer 
arrives will be modeled as a random variable, called the inter-arrival time. 
We denote the inter-arrival time between customer n-1 and customer n, by 
An. By convention, A1 denotes the arrival time of the first customer, thus the 
arrival time of the nth customer is given by A1+ … + An. 
 

The service time required by a customer will also be modeled as a random 
variable (Recall, for a packet transmitted at a fixed rate, the packet length is 
proportional to the service time). We will denote the service time of the nth 
customer by Xn. After the nth customer arrives, it will wait in the systems for 
some time Wn, before receiving service, this is referred to as the queueing 
time of the customer. Thus, the customer will leave the system Tn=Xn + Wn 
seconds after arriving, where Tn is the total customer delay. 
 

How long the customer has to wait in the system depends on the other 
arrivals as well as the queueing discipline. This is the rule the system uses 
to decide who gets served next 
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Some examples of queuing disciplines: 

 
  One packet at a time: 

First come first serve (FCFS)  
   Last come first serve (LCFS) 
   Round robin 
   Priorities (on session basis, time elapsed, etc.) 

 

Multiple packets at a time: 
 FCFS 

   Separate queues/separate servers. 
 
 
One can also specify a blocking rule, a common one is simply to discard users 
when the system is full. Alternatives include randomly dropping customers, 
and blocking customers from a certain class. In most of the following, we will 
ignore blocking; we assume all customers are admitted and that the system 
can hold an arbitrary number of customers. 
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We next define some quantities that will be useful in analyzing a queueing 
system. Assume that at time 0 the system is empty and let � (t) denote the 
number of arrivals to the system between time 0 and t. This will be an 
increasing, piecewise constant function of t. The average arrival rate to the 
system is given by 

t
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	 ���  customers/sec. 

Let 
 (t) denote the number of customers to depart from the system between 
time 0 and t. The number of customers in the system at time t is then given 
by: 

)()()( tttN 
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The average number of customers in the system is given by 
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Suppose that the nth customer stays in the system for Tn seconds, i.e. this is 
the delay experienced by the nth customer. Then the average customer 
delay is given by  
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LITTLE'S THEOREM 
 
Under very broad conditions, Little's theorem says that the following 
relationship holds: 
 
 Average number of customers in system = 
   Customer arrival rate   x   Average customer delay 
  

i.e. N = 		 		 T. 
 

 
 
The "system" in this theorem can be many things including a queue, queue 
plus server, the entire network, server alone, etc. 
 
Example: assume packets arrive at a node at 100 packets/sec, and there are 
on average 10 packets waiting in the node, then Little's theorem says that 
the average delay per packet is 0.1 sec. 
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The following graphical argument gives an outline of the proof of Little's 
theorem. The argument is for a system that serves one customer at a time in 
FCFS order, however the theorem applies for much more general cases. 
Assume that the system is empty at time 0.  The figure below shows the 
arrival process, � (t), (the top curve) and the departure process, 
 (t) (the 
bottom curve). Since N(t) = � (t) - 
 (t), the vertical distance between these 
curves is the number in the system at any time t. Since customers are served 
FCFS, the delay, Ti, of customer i is the vertical distance between the curves 
as shown. 
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Consider some time t>0 when the systems is again empty. Let Nt be time 
average number of customers in the system from time 0 to t, i.e.,  
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)( ��  is the area between the two curves in the figure. This 
area is also given by the sum of the boxes shown. Each box has height 1 and 
length Tn. 
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Thus we have 
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By multiplying and dividing the right-hand side by � (t) we have 
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Now define the time-average arrival rate from 0 to t to be 
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and the time-average time a customer is in the system as 
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Thus Nt = 	 t Tt  for any t at which system is empty. 
 
Assuming that all three of these approach a limit as ��t , we have N = 		 		 T.
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Little's theorem doesn't give us N or T, but allows either to be found if the 
other can be found. 
 
 
Examples: 
 
Fast food restaurant (small T) requires small dining area (small N) for given 
	 . 
 
On a rainy day, people drive more slowly (T is larger in a given area) and 
thus N is larger (if 	  remains same). 
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We noted that Little's theorem can be applied to a variety of different 
"systems". We consider several possibilities next: 
 
Consider a single queue followed by a single server. 
 
Let N be the average number in system (queue plus transmission (service) 
time) and T the average delay in system; then from Little's theorem we have 
N = 	 T. 
 
Next, let NQ be average number in queue (not including service) and W be 
the average delay in queue; then NQ = 	 W from Little's theorem. 
 
Finally, if the average transmission time on a link is X , then the average 
number of packets under transmission, � � � is given by  

X	� �  
from Little again.  
 
�  can be viewed as the utilization factor of a link.  If packets are sent one 
at a time, then the number in transmission is either 0 or 1.  The average 
number in transmission is then the probability that the link is occupied. In 
other words �  is the fraction of time the link is busy. 


